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Abstract. We consider a nonlinear parametric Neumann problem driven by a nonho-
mogeneous differential operator with a reaction which is (p− 1)-superlinear near ±∞
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also show the existence of extremal constant sign solutions.

Keywords: superlinear reaction, concave terms, maximum principle, extremal constant
sign solutions, nodal solution, critical groups.

2010 Mathematics Subject Classification: 35J20, 35J60, 35J92, 58E05.

1 Introduction

Let Ω ∈ RN be a bounded domain with a C2-boundary ∂Ω. The aim of this work is to study
the existence and multiplicity of solutions with a precise sign information, for the following
nonlinear nonhomogeneous parametric (eigenvalue) Neumann problem:

− div a(Du(z)) = f (z, u(z), λ) in Ω,
∂u
∂n

= 0 on ∂Ω . (Pλ)

Here n(·) stands for the outward unit normal on ∂Ω. Also, a : RN → RN is a continu-
ous and strictly monotone map which satisfies certain other regularity conditions listed in
hypotheses H(a) below. These hypotheses are general enough to incorporate as a special case
several differential operators of interest, such as the p-Laplacian (1 < p < ∞), the (p, q)-
Laplacian (that is, the sum of a p-Laplacian and a q-Laplacian with 1 < q < p < ∞) and
the generalized p-mean curvature differential operator. The variable λ > 0 is a parameter
(eigenvalue) which in general enters in the equation in a nonlinear fashion. The nonlinear-
ity of the right-hand side (the reaction of the problem) f (z, x, λ) is a Carathéodory function
in (z, x) ∈ Ω × R (that is for all x ∈ R, λ > 0, z 7→ f (z, x, λ) is measurable and for a.a.
z ∈ Ω, all λ > 0, x 7→ f (z, x, λ) is continuous). We assume that x 7→ f (z, x, λ) exhibits
(p − 1)-superlinear growth near ±∞, while near zero we assume the presence of a concave
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term (that is, of a (p− 1)-sublinear term). So, in the reaction f (z, x, λ), we can have the com-
peting effects of two different kinds of nonlinearities (“concave–convex” nonlinearities). Such
problems were first investigated by Ambrosetti–Brezis–Cerami [2] who deal with semilinear
(that is, p = 2) equations. Their work was extended to equations driven by the Dirichlet
p-Laplacian, by García Azorero–Manfredi–Peral Alonso [9] and by Guo–Zhang [13]. In all
three works the reaction has the special form

f (z, x, λ) = λ|x|q−2x + |x|p−2x with 1 < q < p < p∗ =

{ Np
N−p if p < N,

+∞ if p ≥ N.

More general reactions were considered by Hu–Papageorgiou [14] and by Marano–Papa-
georgiou [18]. Both papers deal with Dirichlet problems driven by the p-Laplacian. For the
Neumann problem, we mention the work of Papageorgiou–Smyrlis [24], where the differential
operator is

u 7→ −∆pu + β(z)u for all u ∈W1,p(Ω) (1 < p < ∞),

with ∆p being the p-Laplace differential operator defined by

∆pu = div(|∇u|p−2∇u) for all u ∈W1,p(Ω)

and β ∈ L∞(Ω), β ≥ 0, β 6= 0. So, in this case the differential operator is coercive. This is not
the case in problem (Pλ). Moreover, the reaction in [24] has the form

f (z, x, λ) = λ|x|q−2x + g(z, x)

with 1 < q < p and g(z, x) is a Carathéodory function which is (p− 1)-superlinear in x ∈ R.
Papageorgiou–Smyrlis [24] look for positive solutions and they prove a bifurcation-type theo-
rem describing the set of positive solutions as the parameter λ > 0 varies.

Our approach is variational based on the critical point theory. We also use suitable trun-
cation and perturbation techniques and Morse theory (critical groups).

2 Mathematical background – hypotheses

In this section, we present the main mathematical tools which we will use in the sequel and
state the hypotheses on the data of problem (Pλ). We also present some straightforward but
useful consequences of the hypotheses.

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that ϕ satisfies the Cerami condition (the
C-condition for short), if the following is true:

Every sequence {xn}n≥1 ⊆ X s.t. {ϕ(xn)}n≥1 ⊆ R is bounded and

(1 + ‖xn‖)ϕ′(xn)→ 0 in X∗ as n→ ∞,

admits a strongly convergent subsequence.

This is a compactness type condition on the functional ϕ, more general than the Palais–
Smale condition. It compensates for the fact that the ambient space X need not be locally
compact (being in general infinite dimensional). The C-condition suffices to prove a deforma-
tion theorem and then from it derive the minimax theory for the critical values of ϕ. Prominent
in that theory is the so-called “mountain pass theorem” (see [3]).
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Theorem 2.1. If ϕ ∈ C1(X) satisfies the C-condition, x0, x1 ∈ X with ‖x1 − x0‖ > ρ > 0

max{ϕ(x0), ϕ(x1)} < inf{ϕ(x) : ‖x− x0‖ = ρ} = mρ

and c = infγ∈Γ max0≤t≤1 ϕ(γ(t)), where Γ = {γ ∈ C([0, 1], X) : γ(0) = x0, γ(1) = x1}, then
c ≥ mρ and c is a critical value of ϕ.

The analysis of problem (Pλ), in addition to the Sobolev space W1,p(Ω), will also involve
the Banach space C1(Ω̄). This is an ordered Banach space with positive cone

C+ = {u ∈ C1(Ω̄) : u(z) ≥ 0 for all z ∈ Ω̄}.

This cone has a nonempty interior given by

int C+ = {u ∈ C1(Ω̄) : u(z) > 0 for all z ∈ Ω̄}.

Now, let us introduce the hypotheses on the map a(·).
Let ξ ∈ C1(0, ∞) with ξ(t) > 0 for all t > 0 and assume that

0 < ĉ ≤ tξ ′(t)
ξ(t)

≤ c0 and c1tp−1 ≤ ξ(t) ≤ c2(1 + tp−1), (2.1)

for all t > 0, with c1 > 0.
The hypotheses on the map a(·) are the following:

H(a): a(y) = a0(|y|)y for all y ∈ RN with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0, ∞), t 7→ ta0(t) is strictly increasing on (0, ∞), ta0(t)→ 0+ as t→ 0+ and

lim
t→0+

ta′0(t)
a0(t)

= c > −1;

(ii) ‖∇a(y)‖ ≤ c3
ξ(|y|)
|y| for all y ∈ RN \ {0} and some c3 > 0;

(iii) (∇a(y)h, h)RN ≥ ξ(|y|)
|y| |h|

2 for all y ∈ RN \ {0}, all h ∈ RN ;

(iv) if G0(t) =
∫ t

0 sa0(s)ds for all t ≥ 0, then pG0(t)− t2a0(t) ≥ −γ for all t ≥ 0 and some
γ > 0;

(v) there exists τ ∈ (1, p) such that t 7→ G0(t1/τ) is convex, limt→0+
G0(t)

tτ = 0 and

t2a0(t)− τG0(t) ≥ c̃tp

for all t > 0 an some c̃ > 0.

Remark 2.2. Evidently G0 is strictly convex and strictly increasing. We set G(y) = G0(|y|) for
all y ∈ RN . Then G is convex and it is differentiable at every y ∈ RN \ {0}. Also

∇G(y) = G′0(|y|)
y
|y| = a0(|y|)y = a(y) for all y ∈ RN \ {0}, 0 ∈ ∂G(0),

implies that G is the primitive of the map a.
The convexity of G and the fact that G(0) = 0, imply

G(y) ≤ (a(y), y)RN = a0(|y|)|y|2 (2.2)

for all y ∈ RN .
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The next lemma is a straightforward consequence of the above hypotheses and summarizes
the main properties of the map a, which we will use in the sequel.

Lemma 2.3. If hypotheses H(a) hold, then

(a) y 7→ a(y) is continuous and strictly monotone, hence maximal monotone too;

(b) |a(y)| ≤ c4(1 + |y|p−1) for all y ∈ RN and some c4 > 0;

(c) (a(y), y)RN ≥ c1
p−1 |y|p for all y ∈ RN .

