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Abstract

Given appropriate growth conditions for f and a uniqueness assumption on
y(n) = 0 with respect to certain (k; j) point boundary value problems, it is shown
that uniqueness of solutions to the nonlinear differential equation

y(n) = f(t, y, y′, . . . , y(n−1)),

subject to nonlinear (k; j) boundary conditions of the form

gij(y(tj), . . . , y
(n−1)(tj)) = yij,

implies existence of solutions.
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1 Introduction

In this paper, we will consider the differential equation, n ≥ 3,

y(n) = f(t, y, y′, . . . , y(n−1)), a < x < b. (1)

We begin by defining an apppropriate linear point boundary condition. Given 1 ≤ j ≤
n−1 and 1 ≤ k ≤ n− j, positive integers m1, . . ., mk such that m1 + · · ·+mk = n− j,
points a < x1 < · · · < xk < xk+1 < · · · < xk+j < b, real numbers yil, 1 ≤ i ≤ ml,
1 ≤ l ≤ k, and real numbers yn−j+l, 1 ≤ l ≤ j, a boundary condition of the form

y(i−1)(xl) = yil, 1 ≤ i ≤ m, 1 ≤ l ≤ k,

y′(xk+l) = yn−j+l, 1 ≤ l ≤ j,
(2)
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will be referred to as a linear (k; j) point boundary condition, and a condition of the
form

gil(y(tl), . . . , y
(n−1)(tl)) = yil, 1 ≤ i ≤ m, 1 ≤ l ≤ k,

gkl(y(tk+l), . . . , y
(n−1)(tk+l)) = yn−j+l, 1 ≤ l ≤ j,

(3)

will be referred to as a nonlinear (k; j) point boundary condition. If

gil(x0, x1, . . . , xn−1) = xi−1

for 1 ≤ i ≤ m, 1 ≤ l ≤ k, and if

gkl(x0, x1, . . . , xn−1) = x1

1 ≤ l ≤ j, then the nonlinear (k; j) boundary conditions become linear (k; j) boundary
conditions. Our interest in these boundary conditions is stimulated by recent work by
Eloe and Henderson in [6].

Moreover, it will be assumed that for xp ≥ 0, xp ≤ gpl(x0, x1, . . . , xn−1), and for
xp < 0, gpl(x0, x1, . . . , xn−1) ≤ xp, for all p and l. We will refer to this property by saying
the nonlinear (k; j) condition dominates the linear (k; j) condition. Let (x0, . . . , xn−1)
denote a vector in Rn. If h : R → R is an odd continuous function and k : Rn → R is
any continuous positive function, then gil(x0, . . . , xn−1) = xi−1+h(xi−1)k(x0, . . . , xn−1),
1 ≤ i ≤ m, 1 ≤ l ≤ k and gkl(x0, . . . , xn−1) = x1 + h(x1)k(x0, . . . , xn−1), 1 ≤ l ≤ j, is
an example of such a boundary condition satisfying the property.

Our goal will be to establish uniqueness implies existence results for (1), (2) and
(1), (3). Our standing assumptions for this paper are the following.

(A1) f : [a, b] × Rn → R is continuous.

(A2) Solutions of initial value problems for (1) are unique and extend across the interval
[a, b].

Later, in the statements of our main theorems, growth conditions will be placed on
the function f.

Results concerning uniqueness implies existence have been considered by authors for
many types of boundary conditions. For several examples of these types of arguments
as applied to conjugate, focal, or Lidstone problems, see [2]-[9] and the references cited
within. Eloe and Henderson obtained existence and uniqueness results for non-local
boundary value problems in [5]. Some papers in which nonlinear boundary conditions
have also been studied include Abadi and Thompson [1] and Thompson’s studies of
fully nonlinear problems in [14]-[16]. Schrader [17] and Ehme, Eloe, and Henderson [4]
considered various problems with non-linear boundary conditions. In this paper, we
will establish uniqueness implies existence results for nonlinear linear (k; j) problems.
These new results will yield as special cases the linear (k; j) problems in [6].
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2 Preliminary Results

By ordering the linear (k; j) boundary conditions (2) in some order, we may denote
these conditions by Li(y), where 1 ≤ i ≤ n. Likewise, we can label the nonlinear (k; j)
boundary conditions (3) as Si(y) by using the same ordering as in the linear conditions.
We obtain |Li(y)| ≤ |Si(y)|, for all i, because we have assumed the nonlinear condition
dominates the linear condition.

