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Abstract

We study the positive solutions to steady state reaction diffusion equations
with Dirichlet boundary conditions of the forms:

−u′′ =

{

λ[au − bu2 − c], x ∈ (L, 1 − L),
λ[au − bu2], x ∈ (0, L) ∪ (1 − L, 1),

(A)

u(0) = 0 = u(1),

and

−u′′ =

{

λ[au − bu2 − c], x ∈ (0, 1
2),

λ[au − bu2], x ∈ (1
2 , 1),

(B)

u(0) = 0 = u(1).

Here λ, a, b, c and L are positive constants with 0 < L < 1
2 . Such steady state

equations arise in population dynamics with logistic type growth and constant
yield harvesting. Here u is the population density, 1

λ is the diffusion coefficient
and c is the harvesting effort. In particular, model A corresponds to a symmetric
harvesting case and model B to an asymmetric harvesting case. Our objective
is to study the existence of positive solutions and also discuss the effects of
harvesting. We will develop appropriate quadrature methods via which we will
establish our results.

Key words and phrases: Population dynamics, reaction diffusion, harvesting, sym-
metric, asymmetric.
AMS (MOS) Subject Classifications: 35K57, 34B15, 92D25
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1 Introduction

In [9] the authors study the nonlinear boundary value problem
{

−∆u = au − bu2 − ch(x), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1)

arising in population dynamics. Here Ω is a smooth bounded region with ∂Ω ∈ C2,
u is the population density, au − bu2 represents logistic growth where a > 0, b > 0
are constants. Here h is assumed to be a smooth function representing the intrinsic
properties of the region while c ≥ 0 represents the harvesting effort. The assumptions
in the development of this steady state model are: (i) the species disperses randomly in
the bounded environment; (ii) the reproduction of the species follows logistic growth;
(iii) the boundary is hostile to the species; and (iv) the environment is homogeneous
(i.e., the diffusion coefficient is independent of spatial variable x).

Here we extend this study to cases where h(x) is a non-smooth function. However
we restrict our analysis to the one-dimensional case with Ω = (0, 1) and study the
following two models:

Model A

−u′′ =

{

λ[au − bu2 − c], x ∈ (L, 1 − L),
λ[au − bu2], x ∈ (0, L) ∪ (1 − L, 1),

(A)

u(0) = 0 = u(1);

Model B

−u′′ =

{

λ[au − bu2 − c]; x ∈ (0, 1
2
)

λ[au − bu2]; x ∈ (1
2
, 1)

(B)

u(0) = 0 = u(1).

There has been a raging controversy over the decline of western Atlantic bluefin
tuna since the 1970s (see [8]). The U.S. fishing industries demand that the bluefin
tuna movements between the western and eastern Atlantic be considered for a better
assessments of the effect of ‘overfishing’ of bluefin by fishermen in central and eastern
Atlantic, including the Mediterranean Sea. The model B is a simplified representation
of the bluefin tuna population in the Atlantic Ocean in which we focus on the diffusion
effects (the convection effects are not considered). It tries to capture the scenario where
fishing is restricted to one half of the ocean. The relevance of the study is to see if
such regulations can improve the depleting stock of fish in the Atlantic (see also [3]
and [10]).

The classes of such models in which the reaction term is negative at the origin are
known as semipositone problems. It is well documented in the literature that the study
of positive solutions to such classes of problems are mathematically challenging (see [1]
and [7]). Also see [4], [5] and references therein.
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We analyze these problems by modifying the quadrature method discussed in [6] to
accommodate such models with discontinuous reaction terms. For further information
on the quadrature method see [2] and [4].

In Section 2 the quadrature method that was developed in [6] is briefly outlined.
In Section 3 and Section 4 we extend the quadrature method for model A and model
B respectively, and study the existence of a positive solution. Though in both models
(A) and (B), in one of the harvesting regions the harvesting effort is zero, our methods
easily extend to models with unequal harvesting rates in different regions. In Section
5, we provide various computational results on the bifurcation diagrams of positive
solutions.