Lemma 2.3 and (2.1), (2.2), lead to the following growth estimates for the primitive G.

Corollary 2.4. If hypotheses H(a) hold, then

c1

p(p− 1)
|y|p ≤ G(y) ≤ c5(1 + |y|p)

for all y ∈ RN with c5 > 0.

Example 2.5. The following maps satisfy hypotheses H(a):

(a) a(y) = |y|p−2y with 1 < p < ∞. This map corresponds to the p-Laplacian

∆pu = div(|∇u|p−2∇u) for all u ∈W1,p(Ω).

(b) a(y) = |y|p−2y + µ|y|q−2y with 1 < q < p and µ > 0. This map corresponds to a sum of
a p-Laplacian and a q-Laplacian, that is:

∆pu + µ∆qu for all u ∈W1,p(Ω).

Such differential operators arise in many physical applications (see [23] and the refer-
ences therein).

(c) a(y) = (1 + |y|2)
p−2

2 y with 1 < p < ∞. This map corresponds to the generalized p-mean
curvature differential operator

div
[
(1 + |∇u|2)

p−2
2 ∇u

]
for all u ∈W1,p(Ω).

(d) a(y) = |y|p−2y + |y|p−2y
1+|y|p with 1 < p < ∞.

We introduce the following nonlinear map A : W1,p(Ω)→W1,p(Ω)∗ defined by

〈A(u), y〉 =
∫

Ω
(a(∇u),∇y)RN dz (2.3)

for all u, y ∈W1,p(Ω).
The next result is a particular case of a more general result proved by Gasinski–Papa-

georgiou [11].

Proposition 2.6. If hypotheses H(a) hold, then the map A : W1,p(Ω) → W1,p(Ω)∗ defined by (2.3)
is bounded (that is, it maps bounded sets to bounded sets), demicontinuous, strictly monotone (hence
maximal monotone too) and of type (S)+, that is

un ⇀ u in W1,p(Ω) and lim sup
n→∞

〈A(un), un − u〉 ≤ 0⇒ un → u in W1,p(Ω).



Nonlinear nonhomogeneous Neumann eigenvalue problems 5

Consider a Carathéodory function f0 : Ω×R→ R satisfying

| f0(z, x)| ≤ α(z)(1 + |x|r−1) for a.a. z ∈ Ω, all x ∈ R,

with α ∈ L∞(Ω)+, 1 < r < p∗. We set F0(z, x) =
∫ x

0 f0(z, s) ds and consider the C1-functional
ϕ0 : W1,p(Ω)→ R defined by

ϕ0(u) =
∫

Ω
G(∇u(z)) dz−

∫
Ω

F0(z, u(z)) dz for all u ∈W1,p(Ω).

In the sequel by ‖ · ‖1,p we denote the norm of the Sobolev space W1,p(Ω), that is

‖u‖1,p =
[
‖u‖p

p + ‖∇u‖p
p
]1/p

.

The following result is due to Motreanu–Papageorgiou [21].

Proposition 2.7. If u0 ∈ W1,p(Ω) is a local C1(Ω̄)-minimizer of ϕ0, that is there exists ρ0 > 0 such
that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(Ω̄) with ‖h‖C1(Ω̄) ≤ ρ0,

then u0 ∈ C1,β(Ω̄) for some β ∈ (0, 1) and it is also a local W1,p(Ω)-minimizer of ϕ0, that is there
exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W1,p(Ω̄) with ‖h‖1,p ≤ ρ1.

Remark 2.8. The first such result relating local minimizers, was proved by Brezis–Nirenberg
[4], for the spaces C1

0(Ω̄) = {u ∈ C1(Ω̄) : u|∂Ω
= 0} and H1

0(Ω) and with G(y) = 1
2 |y|2 for all

y ∈ RN (it corresponds to the Dirichlet Laplacian).

Now let X be a Banach space and Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0 by Hk(Y1, Y2) we
denote the kth-singular homology group with integer coefficients for the pair (Y1, Y2). Recall
that Hk(Y1, Y2) = 0 for all k < 0.

Given ϕ ∈ C1(X) and c ∈ R, we introduce the following sets:

ϕc = {x ∈ X : ϕ(x) ≤ c}, Kϕ = {x ∈ X : ϕ′(x) = 0}, Kc
ϕ = {x ∈ Kϕ : ϕ(x) = c}.

The critical groups of ϕ at an isolated critical point x0 ∈ X with ϕ(x0) = c (that is, x0 ∈ Kc
ϕ)

are defined by
Ck(ϕ, x0) = Hk(ϕc ∩ U , ϕc ∩ U \ {x0}) for all k ≥ 0,

where U is a neighborhood of x0 ∈ X such that Kϕ ∩ ϕc ∩ U = {x0}. The excision property of
singular homology implies that the above definition of critical groups is independent of the
choice of the neighborhood U .

Next we introduce the hypotheses on the reaction f (z, x, λ).

H( f ): f : Ω ×R× (0,+∞) → R is a function such that for every λ > 0, (z, x) 7→ f (z, x, λ) is
Carathéodory, f (z, 0, λ) = 0 for a.a. z ∈ Ω and

(i) for every ρ > 0 and λ > 0, there exists αρ(λ) ∈ L∞(Ω)+ such that λ 7→ ‖αρ(λ)‖∞ is
bounded on bounded sets and

| f (z, x, λ)| ≤ αρ(λ)(z) for a.a. z ∈ Ω, all |x| ≤ ρ;
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(ii) if F(z, x, λ) =
∫ x

0 f (z, s, λ) ds, then for all λ > 0

lim
x→±∞

F(z, x, λ)

|x|p = +∞ uniformly for a.a. z ∈ Ω

and there exist r(λ) ∈ (p, p∗) with r(λ)→ r0 ∈ (p, p∗) as λ→ 0+ and η̂∞(λ), η∞(λ) ∈
L∞(Ω) such that

η̂∞(λ)(z) ≤ lim inf
x→±∞

f (z, x, λ)

|x|r(λ)−2x
≤ lim sup

x→±∞

f (z, x, λ)

|x|r(λ)−2x
≤ η∞(λ)(z)

uniformly for a.a. z ∈ Ω and λ 7→ ‖η̂∞(λ)‖∞, ‖η∞(λ)‖∞ are bounded on bounded sets in
(0,+∞);

(iii) for every λ > 0, there exists θ(λ) ∈
(

max
{
(r(λ)− p)N

p , 1
}

, p∗
)
, and β0(λ) such that

0 < β0(λ) ≤ lim inf
x→±∞

f (z, x, λ)x− pF(z, x, λ)

|x|θ(λ)
uniformly for a.a. z ∈ Ω;

(iv) for every λ > 0, there exist q(λ), µ(λ) ∈ (1, τ) (see hypotheses H(a) (v)) with q(λ) ≤
µ(λ) and δ0(λ) ∈ (0, 1), ĉ0(λ) > 0 such that q(λ)→ q0 ∈ (1, p) as λ→ 0+ and

ĉ0(λ)|x|µ(λ) ≤ f (z, x, λ)x ≤ q(λ)F(z, x, λ) for a.a. z ∈ Ω, all |x| ≤ δ0(λ),

there exist β(λ), β1, β2 > 0, with β(λ)→ 0+ as λ→ 0+ such that

f (z, x, λ)x ≤ β(λ)|x|q(λ) + β1|x|r
∗ − β2|x|p for a.a. z ∈ Ω, all x ∈ R,

with r(λ) ≤ r∗ < p∗ (see (ii)) and there exits a function η0(·, λ) ∈ L∞(Ω)+ such that

‖η0(·, λ)‖∞ → 0 as λ→ 0+,

lim sup
x→0

F(z, x, λ)

|x|q(λ)
≤ η0(z, λ) uniformly for a.a. z ∈ Ω.

