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Using Mawhin’s continuation theorem we establish the existence of periodic
solutions for a class of even order differential equations with deviating argument.
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1 Introduction

In this paper, we discuss the even order differential equation with deviating argument

of the form
2n—2

z® (1) + ;) a;(t)z)(t) + g(a(t — 7(t))) = p(t), (1)

where 7(t), a;(t) (i = 0,1,2,---,n), p(t) are real continuous functions defined on R
with positive period T" and ag,_o(t) > 0 (k= 1,2,---,n) for t € R, and g(z) is a real
continuous function defined on R.

Periodic solutions for differential equations were studied in [2-12] and we note that
most of the results in the literatue concern lower order problems. There are only a few
papers [1,13,14] which discuss higher order problems.

For the sake of completeness, we first state Mawhin’s continuation theorem [3]. Let
X and Y be two Banach space and L : DomL C X — Y is a linear mapping and
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N : X — Y is a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dimKerL = codimImL < +oo, and ImL is closed in Y. If LL
is a Fredholm mapping of index zero, there exist continuous projectors P : X — X
and @ : Y — Y such that ImP = KerL and ImL = Ker@Q = Im(I — Q). It follows
that L|pomrnkerp : (I — P)X — ImL has an inverse which will be denoted by Kp.
If Q is an open and bounded subset of X, the mapping N will be called L—compact
on Q if QN () is bounded and Kp(I — Q)N () is compact. Since Im(@ is isomorphic
to KerL, there exists an isomorphism J : Im() — KerL. The following theorem is
called Mawhin’s continuation theorem (see [3]).

Theorem 1.1 Let L be a Fredholm mapping of index zero, and let N be L—compact
on . Suppose

(1) for each X € (0,1) and x € 9, Lr # ANz, and
(2) for each x € 00 N Ker(L),QNz # 0 and deg(QN,Q2 N Ker(L),0) # 0.
Then the equation Lx = Nz has at least one solution in QN D(L).

2 Main Result

Now we make the following assumptions on a;(t):

(i) Mog—o = maxeec)or] G2k—2(t) > aok—2(t) > Maop—o = minep ) aor—2(t) > 0, (k =
1,2,---,n) for each t € [0,T];

.. T Mo, _2; T . .
(11) Mz, 2 < (T)2 and ﬁziz < (T)2 (l =2,3,-- '7n)7

(iii) There exists a positive constant r with mg > r, such that with A—%B >0
and 1 — A* > 0, where A =1— A",

B = Ml(%)2n—2 + (M2 _ mQ)(%)%—s + Mg(%)2n—4 + (M4 _ m4)(%)2n—5
o+ Mop3(L)? + (Man—o — may—2) T,

A* — [M2n72(%)2 + M2n73<%>3 + M2n74<%)4 4+ MQ(%)Qn—Z + M1<%)2n—1]

and M1 = maxco,r) |aok—1(t)] (F=1,2,---,n—1).
Our main result is the following theorem.

Theorem 2.1 Under the assumptions (i), (ii) and (iii), if
1im 5 oo sup|@| <r (2)

and
limg| o0 sgn(z)g(z) = 400, (3)
then Eq.(1) has at least one T'—periodic solution.
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In order to prove the main theorem we need some preliminaries. Set
X ={zlr e C*" Y R,R),z(t +T) = z(t),Vt € R}
and 2 (t) = x(t), and define the norm on X by
||| = maxo<<on—1 MaXte(o/1] 20 ()],
and set

Y ={ylye C(R,R),y(t+7T) =y(t),Vt € R}.

We define the norm on Y by ||y||o = max,cio 17 |y(t)|. Thus both (X, ||-||) and (Y, ]]-]|o)

are Banach spaces.

Remark 2.1 Ifx € X, then it follows that 2% (0) = 2O(T) (i =0,1,2, - -

Define the operators L : X — Y and N : X — Y, respectively, by

Lx(t) = 2®(t), teR,

and
Na(t) =p(t) = X a)a(t) - g(alt ~ ().t € B
Clearly,
KerL ={x € X :z(t) =c € R}
and

ImL={yeY: fOTy(t)dt =0}

is closed in Y. Thus L is a Fredholm mapping of index zero.
Let us define P: X — X and @ : Y — Y/Im(L), respectively, by

Pa(t) = & [T z(t)dt = z(0), teR,

for z = z(t) € X and
Qu(t) = 1 Ji y(t)dr, teR

-, 2n —1).

(4)

(8)

(9)

fory =y(t) € Y. It is easy to see that ImP = KerL and ImL = KerQ = Im(I — Q).
It follows that L|pomrakerp : (I — P)X — ImL has an inverse which will be denoted

by Kp.
Furthermore for any y = y(t) € ImL, if n = 1, it is well-known that

Kpy(t) = —% OT du fouy(s)ds + fot du fouy(s)ds.

