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Abstract

The author considers the n-th order nonlinear differential equation with de-
lays. He presents sufficient conditions for this equation to have (not to have)
noncontinuable solutions. The Cauchy problem and a boundary value problem
are investigated.
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1 Introduction

In the paper we study the problem of continuability of solutions of the n-th order
differential equation with delays of the form

y(n) = f
(

t, y(τ0), . . . , y
(n−1)(τn−1)

)

(1)

where n ≥ 2, f is a continuous function defined on R+ × R
n, R+ = [0,∞), R =

(−∞,∞), τi ∈ C0(R+) and

τi(t) ≤ t for t ∈ R+ and i = 0, 1, . . . , n − 1 .

We will suppose for the simplicity that inf
t∈R+

τi(t) > −∞ for i = 0, 1, . . . , n − 1. Note,

that Cs(I), s ∈ {0, 1, . . .}, I ⊂ R+ is the set of continuous functions on I that have
continuous derivatives up to the order s.

A special case of equation (1) is the equation without delays,

y(n) = f(t, y, y′, . . . , y(n−1)) . (2)
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2 M. Bartušek

Definition 1.1. Let T ∈ (0,∞], T1 ∈ [0, T ), σi = inf
T1≤t<T

τi(t) and φi ∈ C0[σi, T1] for

i = 0, 1, . . . , n− 1. It is said that a function y is a solution of (1) on [T1, T ) (with the
initial conditions {φi}

n−1
i=0 ) if y ∈ C(n)[T1, T ), (1) holds on [T1, T ), y(i)(t) = φi(t) on

[σi, T1] and y(i) ∈ C0[σi, T ) for i = 0, 1, . . . , n − 1.

We will study solutions on their maximal interval of existence to the right.

Definition 1.2. Let y be defined on [T1, T ) ⊂ [0,∞). Then y is called noncontinuable
if T < ∞ and sup

T1≤t<T
|y(n−1)(t)| = ∞ (i.e. if y cannot be defined at t = T ). A solution

y is defined to be continuable if T = ∞.

Definition 1.3. Let y be a noncontinuable solution of (1) on [T1, T ). y is called
oscillatory if there exists a sequence of its zeros tending to T . Otherwise, y is called
nonoscillatory.

In the two last decades the existence and properties of noncontinuable solutions are
investigated mainly for equation (2). It is important to study the existence/nonexist-
ence of such solutions. Properties and different types of continuable solutions of (2)
are studied intensively now; it is necessary to know if solutions are continuable or not.
Furthermore, noncontinuable solutions appear e.g. in water flow problems in one space
dimension, see e.g. [14] (flood waves, a flow in sewerage systems).

Sometimes, the noncontinuability is very important in a definition of some problems.
For example, the limit-circle/limit-point problem for (2) has an old history, see e.g. the
monograph [7]. The first mathematicians who studied it for the nonlinear equation (2)
(with n = 2) were Spikes and Graef [18, 19, 28].

Definition 1.4. Let α ∈ {−1, 1} and αf(t, x0, . . . , xn−1)x0 ≥ 0 on R+ ×R
n. Equation

(2) is said to be of the nonlinear limit-circle type if for any solution y defined on R+,
∫ ∞

0

y(t) f(t, y(t), . . . , y(n−1)(t)) dt < ∞

holds. Equation (2) is said to be of the nonlinear limit-point type if there exists a
solution y of (2) defined on R+ such that

∫ ∞

0

y(t) f(t, y(t), . . . , y(n−1)(t)) dt = ∞. (3)

According to Definition 1.4 it is necessary to know if a solution y defined on R+

and satisfying (3) exists. The following example is very instructive.

Example 1.1. Consider the differential equation

y′′ = tα|y|λsgn y (4)

with λ > 1 and α ∈ R.
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(i) Then ε > 0 exists such that every solution y of (4) with Cauchy initial conditions
|y(0)| ≤ ε, |y′(0)| ≤ ε is continuable if and only if α < −λ − 1 (see [12]). Hence, if
α < −λ − 1 then (4) is of the nonlinear limit-point type.

(ii) If α ≥ −λ − 1, then every solution y of (4) satisfying y(T )y′(T ) > 0 at some
T ∈ R+ is noncontinuable (see Lemma 5 in [9]) and (4) is of the nonlinear limit-circle
type (Theorem 4 in [9]).