Remark 2.9. Hypotheses H( f ) (ii), (iii) imply that for a.a. z ∈ Ω and all λ > 0, the reac-
tion f (z, ·, λ) is (p − 1)-superlinear near ±∞. Usually such problems are studied using the
Ambrosetti–Rabinowitz condition (see [3]). Our hypothesis here is more general and incor-
porates in our framework superlinear functions with “slower” growth near ±∞, which fail to
satisfy the Ambrosetti–Rabinowitz condition (see the examples below). On this issue, see also
[16], [19] and the references therein.

Example 2.10. The following functions satisfy hypotheses H( f ). For the sake of simplicity we
drop the z-dependence:

f1(x, λ) = λ|x|q−2x + |x|r−2x− |x|p−2x with 1 < q < τ < p < r < p∗,

f2(x, λ) =


|x|r−2x− |x|p−2x− σ(λ) if x < −ρ(λ)

λ|x|q−2x− |x|p−2x if − ρ(λ) ≤ x ≤ ρ(λ)

|x|r−2x− |x|p−2x + σ(λ) if ρ(λ) < x

with 1 < q < τ < p < r < p∗, ρ(λ) ∈ (0, 1], ρ(λ) → 0+ as λ → 0+, σ(λ) =

(λ− ρ(λ)r−q)ρ(λ)q−1;

f3(x, λ) = λ|x|q−2x + |x|p−2x
(

ln |x| − p− 1
p

)
with 1 < q < τ < p.

Note that f4(·, λ) does not satisfy the Ambrosetti–Rabinowitz condition.
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We introduce the following truncations-perturbations of the reaction f (z, x, λ):

f̂+(z, x, λ) =

{
0 if x ≤ 0

f (z, x, λ) + β2xp−1 if 0 < x
(2.4)

and

f̂−(z, x, λ) =

{
f (z, x, λ) + β2|x|p−2x if x < 0

0 if 0 ≤ x.
(2.5)

Both are Carathéodory functions. We set

F̂±(z, x, λ) =
∫ x

0
f̂±(z, s, λ) ds

and introduce the C1-functionals ϕ̂λ
± : W1,p(Ω)→ R defined by

ϕ̂λ
±(u) =

∫
Ω

G(∇u(z)) dz +
β2

p
‖u‖p

p −
∫

Ω
F̂±(z, u(z), λ) dz for all u ∈W1,p(Ω).

Also, by ϕλ : W1,p(Ω)→ R we denote the energy functional for problem (Pλ) defined by

ϕλ(u) =
∫

Ω
G(∇u(z)) dz−

∫
Ω

F(z, u(z), λ) dz for all u ∈W1,p(Ω).

Clearly ϕλ ∈ C1(W1,p(Ω)).
We conclude this section by fixing our notation. For x ∈ R let x± = max{±x, 0}. Then,

given u ∈W1,p(Ω), we set u±(·) = u(·)±. We have

u = u+ − u−, |u| = u+ + u− and u+, u−, |u| ∈W1,p(Ω).

Give h(z, x) a jointly measurable function (for example, a Carathéodory function), we define

Nh(u)(·) = h(·, u(·)) for all u ∈W1,p(Ω).

Finally by | · |N we denote the Lebesgue measure on RN .

3 Solutions of constant sign

In this section we show that for λ > 0 small, problem (Pλ) has at least four nontrivial solutions
of constat sign (two positive and two negative).

First we establish the compactness properties of the functionals ϕ̂λ
± and ϕλ.

Proposition 3.1. If hypotheses H(a) and H( f ) hold and λ > 0, then the functionals ϕ̂λ
± satisfy the

C-condition.

Proof. We do the proof for the functional ϕ̂λ
+, the proof for ϕ̂λ

− being similar. So, we consider
a sequence {un} in W1,p(Ω) such that

|ϕ̂λ
+(un)| ≤ M1 (3.1)

for some M1 > 0, all n ≥ 1,

(1 + ‖un‖1,p)(ϕ̂λ
+)
′(un)→ 0 in W1,p(Ω)∗ as n→ ∞. (3.2)



8 P. Candito, R. Livrea and N. S. Papageorgiou

From (3.2) we have

|〈(ϕ̂λ
+)
′(un), h〉| ≤

εn‖h‖1,p

1 + ‖un‖1,p

for all h ∈W1,p(Ω) with εn → 0+. Hence∣∣∣∣〈A(un), h〉+ β2

∫
Ω
|un|p−2unh dz−

∫
Ω

f̂+(z, un, λ)h dz
∣∣∣∣ ≤ εn‖h‖1,p

1 + ‖un‖1,p
(3.3)

for all n ≥ 1. In (3.3) we choose h = −u−n ∈W1,p(Ω). Then, in view of (2.4),∫
Ω

(
a(−∇u−n ),−∇u−n )

)
RN dz + β2‖u−n ‖

p
p ≤ εn for all n ≥ 1,

so that, because of Lemma 2.3,

c1

p− 1
‖∇u−n ‖

p
p + β2‖u−n ‖

p
p ≤ εn,

that is
u−n → 0 in W1,p(Ω). (3.4)

Next, in (3.3) we choose h = u+
n ∈W1,p(Ω). Then

−
∫

Ω

(
a(∇u+

n ),∇u+
n )
)

RN dz +
∫

Ω
f (z, u+

n , λ)u+
n dz ≤ εn for all n ≥ 1. (3.5)

Also, from (3.1), (3.4) and Corollary 2.4, we have∫
Ω

pG(∇u+
n ) dz−

∫
Ω

pF(z, u+
n , λ) dz ≤ M2 for some M2 > 0, all n ≥ 1. (3.6)

We add (3.5) and (3.6) and obtain∫
Ω

[
pG(∇u+

n )−
(
a(∇u+

n ),∇u+
n )
)

RN

]
dz +

∫
Ω

[
f (z, u+

n , λ)− pF(z, un, λ)
]

dz ≤ M3, (3.7)

for some M3 > 0, all n ≥ 1. Hence, H(a) (iv) assures that, for all n ≥ 1∫
Ω

[
f (z, u+

n , λ)− pF(z, u+
n , λ)

]
dz ≤ M̂3. (3.8)

Hypotheses H( f ) (i), (iii) imply that we can find b1(λ) ∈ (0, β0(λ)) and c6(λ) > 0 such that

b1(λ)|x|θ(λ) − c6(λ) ≤ f (z, x, λ)x− pF(z, x, λ) for a.a. z ∈ Ω, all x ∈ R. (3.9)

Using (3.9) in (3.8), we obtain that

{u+
n } ⊆ Lθ(λ)(Ω) is bounded. (3.10)

Note that in hypothesis H( f ) (iii) without any loss of generality, we may assume that 1 ≤
θ(λ) < r(λ). First suppose that N 6= p and let t ∈ (0, 1) be such that

1
r(λ)

=
1− t
θ(λ)

+
t

p∗
. (3.11)

The interpolation inequality (see, for example, Gasinski–Papageorgiou [10, p. 905]) implies

‖u+
n ‖r(λ) ≤ ‖u+

n ‖1−t
θ(λ)
‖u+

n ‖t
p∗ .
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Thus, from (3.10) and the Sobolev embedding theorem

‖u+
n ‖

r(λ)
r(λ) ≤ M4‖u+

n ‖
tr(λ)
1,p for some M4 > 0, all n ≥ 1. (3.12)

Hypotheses H( f ) (i), (ii) imply that we can find c7(λ) > 0 such that

f (z, x, λ) ≤ c7(λ)(1 + |x|r(λ)−1) for a.a. z ∈ Ω, all x ∈ R. (3.13)

In (3.3) we choose h = u+
n ∈W1,p(Ω). Then∫

Ω

(
a(∇u+

n ),∇u+
n
)

RN dz−
∫

Ω
f (z, u+

n , λ)u+
n dz ≤ εn for all n ≥ 1.