(10)
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If n> 1, let x(t) € DomL N KerP be such that Kpy(t) = z(t). Then 2 (1) = y(®),
20 (1) = 2@rD(0) 4 [L2C)(s)ds (11)

and
=2 (t) = 222 (0) + 22D (0)t + fot du [;' z®) (s)ds. (12)

Since x2"=2(T') = 2(27=2)(0), we have
2CD(OVT + [ du [ 2 (s)ds = 0
or
®=D(0) = —1 fOT du [;' 2@ (s)ds.
From (12), we have
22 () = 272 (0) — £ fo du fo ) (s)ds + fo du fo (s)ds. (13)
Now since fOT 2?72 (s)ds = 0, from (13) we have

1(2n=2) Tfo du [}z ds+f0 dw [ du [y 2" (s)ds = 0,

or

22— 2) — 2f0 du fO ds— —fO dw fO dUI x(Qn) )d (14)
From (13) and (1 ), we have

n— T u n n
p@A(E) =3 [y du [y 2@ (s)ds — _fo dw [ du [ 2@V (s)ds
L [ du [ 2l ds—irfo du [} 2 (s)ds
=(3-%) fo du fo ) (s)ds + fo du fo 2 (s)ds
+ Jo dw [3 du [i 2@
Let yo(t) = y(t) and yi(t) = 2®*=2(t). Since y(t) = 22" (¢), we have from (15) that

TD () = y(t) = (5 - £) fy du [y yo(s)ds

(15)

(16)
+f0 du [} yo(s)ds — % fOT dw [ du [ yo(s)ds
From (16), we obtain
22n=3)(¢) = 2n=3)(0) + fot y1(s)ds
and
20 (t) = 2 (0) + 2 (0) + [ du [y (s)ds. (17)
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Since x2»=4(T") = 2(2»=4(0), we have from (17) that
p@9(0) = =1 [ du [ yi(s)ds. (18)

Since fOT 2?74 (s)ds = 0, we have from (17) that

2@ =(0) = 3 fo du [g y(s)ds — 7 fo dw [ du [§ yi(s (19)
Let yo(t) = 22"=9(¢) and we have from (17)-(19) that
x(Z”*‘l)(t) =1y(t) = l — 1 fOT du fou y1(s)ds
+f0 du [y y1(s)ds — _fo dw [ du [§ yi(s
Let y;(t) = 2®*=2)(¢) (i = 1,2,---,n — 1) and as above it is easy to check that
g (2n=2) (t) = ?/z(t) = l - L foT du fou yi—l 5 dS
+f0 du fo Yi— dS f dw fO du fO Yi— d
for 1 =1,2,---,n—1), and
Yn(t) = yn(0) = 4 Jy du [y yu-s(s)ds + [y du [ yor(s)ds.
Note that y,(t) = z(t) € DomL N KerP. Thus y,(0) = 2(0) = 0, and
Kpy(t) = Tfo du [y yn—1( ds+f0t du [y yn—1(s)ds. (20)

Let €2 be an open and bounded subset of X. In view of (5), (9) and (10) (or (20)),

we can easily see that QN(Q) is bounded and Kp(I — Q)N () is compact. Thus the
mapping N is L—compact on 2. That is, we have the following result.

Lemma 2.1 Let L, N, P and Q be defined by (4), (5), (8) and (9) respectively. Then
L is a Fredholm mapping of index zero and N is L—compact on ), where €2 is any
open and bounded subset of X .

In order to prove our main result, we need the following Lemmas [6, 7]. The first result
follows from [6 and Remark 2.1] and the second from [7].

Lemma 2.2 Let z(t) € C®™(R,R) N Cr. Then
||9C(i>||0 < %foT |x(i+1)(3)|d5’2' =1,2,---,n—1,

where n > 2 and Cr == {z|x € C(R,R),z(t +T) = x(t),Vt € R}.
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Lemma 2.3 Suppose that M, \ are positive numbers and satisfy 0 < M < (%)2 and
0 <A< 1, then for any function ¢ defined in [0,T], the following problem

{ x' (1) + AMx(t) = \p(t),

/ /

2(0) = x(T), 2 (0) = = (T),
has a unique solution
(t) = [} G(t, s)rp(s)ds,
where & = VAM, and

t.9) w(t—s), (k—1)T <s<t<kT,
G(t,s) =
w(T+t—3s), (E—1DT<t<s<kT, (keN),

with

cos a(t— %)

w(t) = ———=%.