The first results for the nonexistence of noncontinuable solutions of (2) (or its
special cases) are given by Wintner, see [21] or [25] (n = 2); other results are obtained
in [3, 4, 10, 12, 13, 17, 18, 19, 23, 24]. In particular, noncontinuable solutions do not
exist if either f is sublinear in neighbourhoods of ±∞ or

∣

∣f(t, x0, . . . , xn−1)
∣

∣ ≤ r(t)

n−1
∑

i=0

|xi| for t ∈ R+ and |x| large

with r ∈ C0(R+) is positive.
Hence, the existence of noncontinuable solutions may be studied mainly for su-

perlinear equations in neighbourhoods of ±∞. The first results for (2) (n = 2) are
obtained in [23] and they are generalized e.g. in [15, 17, 24, 25]. The typical assump-
tions for the existence of a nonoscillatory noncontinuable solution are α ∈ {−1, 1},
i ∈ {0, 1, . . . , n − 1}, λ > 1 and

αf(t, x0, . . . , xn−1) ≥ r(t)|xi|
λ

for αxi > 0, i = 0, . . . , n − 1 large enough and r ∈ C0(R+), r > 0.
Note, that noncontinuable oscillatory solutions are studied only in [11], [15] and

[16].
The authors of the papers [8, 9, 10, 11, 27] stated sets of Cauchy initial conditions

for which solutions are noncontinuable; the results are used mainly for solving the
nonlinear limit-circle/limit-point problem.

On the other hand, in [10, 12, 26] a set of initial conditions is described for which
solutions are continuable even in the superlinear case.

In the last decade, the problem of the existence of noncontinuable solutions with
prescribed asymptotics on the right-hand side point T of the definition interval is
studied. More precisely, let T ∈ (0,∞). In [1, 2, 4, 5, 6], necessary and sufficient
conditions for the existence of a solution y satisfying boundary value problem

T ∈ (0,∞) , l ∈ {−1, 0, 1, . . . , n − 2} ,

Ci ∈ R for i = 0, 1, . . . , l ,

lim
t→T−

y(i)(t) = Ci for i = 0, 1, . . . , l ,

lim
t→T−

|y(j)(t)| = ∞ for j = l + 1, . . . , n − 1

(5)
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(for l = −1, Ci and the first equality is missing); the solution y is defined in a left
neighbourhood of T . It has to be stressed that the first authors who studied the
problem (5) were Jaroš and Kusano [22] (for n = 2).

As concerns equation (1), see the monography [20]. In [12] the continuability of
solutions of a functional-differential system is investigated; note that (1) cannot be
transformed into this system.

The goal of the paper is to generalize some results given above to equation (1). The
following example shows that noncontinuable solutions exist.

Example 1.2. Consider the equation

y′′ =
2(λ + 1)

(λ − 1)2
(1 + t)

2λ
λ−1 f

(

y(τ(t))
)

with λ > 1, f ∈ C0(R+), f(x) = xλ on [0, 1] and τ(t) = t2 on [0, 1], τ(t) = t for t > 1.

Then y(t) = (1 − t)−
2

λ−1 , t ∈ [0, 1) is the noncontinuable solution of the above given
equation.

2 Nonexistence Results

In this section nonexistence results for noncontinuable solutions will be given. The first
theorem is very simple but important.

Theorem 2.1. Let τi(t) < t on (0,∞) for i = 0, 1, . . . , n − 1. Then all solutions of
(1) are continuable.

Proof. Let, contrarily, y be a noncontinuable solution of (1) defined on [T1, T ), T >
T1. If we define τ = max

0≤i<n
τi(T ), the assumptions of the theorem yield τ < T . Let

0 < ε < T − T1 and τ̄ = min
0≤i<n

min
t∈J

τi(t) with J = [T − ε, T ]. Then τi(t) ∈ [τ̄ , τ ] for

i = 0, 1, . . . , n − 1 and t ∈ J , and due to τ < T a constant N exists such that

∣

∣y(i)(τi(t))
∣

∣ ≤ N on [T − ε, T ) for i = 0, 1, . . . , n − 1 . (6)

Note, that y is a solution of the equation z(n) = b(t) with b(t) = f
(

t, y(τ0(t)), . . . ,

y(n−1)(τn−1(t))
)

, t ∈ [T − ε, T ). From this and from (6), y can be defined at t = T ;
that contradicts the noncontinuability of y.

The following lemma is very useful.