Hence, from Lemma 2.3, (3.13) and (3.12), there exist c8(λ), c9(λ) > 0 such that for all n ≥ 1

c1

p− 1
‖∇u+

n ‖
p
p ≤ c8(λ)(1 + ‖u+

n ‖
r(λ)
r(λ))

≤ c9(λ)(1 + ‖u+
n ‖

tr(λ)
1,p ). (3.14)

Recall that u 7→ ‖u‖θ(λ) + ‖∇u‖p is an equivalent norm on the space W1,p(Ω) (see, for exam-
ple, [10, p. 227]). Then, (3.10) and (3.14) imply

‖u+
n ‖

p
1,p ≤ c10(λ)

(
1 + ‖u+

n ‖
tr(λ)
1,p

)
for some c10(λ) > 0, all n ≥ 1. (3.15)

From hypothesis H( f ) (iii) and after a simple calculation involving (3.11), we show that
tr(λ) < p. So, from (3.15) we infer that

{u+
n } ⊆W1,p(Ω) is bounded. (3.16)

If N = p, then by the Sobolev embedding theorem we know that W1,p(Ω) ↪→ Ls(Ω) continu-
ously (in fact compactly) for all s ∈ [1, ∞). Then, for s > r(λ) ≥ θ(λ) ≥ 1 sufficiently large,
reasoning as in (3.11) and recalling hypothesis H( f ) (iii), one has that

tr(λ) =
(r(λ)− θ(λ))s

s− θ(λ)
< p.

Therefore, the previous argument remains valid and so we reach again (3.16).
From (3.4) and (3.16) it follows that

{un} ⊆W1,p(Ω) is bounded.

At this point, we may assume that there exists u ∈W1,p(Ω) such that

un ⇀ u in W1,p(Ω) and un → u in Lr(λ)(Ω). (3.17)

We return to (3.3), choose h = un − u and pass to the limit as n→ ∞ and use (3.17). Then

lim
n→∞
〈A(un), un − u〉 = 0,

and Proposition 2.6 implies that un → u in W1,p(Ω). This proves that the functional ϕ̂λ
+

satisfies the C-condition.

With minor changes in the proof, we can also have the following result.
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Proposition 3.2. If hypotheses H(a) and H( f ) hold and λ > 0, then the functional ϕλ satisfies the
C-condition.

Next we show that for all small values of the parameter λ > 0, the functionals ϕ̂λ
± satisfy

the mountain pass geometry (see Theorem 2.1).

Proposition 3.3. If hypotheses H(a) and H( f ) hold, then there exist λ∗± > 0 such that for every
λ ∈ (0, λ∗±), we can find ρλ

± > 0 for which we have

inf
[

ϕ̂λ
±(u) : ‖u‖1,p = ρλ

±

]
= m̂λ

± > 0.

Proof. By virtue of hypothesis H( f ) (iv) we see that given any λ > 0

F(z, x, λ) ≤ β(λ)

q(λ)
|x|q(λ) + β1

r∗
|x|r∗ − β2

p
|x|p for a.a. z ∈ Ω, all x ∈ R. (3.18)

For all u ∈W1,p(Ω), because of Corollary 2.4 and (2.4) we have

ϕ̂λ
+(u) =

∫
Ω

G(∇u) dz +
β2

p
‖u‖p

p −
∫

Ω
F̂+(z, u, λ) dz

≥ c1

p(p− 1)
‖∇u‖p

p +
β2

p
‖u‖p

p −
β2

p
‖u+‖p

p −
∫

Ω
F(z, u+, λ) dz. (3.19)

If in (3.19) we use (3.18), we obtain

ϕ̂λ
+(u) ≥

c1

p(p− 1)
‖∇u‖p

p +
β2

p
‖u‖p

p −
β(λ)

q(λ)
‖u+‖q(λ)

q(λ) −
β1

r∗
‖u+‖r∗

r∗

≥
[
c11 − (c12(λ)‖u‖

q(λ)−p
1,p + c13‖u‖

r∗−p
1,p )

]
‖u‖p

1,p, (3.20)

with c11, c13 > 0 independent of λ and c12(λ) → 0 as λ → 0+. We introduce the function
γλ : (0, ∞)→ (0, ∞) defined by

γλ(t) = c12(λ)tq(λ)−p + c13tr∗−p for all t > 0.

Recall that 1 < q(λ) < p < r(λ) ≤ r∗ < p∗. Hence

γλ(t)→ +∞ as t→ 0+ and as t→ +∞.

Therefore we can find t0 = t0(λ) ∈ (0, ∞) such that

γλ(t0) = min [γλ(t) : t > 0] .

In particular,

γ′λ(t0) = (q(λ)− p)c12(λ)t
q(λ)−p−1
0 + (r∗ − p)c13tr∗−p−1

0 = 0,

hence

t0 = t0(λ) =

[
(p− q(λ))c12(λ)

(r∗ − p)c13

] 1
r∗−q(λ)

and a simple calculation leads to

γλ(t0) = [c12(λ)]
q(λ)−p
r∗−q(λ) c14(λ),
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with λ 7→ c14(λ) bounded on bounded intervals. Note that using the hypotheses on q(·) and
r∗, we have

γλ(t0)→ 0+ as λ→ 0.

So, choosing λ∗+ > 0 small, we have

γλ(t0) < c11 for all λ ∈ (0, λ∗+).

Then, from (3.20) it follows that for all λ ∈ (0, λ∗+) we have

ϕ̂λ
+(u) ≥ m̂λ

+ > 0 for all u ∈W1,p(Ω) with ‖u‖1,p = t0(λ) = ρλ
+.

In a similar fashion we show the existence of λ∗− > 0 such that

ϕ̂λ
−(u) ≥ m̂λ

− > 0 for all u ∈W1,p(Ω) with ‖u‖1,p = t0(λ) = ρλ
−,

and the proof is complete.

The next proposition completes the mountain pass geometry for the functionals ϕ̂λ
±. It is

an immediate consequence of the p-superlinear hypothesis H( f ) (ii).

Proposition 3.4. If hypotheses H(a) and H( f ) hold, λ > 0 and u ∈ int C+, then ϕ̂λ
±(tu)→ −∞ as

t→ ±∞.

Now we can use variational methods to produce constant sign solutions for problem (Pλ)
when λ > 0 is small.

Proposition 3.5. If hypotheses H(a) and H( f ) hold, then

(a) for every λ ∈ (0, λ∗+) problem (Pλ) has at least two positive solutions

u0, û ∈ int C+

with û being a local minimizer of ϕλ and ϕλ(û) < 0 < ϕλ(u0);

(b) for every λ ∈ (0, λ∗−) problem (Pλ) has at least two negative solutions

v0, v̂ ∈ − int C+

with v̂ being a local minimizer of ϕλ and ϕλ(v̂) < 0 < ϕλ(v0);

(c) if λ∗ = min{λ∗+, λ∗−} and λ ∈ (0, λ∗), then problem (Pλ) has at least four nontrivial solutions
of constant sign

u0, û ∈ int C+, v0, v̂ ∈ − int C+

with û, v̂ local minimizers of ϕλ and ϕλ(v̂), ϕλ(û) < 0 < ϕλ(u0), ϕλ(v0).

Proof. (a) For λ ∈ (0, λ∗+), let ρλ
+ be as postulated by Proposition 3.3 and consider B̄ρλ

+
=

{u ∈ W1,p(Ω) : ‖u‖1,p ≤ ρλ
+}, which clearly is weakly compact in W1,p(Ω). Moreover, since

ϕ̂λ
+ is sequentially weakly lower semicontinuous in W1,p(Ω), one has that there exists û ∈ B̄ρλ

+

such that
ϕ̂λ
+(û) = inf

[
ϕ̂λ
+(u) : ‖u‖1,p ≤ ρλ

+

]
≤ m̂λ

+.
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On the other hand, for δ0 ∈ (0, 1) as in hypothesis H( f ) (iv) and ξ ∈ (0, δ0(λ)) small (take
|ξ| < ρλ

+/|Ω|1/p
N ), we obtain

ϕ̂λ
+(ξ) = −

∫
Ω

F(z, ξ, λ) dz < 0.