2acsin %5

Now, we consider the following auxiliary equation
2n—2 )
() + A 30 ai(t)aD(t) + Ag(a(t — (1)) = Ap(t), (21)

=0

where 0 < A < 1. We have

Lemma 2.4 Suppose the conditions of Theorem 2.1 are satisfied. If x(t) is a T—periodic
solution of Fq.(21), then there are positive constants D; (i = 0,1,---2n—1), which are
independent of A, such that

[l < Ds,  t€[0,T] fori=0,1,---,2n—1. (22)

Proof.Suppose that z(t) is a T—periodic solution of (21). By (2) of Theorem 2.1 we
know that there exists a M; > 0, such that

lg(x(t)] < rla(®)], |=(t)] > M, teR. (23)

Set
Ey={t:|z@t)| > M, tel0,T}, (24)
Ey =10, T\ F4 (25)

and
p = max, iy, g(w)]. (26)
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Let e = ™=, By (21), (23), (24), (25), (26) and Lemma 2.2, we obtain

n— T n
12 Dlo < 5 [y [2%(s)|ds

2n—2

el 2« i)z @) + gt — r()))] + |p(t)[]dt

< [M2n 2||ff(2" Mo + Map—s||z®=|o + - - - + Ma||z@|[o + M;[|zV]]o
+Mo||z|[o] Afo lg(a(t — 7(2)))]dt + 2L |pllo
< FMap 0% + Moy 3(5)> + -+ - + My(5)> % + My(5)> 2|2 Do+

+Z Mo||z]lo + 3] s, lg(a(t = 7(@)ldt + [ |g(x(t —7(t)))|dt] + Zlpllo
< A2 Vo + L(My +r +2)||z|[o + ZC

| /\

= A*ZL‘ (2n-1) ||0 + Z(ZMO +7r+ m0)||x||0 + %C,
where C' = (p + ||p||o) and
A = [MZn—Z(

T
2
oo My

)? + My, 3(%)?
3+ My(
Now from (27), we have
2@ Dlo < (1 = A) [T (2Mo + 1+ mo)|[z[Jo + FC].
On the other hand, from (21) and Lemma 2.3, we get
(=2 (1)

= [y G1(t, t)A[(Man_z — azu—a(t:))z@" =2 (t1) + p(t1)

2n—3

—g(z(t — 7(t1)))]dt, — Afo Gi(t, 1) Y ai(t))z®(t))]dty,

=0
where a; = /AMs,_s, and

wi(T+t—t), (k—1)T<t<t, <kT, (keN),
with ;
cos a1 (t—5
wi(t) = ﬁiaﬁ)
and

[T Gt t)dt = 5

Maon—2"

(27)

(28)

(29)

(31)

(32)
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From (29) and Lemma 2.3, we have

2= (1)
=\ f) Ga(t,tr) fy Gilty, ta)[p(t2) — gla(t — 7(t2)))]dbadty
X[ Gty ty) [ Grlt, ta) (Man—s — asn-s(ts)) = (ts)dtsdty

+ fOT GZ(t, tl) [%x@n—@ (tl) - A fOT Gl(tl, tz)(lzn_4 (t2)$(2n74) (tg)dtg]dtl
2n—5

XS Golt, ) [ ity o) Y ai(t)z () + agn_s(ta)x@n=3) (to)]dtadty,
=0
where a9 = %;:_4 and

Golt, ts) =

with
cos ag (t— L)
2( ) 2aig sin #
and

[ Golt, to)dty = Menz2,

Maop—4

By induction, we have

= Afo n(t 1) fo Gi(tn_1,t)[p(tn) — g(x(t, — 7(t,)))]dt, - - - dty
+A fo w(t ) fO Gi(tn-1,tn)(Map_o — agp_o(t,))x@=2(t,,)dt,, - - - dt;
+ Gt ) [ Galtuo tn- 1)[%2" A=t () -
A Gty tn)as, gz (t,)dt,)dt, s - - dty
+fo t tl fo G3 n—3; tn— 2)[%? 6$(2n_6)<tn72)_
A Galta-aitar) Jif Gilta-1,ta)asn—e62®"0) (t,)dtudty1]dt, s - - dty
NI
+ [ Gt t)[B2a(t) = A Jyf Gui(tito) [ Goa(ta, ts)

"fo Gl(tnflv )QO( )T (tn)dty, - - - dto]dty

n—1
LGt t)) - [ G(tn1, )Y apr (tn) 1 (8,)]dt,, - - - dty
k=1
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where a; = ”1\%2%;212 (2<i<mn), and

Gi(t 1) = (38)
wi(T+t—t;), (k—1DT<t<t;<kT, (k€ N),
with .
U}Z<t) _ c;;az(t §T) (39)
and
Jo Gilt,t)dt; = =22 (2 < <), (40)

From (32), (37), (40) and Lemma 2.2, we obtain

||[[o
< maxeez) A S, [Gult 1) Ji 1GL(tue1, t)[p(t) — g(2(tn — 7(ta)))]dty - dty

+maxiefor] A fp, |Gn(t, t1) -~-f0 |G1(tn—1,t0)||p(tn) — g(x(tn — 7(tn)))|dty, - - - dt1+
maxeior Ay |Gt t)] -+ [} 1G1 (tnmrs tn)[(Mimy — @ (8)) 2@ D (8, |dt, - - - ity
+maxiepor) [y |Gult, )]+ f) 1Ga(tnoa, tuot) || 522220 (¢, 1) —