2 Preliminaries

Here we describe the quadrature method that has been used to prove our results.
Consider the boundary value problem

{

−u′′ = λf(u), x ∈ (0, 1),

u(0) = 0 = u(1),
(2)

where f : [0,∞) → (0,∞) is a C1 function and λ is a positive parameter. Suppose u is
a solution of (2) in (0, 1) such that u′(x0) = 0 for x0 ∈ (0, 1). Then u(x0+x) = u(x0−x)
for all x ∈ [0, c) where c = min{x0, 1 − x0}. This follows by noting the fact that both
v(x) := u(x0 + x) and w(x) := u(x0 − x) satisfy the initial value problem

−z′′(x) = λf(z(x)),

z(0) = u(x0),

z′(0) = 0.

Hence if u is a positive solution of (2) then u must be symmetric about x = 1
2
,

increasing on (0, 1
2
) and decreasing on (1

2
, 1). Let ρ = ||u||∞ (note that u(1

2
) = ρ). Now

multiplying (2) by u′(x) we obtain

−
(u′(x)2

2

)′
= λ(F (u(x)))′ (3)

where F (s) :=
∫ s

0
f(t)dt, and integrating from 0 to 1

2
we get

u′(x) =
√

2λ[F (ρ) − F (u(x))] 0 < x <
1

2
. (4)

Here we have used u(1
2
) = ρ; u′(1

2
) = 0.

We rewrite (4) as
u′(x)

√

[F (ρ) − F (u(x))]
=

√
2λ (5)
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and integrate from u(0) = 0 to u(x) after making the substitution z = u(x). This gives

∫ u(x)

0

dz
√

[F (ρ) − F (z)]
=

√
2λx 0 < x <

1

2
. (6)

Further since u(1
2
) = ρ we obtain

√
λ =

√
2

∫ ρ

0

dz
√

[F (ρ) − F (z)]
:= G(ρ). (7)

Thus, if there exists a positive solution u of (2) with u(1
2
) = ρ, then ρ must be such

that G(ρ) exists and satisfy
√

λ = G(ρ). Since f(ρ) > 0 and F (ρ) > F (z) for all
0 ≤ z ≤ ρ, it follows that G(ρ) exists for all ρ > 0. (Also G(ρ) is a continuous function
with G(0) = 0.)

Now suppose there exists ρ > 0 such that
√

λ = G(ρ). Define u(x) for x ∈ [0, 1
2
]

using (6). It can be shown that u is a C2 function that satisfies (2). Thus (2) has
a positive solution u with u(1

2
) = ρ > 0 iff

√
λ = G(ρ). Hence by analyzing G(ρ)

for ρ ∈ (0,∞) we can precisely discuss the existence, non-existence and multiplicity
of positive solutions as λ varies. Further, when the solution exists, (6) defines the
solution.

3 Symmetric Constant Yield Harvesting

In this section we consider the model A with harvesting allowed only in the interior.
Quadrature methods are developed for the regions with and without harvesting sep-
arately to prove the existence of a positive solution. We call such classes of positive
symmetric solutions as ‘Type I’ solutions. In this section we consider Type I solutions.
Let f(u) := au − bu2 and f̃(u) := au − bu2 − c.

10.5L 1-L

x

Ρ

Σ

uHxL

Figure 1: Typical Type I solution
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We first consider the interval (L, 1
2
). On the interval (L, 1

2
) we have

−u′′ = λf̃(u).

Using similar calculations as in Section 2, we have

u′ =

√

2λ[F̃ (ρ) − F̃ (u)], L < x ≤ 1

2
,

where F̃ (s) :=
∫ s

0
f̃(t)dt and ρ = u(1

2
). Hence on (L, 1

2
), solutions of the model A will

satisfy
∫ ρ

u(x)

1
√

F̃ (ρ) − F̃ (v)
dv =

√
2λ

[1

2
− x

]

. (8)

Letting σ := u(L) and evaluating (8) at x = L, we have
∫ ρ

σ

1
√

F̃ (ρ) − F̃ (v)
dv =

√
2λ

[1

2
− L

]

. (9)

Simplifying (9) we get

√
λ =

1√
2(1

2
− L)

∫ ρ

σ

1
√

F̃ (ρ) − F̃ (v)
dv =: G1(σ, ρ). (10)

We next consider the interval (0, L). On the interval (0, L) we have

−u′′ = λ[f(u)].