Therefore, because of Proposition 3.3, we can deduce that

û ∈ Bρλ
+
= {u ∈W1,p(Ω) : ‖u‖1,p < ρλ

+},

and
(ϕ̂λ

+)
′(û) = 0.

So, it follows that
A(û) + β2|û|p−2û = N f̂ λ

+
(û), (3.21)

where f̂ λ
+(z, x) = f̂+(z, x, λ). On (3.21) we act with −û− ∈ W1,p(Ω) and using (2.4) and

Corollary 2.4, we obtain û ≥ 0, û 6= 0. Then, again because of (2.4), (3.21) we have

−div a(∇û(z)) = f (z, û(z), λ) a.e. in Ω,
∂û
∂n

= 0 on ∂Ω,

(see [11]). From [26], we know that û ∈ L∞(Ω). So, we can apply the regularity result of
Lieberman [17] and infer that û ∈ C+ \ {0}. From hypotheses H( f ) (i), (iv), we see that for
every λ > 0 and ρ > 0, we can find ξρ(λ) > 0 such that

f (z, x, λ)x + ξρ(λ)|x|p ≥ 0 for a.a. z ∈ Ω, all |x| ≤ ρ.

Let ρ = ‖û‖∞ and let ξρ(λ) > 0 as above. Then

−div a(∇û(z)) + ξρ(λ)û(z)p = f (z, û(z), λ) + ξρ(λ)û(z)p ≥ 0 a.e. in Ω,

that is
div a(∇û(z)) ≤ ξρ(λ)û(z)p a.e. in Ω. (3.22)

Let χ(t) = ta0(t) for all t > 0. Then, from H(a) (iii)

tχ′(t) = t2a′0(t) + ta0(t) ≥ c1tp−1,

hence, by integration one has ∫ t

0
sχ′(s) ds ≥ c̃tp for all t > 0. (3.23)

From (3.22), (3.23) and the strong maximum principle of Pucci–Serrin [25, p. 111] we have

û(z) > 0 for all z ∈ Ω.

So, we can apply the boundary point theorem of Pucci–Serrin [25, p. 120] and have

û ∈ int C+. (3.24)

From (2.4) it is clear that
ϕλ|C+

= ϕ̂λ
+|C+

.
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From this equality and (3.24) it follows that û is a local C1(Ω̄)-minimizer of ϕλ. Invoking
Proposition 2.7, we have that û is a local W1,p(Ω)-minimizer of ϕλ.

Now we look for the second positive solution. Propositions 3.1, 3.3 and 3.4 permit the use
of Theorem 2.1 on the functional ϕ̂λ

+. So, we can find u0 ∈W1,p(Ω) such that

ϕ̂λ
+(û) < 0 = ϕ̂λ

+(0) < m̂λ
+ ≤ ϕ̂λ

+(u0) and (ϕ̂λ
+)
′(u0) = 0. (3.25)

From (3.25) it follows that u0 6∈ {0, û}, it solves problem (Pλ) and by the nonlinear regularity
theory we have u0 ∈ C+ \ {0} (see [17, 26]). In fact, as above, using the results of Pucci–Serrin
[25, pp. 111, 120], we conclude that u0 ∈ int C+.

(b) Working in a similar fashion, this time with the function ϕ̂λ
−, for λ ∈ (0, λ∗−) we produce

two negative solutions for problem (Pλ)

v0, v̂ ∈ − int C+.

Moreover, v̂ is a local minimizer of ϕλ and ϕλ(v̂) < 0 < ϕλ(v0).

(c) Follows from parts (a) and (b).

4 Nodal solutions

In this section, we produce a fifth nontrivial solution of (Pλ), with λ ∈ (0, λ∗), which is nodal
(sign changing). The idea is first to generate the extremal nontrivial constant sign solutions,
that is the smallest nontrivial positive solution u∗λ and the biggest nontrivial negative solution
v∗λ of (Pλ). Then look for a nontrivial solution in the order interval [v∗λ, u∗λ] = {u ∈ W1,p(Ω) :
v∗λ(z) ≤ u(z) ≤ u∗λ(z) a.e. in Ω} distinct from v∗λ and u∗λ. Necessarily, this solution will be
nodal.

Hypotheses H( f ) (i), (ii), (iv) imply that we can find c15 > 0 such that

f (z, x, λ)x ≥ ĉ0(λ)|x|µ(λ) − c15|x|r(λ) for a.a. z ∈ Ω, all x ∈ R, all λ ∈ (0, λ∗). (4.1)

This unilateral growth estimate on the reaction f (z, ·, λ) leads to the following parametric
auxiliary Neumann problem

−div a(∇u(z)) = ĉ0(λ)|u(z)|µ(λ)−2u(z)− c15|u(z)|r(λ)−2u(z) in Ω,
∂u
∂n

= 0 on ∂Ω,

1 < µ(λ) < p < r(λ) < p∗.

(Sλ)

For this auxiliary problem, we have the following existence and uniqueness result for
nontrivial solutions of constant sign.

Proposition 4.1. If hypotheses H(a) hold and λ > 0, then problem (Sλ) has a unique positive solution
ūλ ∈ int C+ and since problem (Sλ) is odd v̄λ = −ūλ ∈ − int C+ is the unique negative solution of
(Sλ).

Proof. First we establish the existence of a positive solution. To this end, let ψ+
λ : W1,p(Ω)→ R

be the C1-functional defined by

ψ+
λ (u) =

∫
Ω

G(∇u(z)) dz +
1
p
‖u‖p − ĉ0(λ)

µ(λ)
‖u+‖µ(λ)

µ(λ)
+

c15

r(λ)
‖u+‖r(λ)

r(λ) −
1
p
‖u+‖p

p.
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Recall that 1 < µ(λ) < p < r(λ) (see (Sλ)). So, using Corollary 2.4, we see that ψ+
λ is coercive.

Also, using the Sobolev embedding theorem, we can check that ψ+
λ is sequentially weakly

lower semicontinuous. Hence, by the Weierstrass theorem, we can find ūλ ∈ W1,p(Ω) such
that

ψ+
λ (ūλ) = inf{ψ+

λ (u) : u ∈W1,p(Ω)}. (4.2)

Since µ(λ) < r(λ), for ξ ∈ (0, 1) small we have ψ+
λ (ξ) < 0 and so, because of (4.2),

ψ+
λ (ūλ) < 0 = ψ+

λ (0),

hence ūλ 6= 0. From (4.2), we have that ūλ is a critical point of ψ+
λ , namely

A(ūλ) + |ūλ|p−2ūλ = ĉ0(λ)(ū+
λ )

µ(λ)−1 − c15(ū+
λ )

r(λ)−1 + (ū+
λ )

p−1. (4.3)

On (4.3) we act with −ū−λ ∈ W1,p(Ω) and obtain ūλ ≥ 0, ūλ 6= 0. Hence ūλ is a positive
solution of (Sλ). Nonlinear regularity theory implies ūλ ∈ C+ \ {0}. We have

−div a(∇ūλ(z)) = ĉ0(λ)ūλ(z)µ(λ)−1 − c15ūλ(z)r(λ)−1 a.e. in Ω,

thus
div a(∇ūλ(z)) ≤ c15‖ūλ‖

r(λ)−p
∞ ūλ(z)p−1 a.e. in Ω,

and from [25, p. 111, 120] we conclude that

ūλ ∈ int C+.

So, we have established the existence of a positive solution ūλ ∈ int C+ for problem (Sλ).
Next we show the uniqueness of this positive solution. To this end, consider the integral

functional σ+
λ : L1(Ω)→ R∪ {+∞} defined by

σ+
λ (u) =

{∫
Ω G(∇u1/τ) dz if u ≥ 0, u1/τ ∈W1,p(Ω)

+∞ otherwise.

Let u1, u2 ∈ dom σ+
λ = {u ∈ L1(Ω) : σ+

λ (u) < +∞} (the effective domain of σ+
λ ) and let

t ∈ [0, 1]. We set

y = ((1− t)u1 + tu2)
1/τ , v1 = u1/τ

1 , v2 = u1/τ
2 .

