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1. INTRODUCTION

Recently, authors [2] have discussed some equivalent relations for p-uniform stabil-
ities of a given equation and those of its limiting equations by using the skew product
flow constructed by quasi-processes on a general metric space. In 1992, Murakami and
Yoshizawa [6] pointed out that for functional differential equations with infinite delay
on a fading memory space B = B((—o0, 0]; R™) p-stability is a useful tool in the study of
the existence of almost periodic solutions for almost periodic systems and they proved
that p-total stability is equivalent to BC-total stability.

The purpose of this paper is to show that equivalent relations established by Mu-
rakami and Yoshizawa [6] holds even for functional differential equations with infinite

delay on a fading memory space B = B((—o0,0]; X)) with a general Banach space X.

2. FADING MEMORY SPACES AND SOME DEFINITIONS
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Let X be a Banach space with norm | - |x. For any interval J C R := (—00, 00),
we denote by BC(J; X) the space of all bounded and continuous functions mapping
J into X. Clearly BC(J; X) is a Banach space with the norm | - |gc(s,x) defined by
|dlBe(rx) = sup{|o(t)|x : t € J}. If J = R~ := (—00, 0], then we simply write BC(J; X)
and | - [goesx) as BC and | - |, respectively. For any function u : (—o0,a) — X
and t < a, we define a function u; : R~ +— X by w(s) = u(t + s) for s € R™. Let
B = B(R;X) be a real Banach space of functions mapping R~ into X with a norm

| - |5- The space B is assumed to have the following properties:

(A1)  There exist a positive constant N and locally bounded functions K(-) and
M(-) on R* := [0, 00) with the property that if u : (—oc0,a) — X is continuous on [0, a)
with u, € B for some o < a, then for all ¢ € [0, a),

(i) weB,

(i)  w is continuous in ¢ (w.r.t. |- ),

(i) NJu(t)lx < [uls < K(t o) Supyeses [u(s)x + Mt — o)l

(A2) 1If {¢"} is a sequence in B N BC converging to a function ¢ uniformly on any

compact intertval in R~ and sup,, [¢"|gc < 00, then ¢ € B and [¢™ — ¢|g — 0 as n — oc.

It is known [3, Proposition 7.1.1] that the space B contains BC and that there is a
constant ¢ > 0 such that

195 < l|¢lsc, ¢ € BC. (1)
Set By = {¢ € B: ¢(0) = 0} and define an operator Sy(t) : By — By by

o(t+s) if t+s<0,
[So(t)o](s) =
0 if t+s5>0

for each ¢ > 0. In virtue of (Al), one gets that the family {Sy(¢)}+>0 is a strongly
continuous semigroup of bounded linear operators on By. We consider the following

properties:
(A3) I |So()éls =0, &€ By,

The space B is called a fading memory space, if it satisfies (A3) in addition to (A1)
and (A2). It is known [3, Proposition 7.1.5] that the functions K(-) and M(:) in (A1)
can be chosen as K(t) = ¢ and M(t) = (1 + (¢/N))||So(t)||]. Here and hereafter, we
denote by || - || the operator norm of linear bounded operators. Note that (A3) implies

Sup;g |[So(t)|| < oo by the Banach-Steinhaus theorem. Therefore, whenever B is a
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fading memory space, we can assume that the functions K(-) and M(-) in (A1) satisfy
K(-) = K and M(-) = M, constants.

We provide a typical example of fading memory spaces. Let g : R~ — [1,00) be any
continuous nonincreasing function such that ¢(0) = 1 and g(s) — oo as s — —oc0. We

set
C’g = C’g(X) ={¢: R — X is continuous with SEEHOO lo(s)|x/g(s) = 0}.

Then the space Cg equipped with the norm

o 190s)]x 0
|¢|g - S;;%) g(S) 9 (b S Cgu

is a Banach space and it satisfies (A1)~(A3). Hence the space C7 is a fading memory

space. We note that the space C’g is separable whenever X is separable.

Throughout the remainder of this paper, we assume that B is a fading memory space
which is separable.

We now consider the following functional differential equation
du
— = Au(t) + F(t,uy), (2)
dt
where A is the infinitesimal generator of a compact semigroup {7'(¢)}>o of bounded

linear operators on X and F : RT x B — X is continuous. We assume the following

conditions on F'
(H1) F(t, ¢) is uniformly continuous on R* x S for any compact set S in B.

(H2) For any H > 0, there is an L(H) > 0 such that |F(¢,¢)|x < L(H) for allt € R*
and ¢ € B such that |¢|z < H.

