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Abstract. Using the critical point theory for convex, lower semicontinuous perturba-
tions of locally Lipschitz functionals, we prove the solvability of the discontinuous

Dirichlet problem involving the operator u 7→ div
(

∇u√
1−|∇u|2

)
.
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1 Introduction

Let Ω be an open bounded set in RN (N ≥ 2) with boundary ∂Ω of class C2 and f : Ω×R→ R

be a measurable function satisfying the growth condition

| f (x, s)| ≤ C(1 + |s|q−1), a.e. x ∈ Ω and all s ∈ R, (1.1)

with some q ∈ (1, ∞) and C a positive constant. For a.e. x ∈ Ω and all s ∈ R, we denote

f (x, s) := lim
δ↘0

ess inf{ f (x, t) : |t− s| < δ}

and
f (x, s) := lim

δ↘0
ess sup{ f (x, t) : |t− s| < δ}.

In this paper we consider the discontinuous Dirichlet problem with mean curvature oper-
ator in Minkowski space:

M(u) := div

(
∇u√

1− |∇u|2

)
∈
[

f (x, u), f (x, u)
]

in Ω, u|∂Ω = 0. (1.2)
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We assume that
f and f are N-measurable (1.3)

(recall, a function h : Ω ×R → R is called N-measurable if h(·, v(·)) : Ω → R is measurable
whenever v : Ω→ R is measurable [3]).

By a solution of (1.2) we mean a function u ∈W2,p(Ω) for some p > N, such that ‖∇u‖∞ <

1, which satisfies
M(u)(x) ∈

[
f (x, u(x)), f (x, u(x))

]
, a.e. x ∈ Ω

and vanishes on ∂Ω. At our best knowledge, this type of solutions, but for differential inclu-
sions was firstly considered by A. F. Filippov [7]. Also, for partial differential inclusions we
refer the reader to the pioneering works of I. Massabo and C. A. Stuart [12], J. Rauch [14],
C. A. Stuart and J. F. Toland [16].

This work is motivated by the recent advances in the study of boundary value problems
involving the operator M (see [2, 6] and the references therein) and by the seminal paper
of K.-C. Chang [4] where the classical critical point theory is extended to locally Lipschitz
functionals in order to study the problem

∆u ∈
[

f (x, u), f (x, u)
]

in Ω, u|∂Ω = 0.

It is worth to point out that the operators M and ∆ have essentially different structures and
the theory developed in [4] appears as not being applicable to problem (1.2). Thus, we shall
use a more general critical point theory, namely the one concerning convex, lower semicontin-
uous perturbations of locally Lipschitz functionals, which was developed by D. Motreanu and
P. D. Panagiotopoulos [13] (also, see [10,11]). It should be noticed that, using this theory, vari-
ous existence results concerning Filippov type solutions for Dirichlet, periodic and Neumann
problems involving the “p-relativistic” operator

u 7→
(

|u′|p−2u′

(1− |u′|p)1−1/p

)′
were obtained in the recent paper [9].

A first existence result for the Dirichlet problem involving the operator M was obtained
by F. Flaherty in [8], where it is shown that problem

M(u) = 0 in Ω, u|∂Ω = ϕ,

has at least one solution, provided that ∂Ω has non-negative mean curvature and ϕ ∈ C2(Ω)

with ‖∇ϕ‖∞ < 1. The result was generalized in [1] by R. Bartnik and L. Simon, proving that
problem

M(u) = g(x, u) in Ω, u|∂Ω = 0 (1.4)

is solvable, provided that the Carathéodory function g : Ω×R→ R is bounded. More general,
if g satisfies the L∞-growth condition:

for each ρ > 0 there is some αρ ∈ L∞(Ω) such that

|g(x, s)| ≤ αρ(x) for a.e. x ∈ Ω, ∀ s ∈ R with |s| ≤ ρ,

it is shown in [2, Theorem 2.1] that (1.4) is still solvable. The approach in [2] relies on Szulkin’s
critical point theory [17]. The aim of the present paper is to obtain a similar result for the



Discontinuous perturbations of the mean curvature operator 3

discontinuous problem (1.2). Precisely, we show in the main result (Theorem 4.1) that under
assumptions (1.1) and (1.3) problem (1.2) always has at least one solution.