From [5, Lemma 1], we have

‖∇y(z)‖ ≤ [(1− t)‖∇v1(z)‖τ + t‖∇v2(z)‖τ]1/τ a.e. in Ω,

and exploiting the monotonicity of G0 and hypothesis H(a) (v)

G(∇y(z)) = G0(‖∇y(z)‖) ≤ G0

(
((1− t)‖∇v1(z)‖τ + t‖∇v2(z)‖τ)1/τ

)
≤ (1− t)G0(‖∇v1(z)‖) + tG0(‖∇v2(z)‖)

for a.a. z ∈ Ω, that is σ+
λ is convex.

Also, by Fatou’s lemma σ+
λ is lower semicontinuous. Now, let u ∈ W1,p(Ω) be a positive

solution of problem (Sλ). From the first part of the proof, we have u ∈ int C+. So, if h ∈ C1(Ω̄)

and t ∈ (−1, 1) with |t| small, we have

uτ + th ∈ int C+ ∩ dom σ+
λ .
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Therefore, the Gâteaux derivative of σ+
λ at uτ in the direction h and can be computed using

the chain rule

(σ+
λ )′(uτ)(h) =

1
τ

∫
Ω

−div a(∇u)
uτ−1 h dz

for all h ∈W1,p(Ω) (recall that C1(Ω) is dense in W1,p(Ω)). Similarly, if v ∈W1,p(Ω) is another
positive solution of (Sλ), then v ∈ int C+ and as above

(σ+
λ )′(vτ)(h) =

1
τ

∫
Ω

−div a(∇v)
vτ−1 h dz

for all h ∈W1,p(Ω). Since σ+
λ is convex, (σ+

λ )′(·) is monotone. Therefore

0 ≤
∫

Ω

[
−div a(∇u)

uτ−1 +
div a(∇v)

vτ−1

]
(uτ − vτ) dz

=
∫

Ω

[
ĉ0(λ)

(
1

uτ−µ(λ)
− 1

vτ−µ(λ)

)
+ c15

(
vr(λ)−τ − ur(λ)−τ

)]
(uτ − vτ) dz.

(4.4)

Since, µ(λ) < τ < r(λ), from (4.4) it follows that

u = v,

hence ûλ ∈ int C+ is the unique positive solution of problem (Sλ).
Equation (Sλ) is odd. Therefore v̂λ = −ûλ ∈ − int C+ is the unique negative solution

of (Sλ).

For every λ > 0, let

S+(λ) = {u : u is a positive solution of (Pλ)},
S−(λ) = {u : u is a negative solution of (Pλ)}.

From Proposition 3.5, we know that

λ ∈ (0, λ∗+)⇒ S+(λ) 6= ∅, S+(λ) ⊆ int C+,

λ ∈ (0, λ∗−)⇒ S−(λ) 6= ∅, S−(λ) ⊆ − int C+.

Moreover, as in [8] we have that

• S+(λ) is downward directed (that is, if u1, u2 ∈ S+(λ), then there exists u ∈ S+(λ) such
that u ≤ u1, u ≤ u2).

• S−(λ) is upward directed (that is, if v1, v2 ∈ S−(λ), then there exists v ∈ S−(λ) such
that v1 ≤ v, v2 ≤ v).

Proposition 4.2. If hypotheses H(a) and H( f ) hold, then

(a) for all λ ∈ (0, λ∗+) and all u ∈ S+(λ), we have ûλ ≤ u;

(b) for all λ ∈ (0, λ∗−) and all v ∈ S−(λ), we have v ≤ v̂λ.
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Proof. (a) Let u ∈ S+(λ) (λ ∈ (0, λ∗+)) and define

k+λ (z, x) =


0 if x < 0,

ĉ0(λ)xµ(λ)−1 − c15xr(λ)−1 + xp−1 if 0 ≤ x ≤ u(z),

ĉ0(λ)u(z)µ(λ)−1 − c15u(z)r(λ)−1 + u(z)p−1 if u(z) ≤ x.

(4.5)

This is a Carathéodory function. We set K+
λ (z, x) =

∫ x
0 k+λ (z, s) ds and consider the C1-func-

tional γ+
λ : W1,p(Ω)→ R defined by

γ+
λ (u) =

∫
Ω

G(∇(u(z))) dz +
1
p
‖u‖p

p −
∫

Ω
K+

λ (z, u(z)) dz

for all u ∈W1,p(Ω). From (4.5) it is clear that γ+
λ coercive. Also, using the Sobolev embedding

theorem, we see that γ+
λ is sequentially weakly lower semicontinuous. So, by the Weierstrass

theorem, we can find ũλ ∈W1,p(Ω) such that

γ+
λ (ũλ) = inf{γ+

λ (u) : u ∈W1,p(Ω)}. (4.6)

Since µ(λ) < p < r(λ), for ξ ∈ (0, 1) small (namely 0 < ξ ≤ minΩ̄ u, recall u ∈ int C+) we
have

γ+
λ (ξ) < 0,

thus, from (4.6)
γ+

λ (ũλ) < 0 = γ+
λ (0)

and ũλ 6= 0. Again from (4.6) we have that ũλ is a critical point of γ+
λ , namely

A(ũλ) + |ũλ|p−2ũλ = Nk+λ
(ũλ.) (4.7)

On (4.7) we act with −ũ−λ ∈ W1,p(Ω). Using (4.5), we obtain that ũλ ≥ 0, ũλ 6= 0. Also on
(4.7) we act with (ũλ − u)+ ∈ W1,p(Ω). Then, making use of (4.5), (4.1) and recalling that
u ∈ S+(λ)

〈A(ũλ), (ũλ − u)+〉+
∫

Ω
ũp−1

λ (ũλ − u)+ dz

=
∫

Ω
k+λ (z, ũλ)(ũλ − u)+ dz

=
∫

Ω

[
ĉ0(λ)uµ(λ)−1 − c15ur(λ)−1 + up−1

]
(ũλ − u)+ dz

≤
∫

Ω
f (z, u, λ)(ũλ − u)+ dz +

∫
Ω

up−1(ũλ − u)+ dz,

= 〈A(u), (ũλ − u)+〉+
∫

Ω
up−1(ũλ − u)+ dz,

that implies

〈A(ũλ)− A(u), (ũλ − u)+〉+
∫

Ω
(ũp−1

λ − up−1)(ũλ − u)+ dz ≤ 0,

that is
|{ũλ > u}|N = 0,

hence
ũλ ≤ u.
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So, we have proved that

ũλ ∈ [0, u] = {y ∈W1,p(Ω) : 0 ≤ y(z) ≤ u(z) a.e. in Ω}, ũλ 6= 0.

Because of (4.5) and (4.7) one has that

A(ũλ) = c0(λ)ũ
µ(λ)−1
λ − c15ũr(λ)−1

λ ,

and Proposition 4.1 assures that
ũλ = ûλ ∈ int C+,

hence
ûλ ≤ u for all u ∈ S+(λ).

(b) In a similar fashion, we show that v ≤ v̂λ for all v ∈ S−(λ) (λ ∈ (0, λ∗−)).

Now we can generate the extremal nontrivial constant sign solutions for problem (Pλ)
(λ ∈ (0, λ∗)).

Proposition 4.3. If hypotheses H(a) and H( f ) hold and λ ∈ (0, λ∗), then problem (Pλ) has a smallest
positive solution u∗λ ∈ int C+ and a biggest negative solution v∗λ ∈ − int C+.

Proof. Since we are looking for the smallest positive solution and S+(λ) is downward directed,
without any loss of generality, we may assume that

0 ≤ u(z) ≤ c16 (4.8)

for some c16 > 0, all z ∈ Ω̄ and all u ∈ S+(λ).
From [7, p. 336], we know that we can find {un} ⊆ S+(λ) such that

inf S+(λ) = inf
n≥1

un.