As proceeding in the previous case we observe that the solution u of model A on (0, L)
satisfies

∫ u(x)

0

1
√

m2

2
− λF (v)

dv =
√

2x (11)

where F (s) :=
∫ s

0
f(t)dt and m = u′(0). Letting σ = u(L), and evaluating (11) at

x = L we get
∫ σ

0

1
√

m2

2
− λF (v)

dv =
√

2L. (12)

In order for u to be a C1 solution of model A, it is necessary that

u′(L+) = u′(L−).

Hence
m2

2
= λ[F̃ (ρ) − F̃ (σ) + F (σ)].

Substituting in (12) and simplifying we get

√
λ =

1√
2L

∫ σ

0

1
√

F (ρ) − F (v) − c(ρ − σ)
dv =: G2(σ, ρ). (13)
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Lemma 3.1. Let S := {ρ : α̂ < ρ < β̂} where α̂ = 3
4b

(

a −
√

3a2−16bc
3

)

and β̂ =

a+
√

a2−4bc
2b

. If ρ ∈ S then G1, G2 are well-defined.

Proof. We note here that α̂ is the first non-zero root of F̃ (u) = au2

2
− bu3

3
− cu and β̂

is the first largest positive root of F̃ ′(u) = f̃(u).

Α
`

Β
`

u

F
�
HuL

Figure 2: Graph of F̃ (u)

It is clear from the graph of F̃ that F̃ (ρ)− F̃ (v) is positive for all v ∈ (0, ρ) only if
ρ ∈ (α̂, β̂). Further, for ρ ∈ S, f̃(ρ) > 0. Hence G1 is well-defined for ρ ∈ S. Now we
observe that for v ≤ σ,

F (ρ) − F (v) − c(ρ − σ) ≥ F (ρ) − F (v) − c(ρ − v)

= F̃ (ρ) − F̃ (v).

Hence G2(σ, ρ) is also well-defined for all ρ ∈ S.

Remark 3.1. Note that S is non-empty iff c ≤ 3a2

16b
.

Lemma 3.2. Let ρ ∈ S be fixed, then there exists a unique σ∗(ρ) such that G1(σ
∗(ρ), ρ) =

G2(σ
∗(ρ), ρ). Moreover, if u is a positive solution of (A) then u(L) = σ∗(ρ).

Proof. We observe from (10) that G1 is non-negative, decreasing and G1(ρ, ρ) = 0.
Similarly from (13), we have G2 is non-negative, increasing and G2(0, ρ) = 0. We also
have that G1(0, ρ) > 0 and G2(ρ, ρ) > 0. Thus G1 − G2 a continuous function with
(G1 − G2)(0, ρ) > 0 and (G1 − G2)(ρ, ρ) < 0. Hence by Intermediate Value Theorem
there exists a σ∗(ρ) such that (G1−G2)(σ

∗(ρ), ρ) = 0. i.e. G1(σ
∗(ρ), ρ) = G2(σ

∗(ρ), ρ).
As G1 − G2 is strictly decreasing such a σ∗(ρ) is unique.

Clearly, if u is a positive solution of (A) satisfying (10) and (13), then u(L) =
σ∗(ρ).

Theorem 3.1. Let ρ ∈ S, λ > 0 and let r1 and r2 be the zeros of f̃(u). (A) has a posi-
tive solution iff

√
λ ∈ Range(H), where H(ρ) = G2(σ

∗(ρ), ρ) [or H(ρ) = G1(σ
∗(ρ), ρ)].

Moreover, if ρ = r1 (or ρ = r2) and satisfies F (r1) = m2

2λ
(or F (r2) = m2

2λ
) then

u ≡ r1 (or r2) on (L, 1
2
) and thus σ∗(ρ) = r1 (or r2).
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Proof. Let u be a positive solution of (A). By Lemma 3.2
√

λ ∈ Range(H). Conversely
let

√
λ ∈ Range(H). Let u(x) be symmetric at x = 1

2
and be defined as

u(x) =

{

u1(x), x ∈ (0, L),

u2(x), x ∈ (L, 1
2
],

(14)

where u1, u2 satisfies (11) and (8), respectively. Since
√

λ ∈ Range(H), there exists
ρ ∈ S such that

√
λ = H(ρ), that is G2(σ

∗(ρ)) =
√

λ = G1(σ
∗(ρ)), thus u clearly

satisfies (A). Hence u is positive solution of (A).