Lemma 2.1 ([26] Lemma 2.1). Let λ > 1, K > 0, Q be a continuous nonnegative
function on R+, and u be continuous and nonnegative on R+ satisfying

u(t) ≤ K +

∫ t

0

Q(s) uλ(s) ds on [0, τ), τ ≤ ∞ .
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If (λ − 1)Kλ−1
∞
∫

0

Q(s) ds < 1 then

u(t) ≤ K
[

1 − (λ − 1)Kλ−1

∫ t

0

Q(s) ds
]1/(1−λ)

, t ∈ [0, τ) .

The next theorem is devoted to the sublinearity of f .

Theorem 2.2. Let r ∈ C0(R+), r ≥ 0 on R+ and let

∣

∣f(t, x0, . . . , xn−1)
∣

∣ ≤ r(t)
[

1 +
n−1
∑

i=0

|xi|
]

on R+ × R
n. Then every solution y of (1) is continuable.

Proof. Let y be a solution of (1) defined on J
def
= [0, T ) ⊂ R+ and let φi and σi,

i = 0, 1, . . . , n− 1, be given by Definition 1.1. If y is defined on [T1, T ) with T1 > 0 the
proof is similar. We prove that T = ∞. Let T < ∞ and y be noncontinuable. Then

lim sup
t→T−

u(t) = ∞ (7)

where
u(t) = max

σn−1≤s≤t

∣

∣y(n−1)(s)
∣

∣ + 1 , t ∈ J . (8)

The Taylor series theorem implies

∣

∣y(i)(t)
∣

∣ ≤

n−2
∑

j=i

|y(j)(0)|

(j − i)!
tj−i +

∫ t

0

(t − s)n−i−2

(n − i − 2)!

∣

∣y(n−1)(s)
∣

∣ ds

≤ M + M1u(t) ≤ (M + M1)u(t)

on J with i = 0, 1, . . . , n − 2, M = max
0≤i≤n−2

n−2
∑

j=i

|y(j)(0)|
(j−i)!

T j−i and M1 = max
0≤i≤n−2

T n−i−1

(n−i−1)!
.

From this and from u ≥ 1,
∣

∣y(i)(τi(t))
∣

∣ ≤ max
σi≤s≤0

∣

∣φi(s)
∣

∣ + (M + M1)u(t) ≤ M2u(t)

on J for i = 0, 1, . . . , n − 2 with M2 = max
0≤i<n

max
σi≤s≤0

∣

∣φi(s)
∣

∣ + M + M1 and, hence,

∣

∣y(i)(τi(t))
∣

∣ ≤ (M2 + 1)u(t) , i = 0, 1, . . . , n − 1 . (9)

Furthermore, (1), (8) and (9) imply

∣

∣y(n−1)(t)
∣

∣ ≤
∣

∣y(n−1)(0)
∣

∣ +

∫ t

0

∣

∣f
(

s, y(τ0(s)), . . . , y
(n−1)(τn−1(s))

)
∣

∣ ds

≤
∣

∣y(n−1)(0)
∣

∣ +

∫ t

0

|r(s)|
[

1 +

n−1
∑

i=0

∣

∣y(i)(τi(s))
∣

∣

]

ds

≤
∣

∣y(n−1)(0)
∣

∣ +

∫ t

0

Q(s) u(s) ds
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on J with Q(t) = |r(t)|
[

1 + n + M2n
]

. Hence,

u(t) ≤ K +

∫ t

0

Q(s) u(s) ds , t ∈ J (10)

with K = 1+
∣

∣y(n−1)(0)
∣

∣+ max
σn−1≤s≤0

∣

∣φn−1(s)
∣

∣. Then according to Gronwall’s inequality,

applied to (10), u is bounded on J , and that contradicts (7).

The following theorem describes a set of Cauchy initial conditions whose corre-
sponding solutions are defined on R+, even in the superlinear case.

Theorem 2.3. Let λ > 1, r ∈ C0(R+), r ≥ 0 on R+,

∣

∣f(t, x0, . . . , xn−1)
∣

∣ ≤ r(t)

n−1
∑

i=0

|xi|
λ (11)

on R+ × R
n and let

∫ ∞

0

tλ(n−1)r(t) dt < ∞ . (12)

Then there exists ε > 0 such that a solution y of (1) defined in a right neighbourhood
of t = 0 with Cauchy initial conditions

∣

∣φi(t)
∣

∣ ≤ ε on [σi0], i = 0, 1, . . . , n − 1 , (13)

is continuable.