The rest of the paper is organized as follows. In Section 2 we recall some notions from
nonsmooth analysis which will be needed in the sequel. The variational formulation of prob-
lem (1.2) is a key step in our approach and it is given in Section 3. Section 4 is devoted to the
proof of the main result.

2 Preliminaries

Let (X, ‖ · ‖) be a real Banach space and X∗ its topological dual. A functional G : X → R is
called locally Lipschitz if for each u ∈ X, there is a neighborhood Nu of u and a constant k > 0
depending on Nu such that

|G(w)− G(z)| ≤ k‖w− z‖, ∀ w, z ∈ Nu.

For such a function G, the generalized directional derivative at u ∈ X in the direction of v ∈ X is
defined by

G0(u; v) = lim sup
w→u, t↘0

G(w + tv)− G(w)

t

and the generalized gradient (in the sense of Clarke [5]) of G at u ∈ X is defined as being the
subset of X∗

∂G(u) =
{

η ∈ X∗ : G0(u; v) ≥ 〈η, v〉, ∀ v ∈ X
}

,

where 〈·, ·〉 stands for the duality pairing between X∗ and X. For more details concerning the
properties of the generalized directional derivative and of the generalized gradient we refer
to [5].

If I : X → (−∞,+∞] is a functional having the structure

I = Φ + G, (2.1)

with G : X → R locally Lipschitz and Φ : X → (−∞,+∞] proper, convex and lower semicon-
tinuous, then an element u ∈ X is said to be a critical point of I provided that

G0(u; v− u) + Φ(v)−Φ(u) ≥ 0, ∀ v ∈ X.

The number c = I(u) is called a critical value of I corresponding to the critical point u.
According to Kourogenis et al. [10], u ∈ X is a critical point of I iff

0 ∈ ∂G(u) + ∂Φ(u),

where ∂Φ(u) stands for the subdifferential of Φ at u ∈ X in the sense of convex analysis [15],
i.e.,

∂Φ(u) = {η ∈ X∗ : Φ(v)−Φ(u) ≥ 〈η, v− u〉, ∀ v ∈ X} .

Also, I in (2.1) is said to satisfy the Palais–Smale condition (in short, (PS) condition) if every
sequence (un) ⊂ X for which (I(un)) is bounded and

G0(un; v− un) + Φ(v)−Φ(un) ≥ −εn‖v− un‖, ∀ v ∈ X,

for a sequence (εn) ⊂ R+ with εn → 0, possesses a convergent subsequence.

Theorem 2.1. ([11, Theorem 1]) If I is bounded from below and satisfies the (PS) condition then
c = infX I is a critical value of I .
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3 The variational setting

In the sequel we shall give the variational formulation of problem (1.2). With this aim, we
introduce the set

K0 =
{

v ∈W1,∞(Ω) : ‖∇v‖∞ ≤ 1, v = 0 on ∂Ω
}

.

Notice that since W1,∞(Ω) is continuously (in fact, compactly) embedded into C(Ω), the eval-
uation at ∂Ω is understood in the usual sense. According to [2], K0 is compact in C(Ω) and
one has

‖v‖∞ ≤ c(Ω) for all v ∈ K0, (3.1)

with c(Ω) a positive constant. Also, the functional Ψ : C(Ω)→ (−∞,+∞] given by

Ψ(v) =


∫

Ω

[
1−

√
1− |∇v|2

]
, for v ∈ K0,

+∞, for v ∈ C(Ω) \ K0

(3.2)

is proper, convex and lower semicontinuous [2, Lemma 2.4].
Having in view the growth condition (1.1), we define F̂ : Lq(Ω)→ R by

F̂ (v) =
∫

Ω
F(x, v), ∀ v ∈ Lq(Ω),

where
F(x, s) =

∫ s

0
f (x, ξ) dξ (x ∈ Ω, s ∈ R)

and, on account of the embedding C(Ω) ⊂ Lq(Ω), we introduce the functional

F = F̂ |C(Ω). (3.3)

From [4, Theorem 2.1], one has that F̂ is locally Lipschitz in Lq(Ω) and

∂F̂ (v) ⊂
[

f (·, v(·)), f (·, v(·))
]

, (3.4)

for all v ∈ Lq(Ω). Then, by the continuity of the embedding C(Ω) ⊂ Lq(Ω) it is clear that
F is locally Lipschitz on C(Ω). Also, since C(Ω) is dense in Lq(Ω), the following holds (see
[5, p. 47]):

∂F̂ (v) = ∂F (v), ∀ v ∈ C(Ω). (3.5)

Lemma 3.1. Let v ∈ K0. If ` ∈ ∂F (v), then there is some ζ` ∈ L∞(Ω) such that ζ`(x) ∈[
f (x, v(x)), f (x, v(x))

]
for a.e. x ∈ Ω and

〈`, w〉 =
∫

Ω
ζ`w (3.6)

for all w ∈ C(Ω).