L 1-L
x

r1

u

Figure 3: Typical Type I solution when ρ = r1

We note that f̃(r1) = 0 and thus u′′(L) = 0. Also since F (r1) = m2

2λ
, we have

u′(L−) = 0, and by continuity on u′, u′(L) = 0. It is easy to see that u ≡ r1 on (L, 1−L)
since u(L)−r1 = 0 = u(1−L)−r1, (u(L)−r1)

′ = u′(L) = 0 = u′(1−L) = (u(1−L)−r1)
′

and (u(L) − r1)
′′ = u′′(L) = 0 = u′′(1 − L) = (u(1 − L) − r1)

′′. Hence the claim.

4 Asymmetric Harvesting

In this section we analyze existence of solutions to model B using the quadrature
method. We call such classes of positive asymmetric solutions as ‘Type II’ solutions.
In this section we consider Type II solutions. Let f̃(u) := λ[au − bu2 − c], f(u) :=
λ[au − bu2] and L be the point at which u is maximum.We consider the following two
cases:

Case 1: Maximum value is achieved at a point L > 1
2

Case 2: Maximum value is achieved at a point L < 1
2
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L1
����
2

1

x

u

Figure 4: Typical Type II solution for case 1

L 1
����
2

1

x

u

Figure 5: Typical Type II solution for case 2

4.1 Case 1 : L > 1
2

We develop the quadrature method for the interval 0 ≤ x ≤ 1
2

first; the intervals
1
2
≤ x ≤ L and L ≤ x ≤ 1 are considered separately. As explained in Section 2 in the

interval 0 ≤ x ≤ 1
2
, we have

∫ σ

0

dv
√

m2

2
− λF̃ (v)

= 1
2

√
2

where F (s) :=
∫ s

0
f(t)dt and m = u′(0). To solve for m2

2
we set u′(1

2

+
) = u′(1

2

−
), which

on substitution gives

√
2λ

√

F (ρ) − F (σ) =
√

2

√

m2

2
− λF̃ (σ)

λ(F (ρ) − F (σ)) = (m2

2
− λF̃ (σ))

m2

2
= λ(F (ρ) − F (σ) + F̃ (σ)).

Hence on 0 ≤ x ≤ 1
2
,

G1(σ, ρ) =
√

2

∫ σ

0

dv
√

F (ρ) − F (σ) + F̃ (σ) − F̃ (v)
=

√
λ. (15)
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When 1
2
≤ x ≤ L we have −u′(x)2

2
= λ(F (u) − F (σ)) − m̂2

2
where m̂ = u′(1

2
). Hence

∫ u(x)

σ

dv
√

m̂2

2
− λ(F (v) − F (σ))

=
√

2(x − 1

2
),

and solving for m̂2

2
and then substituting x = L we get

∫ ρ

σ

dv
√

F (ρ) − F (v)
=

√
2λ(L − 1

2
). (16)

Similarly for L ≤ x ≤ 1 we get
∫ ρ

0

dv
√

F (ρ) − F (v)
=

√
2λ(1 − L). (17)

Note here that u is decreasing and thus u′ is negative on L ≤ x ≤ 1, i.e., u′(x) =
−

√

2λ(F (ρ) − F (v)). Hence for 1
2
≤ x ≤ 1 we have

G2(σ, ρ) =
√

2

∫ ρ

0

dv
√

F (ρ) − F (v)
+
√

2

∫ ρ

σ

dv
√

F (ρ) − F (v)
=

√
λ. (18)

Lemma 4.1. Let T := {ρ : α̂ < ρ < β} where α̂ is as defined in Lemma 3.2 and
β = a

b
. If ρ ∈ T then G1, G2 are well-defined.