Proof. Consider a solution y of (1 with the initial conditions satisfying (13) where ε > 0
is such that

(λ − 1)Kλ−1

∫ ∞

0

Q(s) ds < 1 (14)

where

Q(t) = (n + 1)λ r(t)

n−1
∑

i=0

tλ(n−i−1) (15)

and

K = 2ε + ελ(n + 1)λ

∫ ∞

0

r(s)
[

n +

n−1
∑

i=0

n−2
∑

j=i

sλ(j−i)
]

ds . (16)

Note, that according to (12), K < ∞ and ε exist.
We prove that y is defined on R+. Assume for the sake of contradiction that y is

noncontinuable on J
def
= [0, T ), T < ∞. Then
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lim sup
t→T−

u(t) = ∞ (17)

where

u(t) = max
σn−1≤s≤t

∣

∣y(n−1)(s)
∣

∣ , t ∈ [0, T ) . (18)

The Taylor series theorem and (13) imply

∣

∣y(i)(t)
∣

∣ ≤ ε
n−2
∑

j=i

tj−i

(j − i)!
+

∫ t

0

(t − σ)n−i−2

(n − i − 2)!

∣

∣y(n−1)(σ)
∣

∣ dσ (19)

on J for i = 0, 1, . . . , n − 2. Hence (13) and (19) yield

∣

∣y(i)(τi(t))
∣

∣ ≤ max
σi≤s≤0

|φi(s)| + max
0≤s≤t

∣

∣y(i)(s)
∣

∣ ≤ ε
(

1 +

n−2
∑

j=i

tj−i
)

+ tn−i−1u(t) (20)

on J for i = 0, 1, . . . , n− 2. If we define
∑l

i=k = 0 for k > l, (20) is valid for i = n− 1,
too.

The following inequality is very useful. If λ > 0, m ∈ {1, 2, . . .} and ai ∈ (0,∞)
for i = 1, 2, . . .m, then

(a1 + · · ·+ am)λ ≤ mλ(aλ
1 + · · · + aλ

m) . (21)

According to (11), (13), (15), (20) and (21)

∣

∣y(n−1)(t)
∣

∣ ≤
∣

∣y(n−1)(0)
∣

∣ +

∫ t

0

∣

∣y(n)(s)
∣

∣ ds

≤ ε +

∫ t

0

r(s)

n−1
∑

i=0

∣

∣y(i)(τi(s))
∣

∣

λ
ds

≤ ε +

∫ t

0

r(s)
n−1
∑

i=0

(

ε + ε
n−2
∑

j=i

sj−i + sn−i−1u(s)
)λ

ds

≤ ε +

∫ t

0

r(s)
n−1
∑

i=0

(n − i + 1)λ

×
[

ελ + ελ

n−2
∑

j=i

sλ(j−i) + sλ(n−i−1)uλ(s)
]

ds

≤ K1 +

∫ t

0

Q(s)uλ(s) ds

EJQTDE Spec. Ed. I, 2009 No. 6



8 M. Bartušek

on J with

K1 = ε + ελ(n + 1)λ

∫ ∞

0

r(s)
[

n +
n−1
∑

i=0

n−2
∑

j=i

sλ(j−i)
]

.

From this and from (18)

u(t) ≤ K +

∫ t

0

Q(s) uλ(s) ds , t ∈ J . (22)

Then (14)–(16) and (22) imply all assumptions of Lemma 2.1 are satisfied (with τ = T )
and u is bounded on J ; that contradicts (17).

Remark 2.1. The method of the proof of Theorem 2.3 was used in [12] for a different
type of the differential equation.

Next, we look for sufficient conditions under which such solutions do not exist for
Equation (1). So we study the nonexistence of noncontinuable solutions of (1) defined
in a left neighbourhood of T ∈ (0,∞) and satisfying either

lim
t→T−

y(i)(t) = ∞ , i = 0, 1, . . . , n − 1 (23)

or l ∈ {0, 1, . . . , n − 2}, Ci > 0 for i = 0, 1, . . . , l,

lim
t→T−

y(i)(t) = Ci for i = 0, 1, . . . , l and

lim
t→T−

y(j)(t) = ∞ for j = l + 1, . . . , n − 1 .
(24)

Needed results for equations (2) and

z(n) = K(z(k))λ (25)

and a comparison theorem will be given in the following two lemmas.

Lemma 2.2. Let T ∈ (0,∞), k ∈ {0, 1, . . . , n − 1} and K > 0.

(i) If k > 0, λ > 1 + 1
k
, then (25) has no solution y satisfying (23).