For every n ≥ 1 we have
A(un) = N fλ

(un). (4.9)

From (4.8), (4.9), Corollary 2.4 and hypothesis H( f ) (i), it follows that

{un} ⊂W1,p(Ω) is bounded.

So, we may assume that

un ⇀ u∗λ in W1,p(Ω) and un → u∗λ in Lr(λ)(Ω). (4.10)

On (4.9) we act with un − u∗λ ∈W1,p(Ω), pass to the limit as n→ ∞ and use (4.10). Then

lim
n→∞
〈A(un), un − u∗λ〉 = 0,

and Proposition 2.6 leads to
un → u∗λ in W1,p(Ω). (4.11)

Hence, if in (4.9) we pass to the limit as n→ ∞ and use (4.11), then

A(u∗λ) = N fλ
(u∗λ). (4.12)

Also, from Proposition 4.2, we have ûλ ≤ un for all n ≥ 1, hence ûλ ≤ u∗λ and so u∗λ 6= 0.
Therefore, in view of (4.12),

u∗λ ∈ S+(λ) and u∗λ = inf S+(λ).

Similarly, we produce v∗λ ∈ − int S−(λ) the biggest negative solution of (Pλ).
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According to the plan outlined in the beginning of this section, now we look for a nontrivial
solution of (Pλ) (λ ∈ (0, λ∗)) in the order interval [v∗λ, u∗λ]. Such a solution will be obtained
using Theorem 2.1. To show that this solution is nontrivial, we will use critical groups. For this
purpose we compute the critical groups of ϕλ at the origin. Such a computation was first done
by Moroz [20] for Dirichlet problems with a(y) = y for all y ∈ RN (semilinear equations) and
with a reaction satisfying stronger hypotheses. The result of Moroz was extended to problems
with the p-Laplacian (that is a(y) = |y|p−2y for all y ∈ RN with 1 < p < ∞) by Jiu–Su [15].
Our result here extends both the aforementioned works. We point out that the Neumann case
presents additional difficulties due to the failure of the Poincaré inequality.

Proposition 4.4. If hypotheses H(a) and H( f ) hold and λ ∈ (0, λ∗), then Ck(ϕλ, 0) = 0 for all
k ≥ 0.

Proof. From (4.1) it follows that

F(z, x, λ) ≥ ĉ0(λ)

µ(λ)
|x|µ(λ) − c15

r(λ)
|x|r(λ) (4.13)

for a.a z ∈ Ω, all x ∈ R. Also, hypothesis H(a) (v) and Corollary 2.4, imply that

G(y) ≤ c17(|y|τ + |y|p) (4.14)

for some c17 > 0, all y ∈ RN .
Let u ∈W1,p(Ω) and t ∈ (0, 1). We have

ϕλ(tu) =
∫

Ω
G(t∇u) dz−

∫
Ω

F(z, tu, λ) dz

≤ c17tτ
(
‖∇u‖τ

τ + ‖∇u‖p
p
)
− ĉ0(λ)

µ(λ)
tµ(λ)‖u‖µ(λ)

µ(λ)
+

c15

r(λ)
tr(λ)‖u‖r(λ)

r(λ),
(4.15)

where we used (4.13), (4.14) and the fact that τ < p, t ∈ (0, 1).
Since µ(λ) < τ < p < r(λ), from (4.15) we see that we can find t∗ = t∗(λ, u) ∈ (0, 1) small
such that

ϕλ(tu) < 0 for all t ∈ (0, t∗). (4.16)

Let u ∈W1,p(Ω), 0 < ‖u‖1,p < 1 and ϕλ(u) = 0. Then, because ϕλ(u) = 0,

d
dt

ϕλ(tu)
∣∣∣∣
t=1

= 〈ϕ′λ(u), u〉

= 〈A(u), u〉 −
∫

Ω
f (z, u, λ)u dz

=
∫

Ω
[(a(∇u),∇u)RN − τG(∇u)] dz + (τ − q(λ))

∫
Ω

F(z, u, λ) dz

+
∫

Ω
[q(λ)F(z, u, λ)− f (z, u, λ)u] dz. (4.17)

Hypotheses H( f ) (ii), (iii) and (iv) imply that, for some c18 = c18(λ) > 0, a.a. z ∈ Ω and all
x ∈ R one has

q(λ)F(z, x, λ)− f (z, x, λ)x ≥ −c18|x|r(λ). (4.18)
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We return to (4.17) and use (4.13), (4.18) and hypothesis H(a) (v). Then, recalling that 0 <

‖u‖1,p < 1 and µ(λ) < p

d
dt

ϕλ(tu)
∣∣∣∣
t=1
≥ c̃‖∇u‖p

p + (τ − q(λ))
ĉ0(λ)

µ(λ)
‖u‖µ(λ)

µ(λ)
− ĉ19‖u‖r(λ)

r(λ)

≥ c̃‖∇u‖p
p + (τ − q(λ))

ĉ0(λ)

µ(λ)
‖u‖p

µ(λ)
− c19‖u‖r(λ)

1,p , (4.19)

for some c19 = c19(λ) > 0. We know that u 7→ ‖u‖µ(λ) + ‖∇u‖p is an equivalent norm on
W1,p(Ω) (see for example [10, p. 227]). So, from (4.19) we have that, for some c20 = c20(λ) > 0

d
dt

ϕλ(tu)
∣∣∣∣
t=1
≥ c20‖u‖p

1,p − c19‖u‖r(λ)
1,p .

Since p < r(λ), it follows that for ρ ∈ (0, 1) small we have

d
dt

ϕλ(tu)
∣∣∣∣
t=1

> 0 for all u ∈W1,p(Ω) with 0 < ‖u‖1,p < ρ, ϕλ(u) = 0. (4.20)

Let u ∈W1,p(Ω) with 0 < ‖u‖1,p < ρ, ϕλ(u) = 0. We show that

ϕλ(tu) ≤ 0 for all t ∈ [0, 1]. (4.21)

Arguing by contradiction, suppose that we can find t0 ∈ (0, 1) such that ϕλ(t0u) > 0. Since
ϕλ is continuous, we have

t∗ = min{t : t0 ≤ t ≤ 1, ϕλ(tu) = 0} > t0 > 0.

It follows that
ϕλ(tu) > 0 for all t ∈ [t0, t∗). (4.22)

Let y = t∗u. Then 0 < ‖y‖1,p ≤ ‖u‖1,p ≤ ρ and ϕλ(y) = 0. So, from (4.20) we infer that

d
dt

ϕλ(ty)
∣∣∣∣
t=1

> 0. (4.23)

From (4.22) we have that for all t ∈ [t0, t∗)

ϕλ(y) = ϕλ(t∗u) = 0 < ϕλ(tu)

hence
d
dt

ϕλ(ty)
∣∣∣∣
t=1

= t∗
d
dt

ϕλ(tu)
∣∣∣∣
t=t∗

= t∗ lim
t→t−∗

ϕλ(tu)
t− t∗

≤ 0,

which is in contradiction with (4.23). This proves (4.21).
We can always choose ρ ∈ (0, 1) small such that Kϕλ

∩ B̄ρ = {0}. We consider the defor-
mation h : [0, 1]×

(
ϕ0

λ ∩ B̄ρ

)
→ ϕ0

λ ∩ B̄ρ defined by

h(t, u) = (1− t)u.

From (4.21) it is clear that this deformation is well-defined. So, ϕ0
λ ∩ B̄ρ is contractible in itself.

Let u ∈ B̄ρ with ϕλ(u) > 0. We show that there exists unique t(u) ∈ (0, 1) such that

ϕλ(t(u)u) = 0.
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From (4.15) and Bolzano’s theorem, we see that such a t(u) ∈ (0, 1) exists. We need to show
its uniqueness. Arguing by contradiction, suppose that we can find

0 < t1 = t1(u) < t2 = t2(u) < 1 such that ϕλ(t1u) = ϕλ(t2u) = 0.

From (4.21) we have
θ(t) = ϕλ(tt2u) ≤ 0 for all t ∈ [0, 1],

hence t1
t2
∈ (0, 1) is a maximizer of θ(·) and

d
dt

θ(t)
∣∣∣∣
t= t1

t2

= 0.