For any topological spaces J and X', we denote by C(7; X) the set of all continuous
functions from J into X. By virture of (H1) and (H2), it follows that for any (o, ¢) €
R x B, there exists a function u € C((—o00,t;); X) such that u, = ¢ and the following

relation holds:
¢
u(t) =T(t — o)é(0) + / T(t—s)F(s,us)ds, o <t<t,

(cf. [1, Theorem 1]). Such a function u is called a (mild) solution of (2) through (o, ¢)
defined on [0, t;) and denoted by u(t) := u(t, o, ¢, F).
In the above, ¢; can be taken as t; = oo if sup,<;, |u(t)|x < oo(cf. [1, Corollary

2]). In the following, we always assume the following condition, too:
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(H3) Equation (2) has a bounded solution @(t) defined on R* such that 4y € BC and
|us|p < Cy for all t € RT.

By virtue of [4, Lemma 2], we see that the set {u(t) : ¢t € Rt} is compact in X, u(t)
is uniformly continuous on R* and the set {u; : t € Rt} is compact in B.
Now we shall give the definition of BC-total stability.

Definition 1 The bounded solution u(t) of (2) is said to be BC-totally stable (BC-
TS) if for any € > 0 there exists a 6(¢) > 0 with the property that o € R*, ¢ € BC
with |ty — ¢lsc < d(¢) and h € BC([o,00); X) with sup,c(y ) |h(t)|x < d(g) imply
|u(t) —u(t,o,¢, F + h)|x < e fort> o, where u(-,0,¢,F + h) denotes the solution of

% = Au(t) + F(t,u) + h(t), t>o0, )

through (o, ¢).

For any ¢, v € BC, we set

p(6,8) = 327916 — /{1 + |6 — ¥, },

j=1
where | - |[; = | - |=j0- Then (BC,p) is a metric space. Furthermore, it is clear that
p(¢F,¢) — 0 as k — oo if and only if ¢¥ — ¢ compactly on R~. Let U be a closed
bounded subset of X whose interior U’ contains the set {u(t) : t € R}, where @ is the
one in (H3). Whenever ¢ € BC satisfies ¢(s) € U for all s € R™, we write as ¢(-) € U,
for simply.
We shall give the definition of p-total stability.

Definition 2 The bounded solution u(t) of (2) is said to be p-totally stable with respect
to U (p-TS w.r.t.U) if for any e > 0 there exists a §(¢) > 0 with the property that o €
R, 6(-) € U with p(ty, ¢) < (g) and h € BC([0,00); X) with sup,c(y ) [h(t)]x < ()
imply p(ug, uy(o, ¢, F + h)) <e fort>o.

In the above, if the term p(u.(o, ¢, F' + h), ;) is replaced by |u(t,o, F + h) — u(t)| x,
then we have another concept of p-total stability, which will be referred to as the (p, X)-
total stability.

As was shown in [6, Lemma 2|, these two concepts of p-total stability are equivalent.
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3. EQUIVALENCE OF BC-TOTAL STABILITY AND p-TOTAL
STABILITY

In this section, we shall discuss the equivalence between the BC-total stability and
the p-total stability, and extend a result due to Murakami and Yoshizawa [6, Theorems
1]) for X = R™.

We now state our main result of this section.

Theorem  The solution @(t) of (2) is BC-TS if and only if it is p-TS w.r.t.U for any
bounded set U in X such that U* D Oy := {u(t) : t € R}.

In order to prove the theorem, we need a lemma. A subset F of C'(R™; X) is said to
be uniformly equicontinuous on R, if
sup{|z(t+0) —z(t)|x : t € RT,x € F} — 0 as § — 0*. For any set F in C(R*; X) and

any set S in B, we set

R(F) = {z(t):t€R", z€ F}

W(S,F) = {z():R— X :2¢ € S,x|g+ € F}

and
V(S,F)=Az,:t € R" x € W(S,F)}.

Lemma ([5, Lemma 1]) If S is a compact subset in B and if F is a uniformly equicon-
tinuous set in C'(R*; X) such that the set R(F) is relatively compact in X, then the set
V (S, F) is relatively compact in B.