(ii) Let l ∈ {0, 1, . . . , n − 2} and let either l < k and 1 < λ < 1 + n−k
k−l

or l < k − 1

and λ ≥ 1 + n−k
k−l−1

. Then (25) has no solution y satisfying (24).

Proof. It follows from Theorem 2 in [4] (Theorems 3.1 and 3.2 in [6] or [3]) in case (i)
(case (ii)).
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Lemma 2.3. Let T1 > 0, K > 0, M ≥ 0, k ∈ {0, 1, . . . , n − 1}, λ > 1 and

0 ≤ f(t, x0, x1, . . . , xn−1) ≤ K xλ
k (26)

for t ∈ [0, T1] and xi ≥ M , i = 0, 1, . . . , n − 1. Let y be a solution of (1) defined on
[0, T ) satisfying Cauchy initial conditions φi(t) ≥ M , t ∈ [σi, 0], i = 0, 1, . . . , n−1. Let
z be a solution of (25) satisfying Cauchy initial conditions

z(i)(0) > max
σi≤t≤0

φi(t) , i = 0, 1, . . . , n − 1

defined on [0, T1). Then

y(i)(t) ≤ z(i)(t) , t ∈ [0, T1), i = 0, 1, . . . , n − 1 .

Proof. Note that solutions of Cauchy problems for (25) are unique. Moreover, y(i) and
z(i) are nondecreasing on [0, T1) and so, (26) implies

y(n)(t) = f
(

t, y(τ0(t)), . . . , y
(n−1)(τn−1(t))

)

≤ K
(

yk(τk(t))
)λ

≤ K(yk(t))λ , t ∈ [0, T ) .

From this and from theorems on differential inequalities (see [21]) applied on (1) and
(25) (transformed into the system) we obtain the result of the lemma.

Theorem 2.4. Let T ∈ (0,∞), λ > 1 and M ≥ 0.

(i) Suppose K > 0, k ∈ {1, . . . , n − 1}, λ > 1 + 1
k
,

0 ≤ f(t, x0, x1, . . . , xn−1) ≤ K xλ
k (27)

for t ∈ [0, T ] and xi ≥ M , i = 0, 1, . . . , n − 1. Then there exists no solution y of
(1) defined on [0, T ) with Cauchy initial conditions

M ≤ φi(t) , t ∈ [σi, 0], i = 0, 1, . . . , n − 1 , (28)

satisfying (23).

(ii) Let
f(t, x0, . . . , xn−1) ≤ 0 (29)

for t ∈ [0, T ] and xi ≥ M , i = 0, 1 . . . , n − 1. Then there exists no solution y of
(1) defined on [0, T ) with (28) satisfying (23).

Proof. (i) Assume for the sake of contradiction that y be a solution of (1) with (28)
and (23). Let us consider (25) with Cauchy initial conditions

z(i)(0) > max
σi≤s≤0

φi(s) , i = 0, 1, . . . , n − 1 . (30)
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Note, that y(i) and z(i), i = 0, 1, . . . , n−1, are nonnegative and nondecreasing functions
on their definition intervals. As according to (27)

f
(

t, y(τ0(t)), . . . , y
(n−1)(τn−1(t))

)

≤ K
(

y(k)(τk(t))
)λ

≤ K
(

y(k)(t)
)λ

on [0, T ), Lemma 2.3 applied on (1) and (25), it follows that z(i)(t) ≥ y(i)(t), i =
0, 1, . . . , n − 1, for all t where y and z are defined. It follows from this and from
(23) that T1 ∈ (0, T ] exists with lim

t→T1−
z(t) = ∞ and, hence, lim

t→T1−
z(i)(t) = ∞ for

i = 0, 1, . . . , n−1. The contradiction with Lemma 2.2(i) (T = T1) proves the statement.

(ii) Let y be a noncontinuable solution on [0, T ) with (29), (28) and (23). Then
(23) implies

lim sup
t→T−

y(n)(t) = ∞ . (31)

Furthermore, (1) and (29) imply y(n) is bounded in a left neighbourhood of T . The
contradiction with (31) proves the statement.