Proof. We have

F (ρ) − F (σ) + F̃ (σ) − F̃ (v) = F̃ (ρ) − F̃ (v) + c(ρ − σ),

and α̂ ≤ β ≤ β̂. Hence F̃ (ρ) − F̃ (v) > 0, for all ρ ∈ T . Further since f̃(ρ) > 0 for all

Β
u

FHuL

Figure 6: Graph of F (u)

ρ ∈ T , G1 is well-defined for ρ ∈ T . It is clear from the graph of F that F (ρ) − F (v)
is positive for all v ∈ (0, ρ) and f(ρ) > 0, if ρ ∈ (0, β). So G2 is also well-defined for
all ρ ∈ T .
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Lemma 4.2. Let ρ ∈ T be fixed, then there exists a unique σ∗(ρ) such that G1(σ
∗(ρ), ρ) =

G2(σ
∗(ρ), ρ). Moreover, if u is a positive solution of (B) of Type II with L > 1

2
, then

u(1
2
) = σ∗(ρ).

Proof. It is easy to see that G1−G2 is continuous and (G1−G2)(0, ρ) < 0. We observe
here that if σ = ρ,

F (ρ) − F (σ) + F̃ (σ) − F̃ (v) = F (ρ) − F (v) − c(σ − v) < F (ρ) − F (v).

Thus we have
∫ ρ

0

dv
√

F (ρ) − F (σ) + F̃ (σ) − F̃ (v)
>

∫ ρ

0

dv
√

F (ρ) − F (v)

and hence (G1 − G2)(ρ, ρ) > 0. So by the Intermediate Value Theorem there exists a
σ∗(ρ) such that (G1−G2)(σ

∗(ρ), ρ) = 0, i.e., G1(σ
∗(ρ), ρ) = G2(σ

∗(ρ), ρ). We also have

G′
1(σ, ρ) =

√
2
(

∫ σ

0

c dv

2[F (ρ) − F (v) − c(σ − v)]3/2
+

1
√

F (ρ) − F (σ)

)

> 0

and

G′
2(σ, ρ) =

−
√

2
√

F (ρ) − F (σ)
< 0,

i.e., G1 − G2 is strictly increasing and hence such a σ∗(ρ) is unique. The rest follows
similarly as in the Lemma 3.2.

Theorem 4.1. Let ρ ∈ T , L ≥ 1
2

and λ > 0. (B) has a positive solution iff
√

λ ∈
Range(H), where H(ρ) = G2(σ

∗(ρ), ρ) [or H(ρ) = G1(σ
∗(ρ), ρ)].

Proof. Proof follows similarly as in the Theorem 3.1.

4.2 Case 2 : L < 1
2

Theorem 4.2. (B) has no positive solution of Type II with L < 1
2
.

Proof. We derive formulas for the solution using the quadrature method; again the
regions 0 ≤ x ≤ 1

2
and 1

2
≤ x ≤ 1 are considered separately. We further subdivide the

region 0 ≤ x ≤ 1
2

into 0 ≤ x ≤ L and L ≤ x ≤ 1
2
.

As explained in Section 2 we have in the interval 0 ≤ x ≤ L

∫ u(x)

0

dv
√

F̃ (ρ) − F̃ (v)
=

√
2λx,

EJQTDE Spec. Ed. I, 2009 No. 2
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and substituting x = L we have

∫ ρ

0

dv
√

F̃ (ρ) − F̃ (v)
=

√
2λL.

Similarly for L ≤ x ≤ 1
2

we get

∫ ρ

σ

dv
√

F̃ (ρ) − F̃ (v)
=

√
2λ(1

2
− L).