A fo Gi(tn-1,tn)an_ox = (t,)dt,|dt,_y - - - di

+maxien) fy |Galt, 1)+ [ 1Gstas, ta- )| =2 (¢, p) —

A fo Go(tno,tn_1) fo G1(tn-1,tn)|an_sx@ =9 (t,)dtndt,_1|dty_g - - - dt;

NIRRT

+maxee) fy |Galt,t)[[22a(ty) = A [ Guoi(ti b)) [y Guoalta, ts)

f Gl( n— 1, )(lo(tn)l'(tn)dtn e dt2|dt1

Fmaxgeor Ay [Galt, )] fi Grltni,t )\[Z g1 (tn)x =V (t,)]|dt, - - - dt
< 3 llpllo + p+ (r +o)l|z[lo] + 572z ]o + 5 [(Man—a — map—2)[|2")||o
H(Man—g — man—a) [ Vg 4 - - - + (My — mg)||22]]]

My |Jz Mo + Ma|la® o + - - - + Map_5|[2®"=][]

10 (O 4 (Mo —mo + 7+ )| |z]Jo] + 3 [Mi(5)*" 7% + (Mz — ma) ()™

FMa(5)P A (M —ma) (5)77° 4 - 4 Moy 3(5)?

+(Mayp—o — m2n—2)5]||$ 2nil)HO-

+irl
<

(41)
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Now (41) and € = ™= give

lzlo < AP (42)

(mo—r)
where
B = M(5)*? +(My—ma)(5)" % + Ms(5)*~* + (Mg — ma)(5)
bt Maypg(Z)2 + (Mapy_y — mgy_) T
and My, = maxecjo,r) |aok—1(t)] (F=1,2,---n—1).
Thus combining (27) and (42), we see that

(A . 2Mo+mo+rB)||x(2n—1)||O

IA

e ( 2Mo+mo+r + 1)

2(mo—r) 2 (mo—r)
(43)
_ (Mo+mo)TC
— (mo—r)
where A =1— A*.
From (42) and (43), we have
(2n—1) < Motmo)TC (4 2Motmotr g1
z 0 - mo—T mo—rTr
lo@rly < GbmolTC 4 _ 2iotmur ) "
- D2n—1
and 2(BDyy 1+ C)
1+
< 2 = D,. 45
lello < =2 = g (45)
Finally from (44), (45) and Lemma 2.2, we get
|2Dg < D; (1 <i<2n—2). (46)

The proof of Lemma 2.4 is complete.

Proof of Theorem 2.1. Suppose that x(t) is a T-periodic solution of Eq.(21). By
Lemma 2.4, there exist positive constants D; (i =0, 1,---,2n — 1) which are indepen-
dent of A such that (22) is true. By (3), we know that there exists a My > 0, such
that

sgn(z)g(z(t)) >0, |z(t)] > My, te€R.

Consider any positive constant D > maxg<j<an_1{D;} + M.
Set

Q:={xre X :|z|| <D}
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We know that L is a Fredholm mapping of index zero and N is L-compact on €2 (see

[3])
Recall

Ker(L)={z € X :z(t) =c€ R}
and the norm on X is
||| = maxo<j<on—1 maxsefo,7| |29 (¢)].

Then we have

r=D or x=-D for x€dn Ker(L).

From (3) and (47), we have (if D is chosen large enough)
ao(t)D + g(D) — [Ipllo > 0 for t € [0, 7]

and
D) =0, VeedQnKer(L)(i=1,2,---,2n—1).
Finally from (5), (9) and (47)-(49), we have
2n 2

(QNw) =7 fy [= X a()a(t) - g(a(t — 7(1))) + p(t)]dt

— LT ao‘w () + gla(t — (1)) — p(t)]dt
#0, Vaeddn Ker(L).

Then, for any x € KerL N9 and n € [0, 1], we have

aH(z,n) =-na®— 5 fo 2 () D (t) + g(x(t — 7(t))) — p(t)]dt
#0.
Thus

deg{QN,QN Ker(L),0} = deg{—% fo AOQ ()2 (1)
+g(z(t —7(t))) — p(t)]dt, QN Ker(L),0}
= deg{—z,Q2N Ker(L),0}

£0.

(47)

(48)

(49)

From Lemma 2.4 for any x € 92 N Dom(L) and A € (0,1) we have Lz # ANxz. By
Theorem 1.1, the equation Lz = Nz has at least a solution in Dom(L) N €2, so there

exists a T-periodic solution of Eq.(1). The proof is complete.
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