Proof of Theorem The “if” part is easily shown by noting that p(¢,v) < |¢ — ¥ |pc
for ¢,1 € BC. We shall establish the “only if” part. We assume that the solution (t)
of (2) is BC-TS but not (p, X)-TS w.r.t.U; here U C {z € X : |z|x < ¢} for some ¢ > 0.
Since the solution u(t) of (2) is not (p, X )-TS w.r.t.U, there exist an ¢ € (0, 1), sequences
{Tm} C R, {tm}(tm > Tm), {0} C BC with ¢™(-) € U,{h,,} with h,, € BC([1,n, 0)),
and solutions {u(t, 7, ™, F + hy,) == a™(t)} of

% = Au(t) + F(t,u) + hm(t)
such that
(" tUr,) < 1/m and |hn |, ) < 1/m (4)

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 13, p. 5



and that
|0 (t,) — u(ty,)|x = ¢ and |[a™(t) — a(t)|x <& on [T, tm) (5)

for m € N, where N denotes the set of all positive integers. For eachm € Nandr € R,
we define ¢™" € BC by

o™ (0) if —r<60<0,
o™ (0) =
O™ (—=1) + Wt + 0) — (1 — ) if 6 < —1.

We note that
sup{|¢™" — ¢"|g: m € N} - 0 as r — oc. (6)

Indeed, if (6) is false, then there exist an € > 0 and sequences {m;} C N and {ry},r, —
o0 as k — oo, such that |¢™k™ — ¢™*k |z > g for k = 1,2,---. Put ¥ 1= ¢mere — @™,
Clearly, {1*} is a sequence in BC which converges to zero function compactly on R~ and
supy, |¥*|pc < co. Then Axiom (A2) yield that [1)*|z — 0 as k — oo, a contradiction.
Next we shall show that the set {¢™, ¢™" : m € N,r € R*} is relatively compact in
B. Since the set {u, : t € R*} is compact in B as noted in the preceding section, (4) and
Axiom (A2) yield that any sequence {¢™}22,(m; € N) has a convergent subsequence
in B. Therefore, it sufficies to show that any sequence {¢™"7}%2,(m; € N,r; € RT) has

o]
J=1

contains a subsequence which is equicontinuous on any compact set in R~. If this is

a convergent subsequence in B. We assert that the sequence of functions {¢™"7 ()

the case, then the sequence {¢™"7}%2, would have a convergent subsequence in B by
Ascoli’s theorem and Axiom (A2), as required. Now, notice that the sequence of functions
{7, +0)} is equicontinuous on any compact set in R~. Then the assertion obviously
holds true when the sequence {m;} is bounded. Taking a subsequence if necessary, it
is thus sufficient to consider the case m; — oo as j — oo. In this case, it follows
from (4) that ¢™(0) — (7, +6) =: w?(6) — 0 uniformly on any compact set in R™.
Consequently, {w’(#)} is equicontinuous on any compact set in R~, and so is {¢™(6)}.
Therefore the assertion immediately follows from this observation.

Now, for any m € N, set u™(t) = 4™ (t + 7o) if t < t,, — 7 and w™(t) = " (t — 7,0)
if ¢t > t,, — Tn. Moreover, set u™"(t) = ¢"™"(t) if t € R~ and u™"(t) = u™(t) if t € R™.
In what follows, we shall show that {u™(¢)} is a family of uniformly equicontinuous

functions on R™. To do this, we first prove that

inf (i, — 7m) > 0. (7)
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Assume that (7) is false. By taking a subsequence if necessary, we may assume that
lim,, oo (ty, — 7n) = 0. If m > 3 and 0 < ¢ < min{t,, — 7, 1}, then

lu™(t) —a(t+ m)lx = |T({)¢™(0) + /Ot T(t— s){F(s+ Tm,ul") + hp(s + 1) }ds

~T(0)a(r) - [ Tt = $)F(s + Ty, g, VS| x

IN

Co{|¢™ — 1y, |1 +/Ot(2L(H) + 1)ds}
< Cof2/(m —2) +t(2L(H) + 1)},

where H = sup{|us|p, |[u'|g:0 < s < t, —Tm, m € N} and Cy = SUPg< <1 || T(s)]||.
Then (5) yields that

e < Co{2/(m — 2) + (tm — ) (2L(H) + 1)} — 0

as m — 00, a contradiction. We next prove that the set O := {u™(¢t) : t € R*, m € N}
is relatively compact in X. To do this, for each n such that 0 < n < inf,,(t,, — 7,)
we consider the sets O, = {u™(t) : t >, m € N} and O, = {u™(t) : 0 < t <
n, m € N}. Then a(0) = max{a(0,), a(O,)}, where a(-) is the Kuratowski’s measure
of noncompactness of sets in X. For the details of the properties of a(+), see [5; Section
1.4]. Let 0 < v < min{l,n}. If n <t < t,, — 7y, then

W) = T(t)gbm(O)+/0tT(t—s){F(s+Tm,u;”)+hm(s+7'm)}ds
= DO = 0) + [T~ v = )+ 7 )+ hls+ )}

t
+ T(t — s){F(s+ Tm,ul’) + h(s + ) }ds
t—v
t

= Twu™(t—v)+ t T(t—$){F(s+ Tm,ul') + h(s + 1) }ds.