Thus we derive that
t1

t2

d
dt

ϕλ(tt2u)
∣∣∣∣
t= t1

t2

=
d
dt

ϕλ(tt1)

∣∣∣∣
t=1

= 0,

which contradicts (4.20). So we have proved the uniqueness of t(u) ∈ (0, 1).
By virtue of this uniqueness of t(u) ∈ (0, 1), we have

ϕλ(tu) < 0 for all t ∈ (0, t(u)) and ϕλ(tu) > 0 for all t ∈ (t(u), 1].

Now, let γ1 : B̄ρ \ {0} → (0, 1] be defined by

γ1(u) =

{
1 if u ∈ B̄ρ \ {0}, ϕλ(u) ≤ 0

t(u) if u ∈ B̄ρ \ {0}, ϕλ(u) > 0.

It is easy to see that γ1 is continuous. Let k : B̄ρ \ {0} →
(

ϕ0
λ ∩ B̄ρ

)
\ {0} be defined by

k(u) = γ1(u)u

for all x ∈ B̄ρ \ {0}. Evidently k is continuous and

k
∣∣∣(ϕ0

λ∩B̄ρ)\{0} = id
∣∣∣(ϕ0

λ∩B̄ρ)\{0} .

So, it follows that
(

ϕ0
λ ∩ B̄ρ

)
\ {0} is a retract of B̄ρ \ {0} and the latter is contractible. Hence(

ϕ0
λ ∩ B̄ρ

)
\ {0} is contractible in itself (see [6, p. 333]). So, recalling that ϕ0

λ ∩ B̄ρ is contractible
in itself, from [12, p. 389], we have

Hk
(

ϕ0
λ ∩ B̄ρ,

(
ϕ0

λ ∩ B̄ρ

)
\ {0}

)
= 0 for all k ≥ 0

so that
Ck(ϕλ, 0) = 0 for all k ≥ 0.

Now, we are ready to produce a nodal solution for problem (Pλ), λ ∈ (0, λ∗).

Proposition 4.5. If hypotheses H(a) and H( f ) hold and λ ∈ (0, λ∗), then problem (Pλ) admits a
nodal solution yλ ∈ [v∗λ, u∗λ] ∩ C1(Ω̄).
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Proof. Let u∗λ ∈ int C+ and v∗λ ∈ − int C+ be the two extremal constant sign solutions produced
in Proposition 4.3. We introduce the following truncation-perturbation of the reaction in
problem (Pλ):

γλ(z, x) =


f (z, v∗λ(z), λ) + |v∗λ(z)|p−2v∗λ(z) if x < v∗λ(z)

f (z, x, λ) + |x|p−2x if v∗λ(z) ≤ x ≤ u∗λ
f (z, u∗λ(z), λ) + u∗λ(z)

p−1 if u∗λ(z) < x.

(4.24)

This is a Carathéodory function. Let Γλ(z, x) =
∫ x

0 γλ(z, s) ds and consider the C1-func-
tional eλ : W1,p(Ω)→ R defined by

eλ(u) =
∫

Ω
G(∇u(z)) dz +

1
p
‖u‖p

p −
∫

Ω
Γλ(z, u(z)) dz

for all u ∈W1,p(Ω). In addition, we consider the positive and negative truncations of γλ(z, ·),
namely we introduce the Carathéodory functions

γ±λ (z, x) = γλ(z,±x±).

We set Γ±λ (z, x) =
∫ x

0 γ±λ (z, s)ds and consider the C1-functionals e±λ : W1,p(Ω)→ R defined by

e±λ (u) =
∫

Ω
G(∇u(z)) dz +

1
p
‖u‖p

p −
∫

Ω
Γ±λ (z, u(z)) dz

for all u ∈W1,p(Ω). Reasoning as in the proof of Proposition 4.2, we can show that

Keλ
⊆ [v∗λ, u∗λ], Ke+λ

⊆ [0, u∗λ], Ke−λ
⊆ [v∗λ, 0].

The extremality of u∗λ ∈ int C+ and v∗λ ∈ − int C+, implies that

Keλ
⊆ [v∗λ, u∗λ], Ke+λ

= {0, u∗λ}, Ke−λ
= {v∗λ, 0}. (4.25)

Claim: u∗λ ∈ int C+ and v∗λ ∈ − int C+ are local minimizers of eλ.
From (4.24) it is clear that e+λ is coercive. Also, it is sequentially weakly lower semicontinuous.
So, we can find ũ∗λ ∈W1,p(Ω) such that

e+λ (ũ
∗
λ) = inf{e+λ (u) : u ∈W1,p(Ω)}. (4.26)

Using hypothesis H( f ) (iv) and choosing ξ ∈ (0, 1) small (take 0 < ξ ≤ minΩ̄ u∗λ), we have
e+λ (ξ) < 0, so that

e+λ (ũ
∗
λ) < 0 = e+λ (0),

hence ũ∗λ 6= 0. Since ũ∗λ ∈ Ke+λ
, from (4.25) it follows that ũ∗λ = u∗λ ∈ int C+. Note that

eλ|C+ = e+λ |C+ . Hence, u∗λ ∈ int C+ is a local C1-minimizer of eλ. Invoking Proposition 2.7 we
have that u∗λ is a local W1,p(Ω)-minimizer of eλ. Similarly for vλ ∈ − int C+ using this time
the functional e−λ . This proves the Claim.

Without any loss of generality, we may assume that eλ(v∗λ) ≤ eλ(u∗λ) (the analysis is similar
if the opposite inequality holds). Because of the Claim, we can find ρ ∈ (0, 1) small such that

eλ(v∗λ) ≤ eλ(u∗λ) < inf{eλ(u) : ‖u− u∗λ‖1,p = ρ} = m∗λ, ‖v∗λ − u∗λ‖1,p > ρ. (4.27)
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The functional eλ is coercive (see (4.24)). So, it satisfies the C-condition. This fact and (4.27)
permit the use of Theorem 2.1. So, we can find yλ ∈W1,p(Ω) such that

yλ ∈ Keλ
and m∗λ ≤ e(yλ). (4.28)

From (4.24), (4.25), (4.27) and (4.28) we infer that yλ 6∈ {u∗λ, v∗λ} and solves problem (Pλ). Since
yλ is a critical point of mountain pass type for eλ, we have

C1(eλ, yλ) 6= 0. (4.29)

From (4.24), we see that
e|[v∗λ,u∗λ]

= ϕλ|[v∗λ,u∗λ]
.

Because v∗λ ∈ − int C+, u∗λ ∈ int C+, from Palais [22] or equivalently from the homotopy
invariance of critical groups and since C1(Ω̄) is dense in W1,p(Ω), we have

Ck(eλ, 0) = Ck(ϕλ, 0) for all k ≥ 0,

hence, because of Proposition 4.4

Ck(eλ, 0) = 0 for all k ≥ 0. (4.30)

Comparing (4.29) and (4.30), we deduce that yλ 6= 0. Since yλ ∈ [v∗λ, u∗λ] (see (4.25)), we
infer that yλ is nodal and the nonlinear regularity result of Lieberman [17, p. 320], implies
yλ ∈ C1(Ω̄).

Concluding this work, we can state the following multiplicity theorem for problem (Pλ).

Theorem 4.6. If hypotheses H(a) and H( f ) hold, then there exists λ∗ > 0 such that for all λ ∈ (0, λ∗)

problem (Pλ) has at least five nontrivial solutions

u0, û ∈ int C+, v0, v̂ ∈ − int C+ and yλ ∈ C1(Ω̄) nodal,

with û, v̂ local minimizer of the energy functional ϕλ and ϕ(û), ϕ(v̂) < 0 < ϕ(u0), ϕ(v0); moreover,
problem (Pλ) admits extremal constant sign solutions u∗λ ∈ int C+, v∗λ ∈ − int C+ and yλ ∈ [v∗λ, u∗λ]∩
C1(Ω̄).
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