Proof. From (3.5) and (3.4) we infer that there is a function ζ` ∈ Lq′(Ω) with 1/q + 1/q′ = 1,
such that ζ`(x) ∈

[
f (x, v(x)), f (x, v(x))

]
for a.e. x ∈ Ω and (3.6) holds true for all w ∈ Lq(Ω).

To see that ζ` ∈ L∞(Ω), from (1.1) and (3.1), one gets

−C1 ≤ f (x, v(x)) ≤ f (x, v(x)) ≤ C1, for a.e. x ∈ Ω,

with C1 = C(1 + c(Ω)q−1). This shows that |ζ`(x)| ≤ C1 for a.e. x ∈ Ω and the proof is
complete.
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The functional framework of Section 2 fits the following choices: X = C(Ω), Φ = Ψ in
(3.2), G = F in (3.3) and

I := Ψ +F .

Notice that, the compactness of K0 ⊂ C(Ω) implies that I satisfies the (PS) condition.

4 Main result

We have the following theorem.

Theorem 4.1. Assume that (1.1) and (1.3) hold true. If u is a critical point of I , then u is a solution
of problem (1.2). Moreover, I is bounded from below and attains its infimum at some u0 ∈ K0, which
solves problem (1.2).

Proof. Let u be a critical point of I . Then u ∈ K0 and there exist hu ∈ ∂Ψ(u) and `u ∈ ∂F (u)
such that

〈hu, w〉+ 〈`u, w〉 = 0, ∀ w ∈ C(Ω).

This and the fact that hu ∈ ∂Ψ(u) yield

Ψ(w)−Ψ(u) + 〈`u, w− u〉 ≥ 0, ∀ w ∈ C(Ω). (4.1)

Using Lemma 3.1 we deduce that there is some ζu = ζ(`u) ∈ L∞(Ω) such that

ζu(x) ∈
[

f (x, u(x)), f (x, u(x))
]

, a.e. x ∈ Ω (4.2)

and
〈`u, w〉 =

∫
Ω

ζuw, ∀ w ∈ C(Ω). (4.3)

By virtue of (4.3), inequality (4.1) becomes

Ψ(w)−Ψ(u) +
∫

Ω
ζu(w− u) ≥ 0, ∀ w ∈ C(Ω). (4.4)

On account of Lemma 2.2 in [6], for each function e ∈ L∞(Ω), the Dirichlet problem

M(v) = e(x) in Ω, v|∂Ω = 0

has a unique solution ve ∈ W2,p(Ω) for all 1 ≤ p < ∞. Then, from Lemma 2.3 in [2], one has
that ve is the unique solution in K0 of the variational inequality∫

Ω

[√
1− |∇v|2 −

√
1− |∇w|2 + e(w− v)

]
≥ 0, ∀ w ∈ K0

and hence,
Ψ(w)−Ψ(ve) +

∫
Ω

e(w− ve) ≥ 0, ∀ w ∈ C(Ω).

From this and (4.4), we infer that u = ve, with e = ζu. But, on account of (4.2), this means that
u solves problem (1.2).

Next, for arbitrary u ∈ K0, by (1.1) and (3.1), the primitive F satisfies

|F(x, u(x))| ≤ C (c(Ω) + c(Ω)q/q) =: C2, for a.e. x ∈ Ω.
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Hence,

|F (u)| ≤
∫

Ω
|F(x, u)| ≤ C2 vol(Ω), ∀ u ∈ K0.

We deduce that the functional I is bounded from below on C(Ω). Then, using that I verifies
the (PS) condition and Theorem 2.1, we have that

c = inf
C(Ω)
I = inf

K0
I

is a critical value of I and the proof is complete.
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