Since the set T'(v){u™(t —v) :t > n, m € N} is relatively compact in X because of the
compactness of the semigroup {7'(¢) }+>0, it follows that

a(0,) < Co{L(H) + 1}w.

Letting v — 0 in the above, we get a(O,;) = 0 for all 5 such that 0 < n < inf,,(t,, — 7).
Observe that the set {T'(t)¢™(0) : 0 <t <n, m € N} is relatively compact in X. Then

a(0) = a(0y)
— a({T(£)™(0) +/0 T(t — $){F (s + 7o, ™) + h(s + 7m)}ds : 0 < t <7, m € N})

_ a({/OtT(t — {F (s + T, u™) + h(s+ ) }s s 0 < £ <1, m € N})
— Cy(L(H) + 1)y
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for all n such that 0 < n < inf,,(¢,, — 7,n), which shows a(O) = 0; consequently O must
be relatively compact in X.

Now, in order to establish the uniform equicontinuity of the family {u™(¢)} on R,
let c <s<t<s+1landt<t,, —7,. Then

[u™(t) —u"(s)[x < T —s)u™(s) —u™(s)|x +| /:T(t = TRE(T + T, u)
+h(T + Tm) HdT| x
< sup{|T(t—s)z—z|x :2€ O} + Cof{ L(H) + 1}|t — s|.

Since the set O is relatively compact in X, T'(7)z is uniformly continuous in 7 € [0, 1]
uniformly for z € O. This leads to sup{|u™(t)—u™(s)|x : 0 < s <t <s+1, me N} =0
as |t — s| — 0, which proves the uniform equicontinuity of {u™} on R™.

Since {¢™,¢"™" : m € N,r € R} is relatively compact in B, |u}’|zg < K{1 +
0,00y} + M |05 < K{1 + |@][p,00)} + M{c by (1) and (Al-iii), and the family {u™(t)}
is uniformly equicontinuous on R™, it follows from Lemma that the set
W= {uw"",uf® :m € N,t € Rt,r € Rt} is compact in B. Hence F(t,¢) is uniformly
continuous on RT x W. Define a continuous function ¢,,, on R* by ¢n,(t) = F(t +
Ty UpY) — F(t+ Ty uy™") if 0 <t <ty — To, a0 @ (1) = G (tin — Tin) i &> £y — T
Since |uf"" — ut|g < M|¢p™" — ¢™|s (t € RY,m € N) by (Al-iii), it follows from (6)

that sup{|uy"" — u*|g : t € R",m € N} — 0 as r — o00; hence one can choose an

r =r(e) € N in such a way that
sup{|gm,(t)|x :meN,t € R"} < d(/2)/2,

where 6(-) is the one for BC-TS of the solution u(t) of (2). Moreover, for this r, select
an m € N such that m > 2"(14+d(¢/2))/6(¢/2). Then 27" |¢" —ay,, | /[L+ |¢™ — 4, | -] <
p(@™ 1y, ) < 2776(e/2)/[1 4+ 6(g/2)] by (4), which implies that

o™ — iy, | < d(e/2) or |¢™" — iy, [Bc < 0(g/2).
The function u™" satisfies u™" = ¢™" and
W) = um(8)
= T (0)+ [ T = S){F (5 + Ty t™) + hon(5 + 7o) s
= T(t)p™(0) + /Ot Tt —s){F(s+ Tm,uy"") + @mr(8) + hin(s + 7n) }ds

for t € [0,t,, — 7). Since u™(t) = u(t + 7,,) is a BC-T'S solution of

d
= Au(t) + F(t + 7, w1)
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with the same J(-) as the one for u(t), from the fact that sup,sg [gm,,(t) + Am (7 +1)|x <
3(e/2)/2 4+ 1/m < §(g/2) it follows that |[u™"(t) — a(t + 7m)|x < €/2 on [0ty — Tm)-
In particular, we have [u""(t,, — 7o) — U(tm)|x < € or |0™(tm) — u(tm)|x < €, which
contradicts (5).
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