Theorem 2.5. Let T ∈ (0,∞), λ > 1, k ∈ {1, 2, . . . , n − 1}, l ∈ {0, 1, . . . , n − 1},
M ≥ 0, Ci ≥ M for i = 0, 1, . . . , l and let either l ≥ k and λ > 1 + 1

k
or

l < k <
n − 1

2
and 1 +

1

k
< λ < 1 +

n − k

k
(32)

or l < k − 1 and λ ≥ 1 + n−k
k−l−1

. Suppose

0 ≤ f(t, x0, x1, . . . , xn−1) ≤ K xλ
k (33)

for t ∈ [0, T ] and xi ≥ M , i = 0, 1, . . . , n − 1. Then there exists no solution y of (1)
defined on [0, T ) with Cauchy initial conditions

M ≤ φi(t) , t ∈ [σi, 0], i = 0, 1, . . . , n − 1 (34)

satisfying (24).

Proof. For the sake of contradiction, let y be a solution of (1) with (33) and (24). Let
us consider Equation (25) with (30). We prove similarly as in the proof of Theorem 2.4
that z(i)(t) ≥ y(i)(t), i = 0, 1, . . . , n−1, on the intersection of the definition intervals of y
and z. Note, that z(i) and y(i) are nonnegative and nondecreasing for i = 0, 1, . . . , n−1.
Hence, T1 ∈ (0, T ] exists such that

lim
t→T1−

z(j)(t) = ∞ for j = l + 1, . . . , n − 1 .

As z(i) is nondecreasing on [0, T1) for i = 0, 1, . . . , n − 1, lim
t→T−

z(i)(t) = C̄i, i =

0, 1, . . . , n − 1, with C̄i ∈ [M,∞) ∪ {∞}. From this either

lim
t→T1−

z(i)(t) = ∞ , i = 0, 1, . . . , n − 1 , (35)
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or l̄ ∈ {0, 1, . . . , l} exists such that

lim
t→T1−

z(i)(t) = C̄i , for i = 0, 1, . . . , l0 , (36)

and

lim
t→T1−

z(j)(t) = ∞ , for j = l0 + 1, l0 + 2, . . . , n − 1 . (37)

Furthermore, the definition of λ implies k > 0 and λ > 1 + 1
k

and according to Lemma
2.1(i) the relation (35) is not valid. Let l0 exist such that (36) and (37) holds.

Let k > l. We apply Lemma 2.2 (ii) with T = T1 and l = l0. Then according
to the definition of λ we have either l0 < k and 1 < λ < 1 + n−k

k−l0
or l0 < k − 1

and λ ≥ 1 + n−k
k−l0−1

. Hence, the assumptions of Lemma 2.2(ii) hold and there exists

no solution satisfying (36) and (37). Note, that k < n−1
2

in (32) is necessary for the
second assumptions in (32) to be nonempty.

Suppose the last case k ≤ l. Then (1), (33) and (34) imply

y(n)(t) = f
(

t, y(τ0(t)), . . . , y
(n−1)(τn−1(t))

)

≤ K
(

y(k)(τk(t))
)λ

≤ K
(

y(k)(t)
)λ

≤ K Ck < ∞ .

Hence, y(n−1) is bounded on [0, T ) and the contradiction with lim
t→T−

y(n−1)(t) = ∞ (see

(24)) proves the statement in this case.

Remark 2.2. In Theorems 2.4 and 2.5 positive solutions of (1) are studied. Negative
solutions satisfying either (23) or (24) with −∞ and Ci < 0 for i = 0, 1, . . . , l, can be
studied similarly; it is possible to use the tranformation y = −Y .

Example 1.2 shows that a solution satisfying (23) exists. Similarly, according to
the following example, solutions satisfying (24) exist.

Example 2.1. Consider the equation y′′ = 1
8
(1 + t)3/2f

(

y′(τ(t))
)

with f ∈ C0(R+),
f(x) = x3 on [0,1] and τ(t) = t2 on [0, 1], τ(t) = t for t > 1. Then y(t) = −4(1 −
t)1/2 + 5 is noncontinuable on [0, 1), lim

t→1−
y(t) = 5, lim

t→1−
y′(t) = ∞.

3 Existence Theorems

In this section existence results will be derived. We need the following main lemma
that investigates properties of the equation

z(n) = K
(

z(k)(τ(t))
)λ

(38)

for a special τ .
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Lemma 3.1. Let T > 0, λ > 1, K > 0, K1 > 0, k ∈ {0, 1, . . . , n − 1} τ̄ ≥ 1 and
τ(t) = τ̄ t + T (1 − τ̄ ) on (−∞, T ]. If either k = 0 or λ 6= n−m

k−m
for m = 0, 1, . . . , k − 1,

then (38) has a noncontinuable solution

z(t) = M(T − τ(t))−s + K1(T + t)k−1sgn k (39)

on (−∞, T ) where s = n−kλ
λ−1

, and

M = τ̄
n+λ(s+k)

λ−1 K− 1
λ−1

n−k−1
∏

j=0

(n − k

λ − 1
+ j

)1/(λ−1)
k−1
∏

j=0

(n − kλ

λ − 1
+ j

)−1

.