Note here that u is decreasing and thus u′ is negative on L ≤ x ≤ 1, i.e., u′(x) =

−
√

2λ(F̃ (ρ) − F̃ (v)). Thus, for 0 ≤ x ≤ 1
2

G1(σ, ρ) =
√

2

∫ ρ

0

dv
√

F̃ (ρ) − F̃ (v)
+
√

2

∫ ρ

σ

dv
√

F̃ (ρ) − F̃ (v)
=

√
λ. (19)

Now consider the interval 1
2
≤ x ≤ 1. Since u′ < 0 in this interval we have,

∫ σ

0

dv
√

m2

2
− λF (v)

= 1
2

√
2,

where F (s) :=
∫ s

0
f(t)dt and m = u′(1). To solve for m2

2
we set u′(1

2

−
) = u′(1

2

+
), which

on substitution gives

−
√

2λ

√

F̃ (ρ) − F̃ (σ) = −
√

2

√

m2

2
− λF (σ)

λ(F̃ (ρ) − F̃ (σ)) = (m2

2
− λF (σ))

m2

2
= λ(F̃ (ρ) − F̃ (σ) + F (σ)).

Thus on 1
2
≤ x ≤ 1 we have

G2(σ, ρ) =
√

2

∫ σ

0

dv
√

F̃ (ρ) − F̃ (σ) + F (σ) − F (v)
=

√
λ. (20)

If a positive solution exists, then G1(σ
∗(ρ), ρ) = G2(σ

∗(ρ), ρ) for some σ∗ ∈ (0, ρ]. We
observe here that for 0 ≤ v ≤ σ,

F̃ (ρ) − F̃ (σ) + F (σ) − F (v) = F̃ (ρ) − F̃ (v) + c(σ − v) ≥ F̃ (ρ) − F̃ (v).
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Therefore

G2(σ, ρ) =
√

2

∫ σ

0

dv
√

F̃ (ρ) − F̃ (σ) + F (σ) − F (v)

≤
√

2

∫ σ

0

dv
√

F̃ (ρ) − F̃ (v)

<
√

2

∫ ρ

0

dv
√

F̃ (ρ) − F̃ (v)
≤ G1(σ, ρ).

Hence no positive solution exists for Case 2.

5 Computational Results

In this section we discuss the results obtained using Mathematica computation of
bifurcation curves of positive solutions developed in Sections 3 and 4 for models A &
B. Figure 7 is the bifurcation diagram of the symmetric harvesting problem (A) with
parameter values a = 10, b = 1

4
, c = 74 and L = 1

3
. Based on our discussion in Section

3, ρ is restricted to the interval (26.536, 30.198) for the set S in Theorem 3.1 to be
non-empty.

Out[175]=

13.9 25.7
Λ

24

26

28

30

32

Ρ

Figure 7: Symmetric harvesting: λ vs ρ when a = 10,b = 1
4

and c = 74

Figures 8 and 9 give the bifurcation diagram of the symmetric harvesting problem
(A) with parameter values a = 100, b = 1

4
, c = 74 and L = 1

3
.
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Out[424]=

0.2401 0.3787
Λ

20

40

60

80

100

Ρ

Figure 8: Symmetric harvesting: λ vs ρ when a = 100,b = 1
4

and c = 74

Here again the the set S is non-empty only for ρ ∈ (1.484, 399.259). In Figure 8,
we notice that for higher birth rates (i.e. large a such as a = 100) there exists two
solutions for λ ∈ (0.2401, 0.3787) .

Figure 9: λ vs ρ when a = 100,b = 1
4

and c = 74 - (2 solutions)

Figure 10 is the bifurcation diagram of the asymmetric harvesting problem (B)
with parameter values a = 10, b = 1

4
and c = 74. Here ρ has to lie in the interval

(26.536, 40) for the set T in Theorem 4.2 to be non-empty.
Figures 11 and 12 are the bifurcation diagrams of the asymmetric harvesting prob-

lem (B) with parameter values a = 100, b = 1
4

and c = 74. As in the symmetric har-
vesting problem we get two solutions for higher birth rates when λ ∈ (0.1053, 0.142).
The T in Theorem 4.2 is non-empty if ρ ∈ (1.48367, 400).
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Out[530]=

3.5 68.8
Λ10

12
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16

18

20

22

24

Ρ

Figure 10: Asymmetric harvesting: λ vs ρ when a = 10, b = 1
4

and c = 74

Figure 11: Asymmetric harvesting: λ vs ρ when a = 100, b = 1
4

and c = 74
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Figure 12: Asymmetric harvesting: λ vs ρ when a = 100, b = 1
4

and c = 74
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