Proof. Note, that τ(T ) = T and τ is the delay in (−∞, T ]. The fact that (39) is a
solution of (38) can be obtained by the direct computation. This solution is defined
if and only if M ∈ R; i.e., if and only if s = n−kλ

λ−1
/∈ {0,−1,−2, . . . ,−k + 1}. This is

valid if either k = 0 or λ 6= n−m
k−m

for m = 0, 1, . . . , k − 1. As

z(n−1)(t) = Mτ̄n−1s(s + 1) . . . (s + n − 2)(T − τ(t))−s−n+1

= C(T − τ(t))−s−n+1

with

C = τ̄
n+λ(s+k)

λ−1
+n−1K− 1

λ−1

n−k−1
∏

j=0

(n − k

λ − 1
+ j

)1/(λ−1)
n−k−2
∏

j=0

(n − k

λ − 1
+ j

)

> 0 ,

it follows that z is noncontinuable on (−∞, T ).

Lemma 3.2. Let 0 ≤ T1 < T < ∞, K > 0, k ∈ {0, 1, . . . , n − 1}, λ > 1, M ≥ 0,
τ ∈ C0[T1, T ), τ(t) ≤ τk(t) on [T1, T ]. Let f(t, x0, . . . , xn−1) ≥ K xλ

k for t ∈ [T1, T ]
and xi ≥ M , i = 0, 1, . . . , n − 1. Suppose z is a solution of (38) defined on [T1, T )
with the initial conditions φ̄i(t) ≥ M , t ∈ [σ̄i, T1], i = 0, 1, . . . , n − 1. If y is a solution
of (1), defined on [T1, T ) with the initial conditions φi(t) > max

σ̄i≤s≤T1

φ̄i(s), t ∈ [σi, T1],

i = 0, 1, . . . , n − 1, then

z(i)(t) ≤ y(i)(t) , t ∈ [T1, T ), i = 0, 1, . . . , n − 1 .

Here σi and σ̄i are numbers from Definition 1.1, applied on (38) and (1), respectively.

Proof. It can be proved by the same way as well known theorems on differential in-
equalities without delay, see e.g. [21].

The next theorem addresses a boundary value problem and provides sufficient con-
ditions for the existence of noncontinuable solution of (1) in a left neighbourhood of a
given number T > 0.
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Theorem 3.1. Let 0 ≤ T1 < T < ∞, r ∈ C0([T1, T ]), k ∈ {0, 1, . . . , n − 1}, M ≥ 0,
τ̄ ≥ 1, λ > 1,

t − τi(t) > 0 for i = 0, 1, . . . , n − 1 on [T1, T ) , (40)

r(t) > 0 and t − τk(t) ≤ (τ̄ − 1)(T − t) on [T1, T ] , (41)

and

f(t, x0, x1, . . . , xn−1) ≥ r(t) xλ
k (42)

for T1 ≤ t ≤ T , xi ≥ M , i = 0, 1, . . . , n − 1. Then there exists δ > 0 such that every
solution of (1) with the initial conditions

φi(t) > δ for σi ≤ t ≤ T1 , σi = min
T1≤t≤T

τi(t) , i = 0, 1, . . . , n − 1, (43)

is defined on [T1, T ) and it is noncontinuable.

Proof. Let K = min
T1≤t≤T

r(t) > 0 and τ(t) = τ̄ t+T (1− τ̄ ); hence t−τ(t) = (τ̄−1)(T −t).

Let λ 6= n−m
k−m

for m = 0, 1, . . . , k−1 and let z be a solution of (38) given by Lemma 3.1
with K1 to be such that

z(i)(t) ≥ M for i = 0, 1, . . . , k − 1 and τ(T1) ≤ t ≤ T1 .

Then (40) and (41) imply

t > τk(t) ≥ τ(t) , t ∈ [T1, T ) , (44)

z(j) ≥ 0 are nondecreasing on
[

τ(T1), T
)

for i = 0, 1, . . . , n−1, and z is noncontinuable
on [T1, T ). Define δ by

δ > max
0≤j<n

z(j)(T1) . (45)

Let y be a solution of (1) satisfying (43); due to Theorem 2.1 and (40) it is defined on
[T1, T ). Then Lemma 3.2, (42), (44) and (45) imply y(j)(t) ≥ z(j)(t), t ∈ [T1, T ) and y
is noncontinuable due to z having this property.

Suppose m ∈ {0, 1, . . . , k − 1} exists such that λ = n−m
k−m

, 0 < ε < n−k
(k−m)(k−m−1)

and

let z1 be the solution of (38) given by (39) with λ = λ + ε. The condition posed on ε
ensures that λ + ε 6= n−σ

k−σ
for σ = 0, 1, . . . , k − 1, and Lemma 3.2 may be applied. K1

is given such that z(i)(T1) > 0 for i 6= k and z(k)(t) > 0 for τ(T1) ≤ t ≤ T1. Then (39)

implies z
(j)
1 (t) ≥ 0, z

(j)
1 is nondecreasing on τ(T1) ≤ t < T , j = 0, 1, . . . , n − 1, and

lim
t→T−

z
(k)
1 (t) = ∞. Let T0 ∈ [T1, T ) be such that

z
(k)
1 (t) ≥ max(1, M) on [T0, T ) . (46)
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Let z be a solution of (38), defined on [T0, T̄ ) ⊂ [T0, T ) satisfying the initial conditions

φ̄i(t) = δ
def
= max

0≤j≤n−1
z

(j)
1 (T0) + 1 , i = 0, 1, . . . , n − 1 , (47)

and t = T1 for i 6= k and τ(T0) ≤ t ≤ T0 in case i = k. From this, (40), (46), from
Lemma 3.2 (applied on (38) and on (38) with λ = λ + ε) and Theorem 2.1, it follows

that z
(i)
1 (t) ≤ z(i)(t) on [T0, T ), i = 0, 1, . . . , n − 1. Let y be a solution of (1) defined

on [T1, T ) satisfying (43); note that due to (40) and Theorem 2.1, y is defined on
[T1, T ). Then Lemma 3.2, (42), (44) and (47) imply y(j)(t) ≥ z(j)(t), t ∈ [T0, T ) and y
is noncontinuable as z has this property.

The next theorem solves the problem of existence of noncontinuable solutions for
the initial problem.

Theorem 3.2. Let T > 0, τk(T ) = T , r ∈ C0[0, T ], k ∈ {0, 1, . . . , n − 1}, M > 0,
0 ≤ T1 < T , λ > 1, τ̄ ≥ 1, r(t) > 0 on [0, T ],

0 ≤ t − τk(t) ≤ (τ̄ − 1)(T − t) on [T1, T ]

and (42) holds for T1 ≤ t ≤ T , xi ≥ M , i = 0, 1, . . . , n − 1. Then there exists δ > 0
such that every solution y on (1) with the initial conditions

φi(t) > δ for σi ≤ t ≤ 0 , σi = inf
0≤t<∞

τi(t) , i = 0, 1, . . . , n − 1 , (48)

is defined only on a finite interval [0, t0); i.e., y is noncontinuable on [0, t0) (t0 depends
on y).

Proof. If y is noncontinuable on [0, t0) ⊂ [0, T ) then the statement is valid. Let y be
defined on [0, T ], then we can prove by the same way as in the proof of Theorem 3.1
that y is noncontinuable; it is a contradiction. Note, that, as y(i) is nondecreasing,
(48) implies y(i) > δ in a left neighbourhood of T1 given by the proof of Theorem 3.1.
Moreover, assumption (40) is not supposed as we only need to show that t0 exists.

Remark 3.1. Theorem 3.2 is proved in [25] for special case of (1) without delays.
Theorem 3.1 extends results given in [4], [6] for (1) without delays.

Remark 3.2. Similar results as in Theorems 3.1 and 3.2 can be proved under an
assumption

f(t, x0, . . . , xn−1) ≤ −K|xk|
λ

for t ∈ [T1, T ] and xi ≤ −M , i = 0, 1, . . . , n − 1. The transformation y = −Y may be
used, too.

Corollary 3.1. Consider y(n) = r(t)
∣

∣y(τ(t))
∣

∣

λ
sgny(τ(t)) with λ > 1, τ ∈ C0(R+).

Let C > 0 and 0 ≤ T1 < T < ∞ be such that r > 0 and 0 ≤ t − τ(t) ≤ C(T − t) on
[T1, T ]. Then the differential equation has a noncontinuable solution on [0, T ).
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