Next, we define ϕ : Rn → Rn by

ϕ(c0, c1, . . . , cn−1) = (S1(y(t, c0, . . . , cn−1)), , . . . , Sn(y(t, c0, . . . , cn−1))), (4)

where y(t, c0, . . . , cn−1) denotes the unique solution of the initial value problem

y(n) = f(t, y, y′, . . . , y(n−1)),
y(i)(t0) = ci, 0 ≤ i ≤ n − 1.

and t0 is a fixed point in (a, b).
The following representation theorem will be indispensable. For completeness, we

state and prove this result here.

Theorem 2.1 (Representation Theorem). Let u(t) ∈ C(n)[a, b]. Assume solutions
of y(n) = 0 satisfying Li(y) = 0, i = 1, . . . , n, are unique when they exist. Then

u(t) = L1(u)p1(t) + L2(u)p2(t) + · · ·+ Ln(u)pn(t) +

∫ b

a

G(t, s)u(n)(s) ds,

where pj is a polynomial of degree less than or equal to n − 1, Li(pj) = δij, where
δij is the Kronecker delta, and G(t, s) is the Green’s function for y(n) = 0 satisfying
Li(y) = 0.

Proof. Let pj denote the unique solution of

{

y(n) = 0,
Li(y) = δij, for i = 1, . . . , n.

The existence of the Green’s function implies such pj’s exist. Clearly, pj is a poly-
nomial with a degree at most n − 1, and Li(pj) = δij . Next, let

w(t) = u(t) − L1(u)p1(t) − L2(u)p2(t) − · · · − Ln(u)pn(t) −

∫ b

a

G(t, s)u(n)(s) ds.

Then w(n)(t) = u(n)(t) − L1(u) · 0 − · · · − Ln(u) · 0 − u(n)(t) = 0. Thus, using the fact
that

Li

(
∫ b

a

G(t, s)u(n)(s)ds

)

= 0,
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we obtain

Li(w) = Li(u) − L1(u)Li(p1) − · · · − Ln(u)Li(pn) − 0

= Li(u) − Li(u)

= 0.

By uniqueness of of solutions of y(n) = 0, Li(y) = 0, it follows that w(t) = 0. This
completes the proof.

We next establish that solutions depend continuously on the boundary values.

Theorem 2.2 (Continuous Dependence). Assume (A1) and (A2), and suppose solu-
tions to (1), (3) are unique when they exist. Then, given a solution y0 of (1), (3), and
ε > 0, there exists δ > 0 such that if |Si(y0) − ri| < δ, i = 1, . . . , n, then there exists

a solution z of (1) such that Si(z) = ri, for i = 1, . . . , n, and |y
(i)
0 (t) − z(i)(t)| < ε,

i = 0, . . . , n − 1.

Proof. Let ϕ be defined as in (4). If ϕ(~c1) = ϕ(~c2), then this implies Si(y(t,~c1)) =
Si(y(t,~c2)), i = 1, 2, . . . , n. Our uniqueness assumption on the nonlinear boundary
value problems implies that y(t,~c1) = y(t,~c2), for all t, including t0. But, this implies
~c1 = ~c2 because solutions of initial value problems are unique, and, hence, ϕ is one-to-
one. The results now follows from the Brouwer Theorem on Invariance of Domain and
the fact that solutions depend continuously on initial conditions.

We note that the previous theorem also establishes that ϕ is continuous. As the
linear (k; j) problems are special cases of the nonlinear (k; j) problems, the above
theorem also establishes continuous dependence for the linear (k; j) problems.

Lemma 2.1. If ϕ is onto, then solutions to (1), (3) exist for all choices of yil.

The proof of this lemma follows immediately from the definition of φ.

3 Main Results

We now in a position to state our first main theorem.

Theorem 3.1. Assume (A1) and (A2), and solutions to (1), (3) are unique when they
exist. Assume solutions to the linear problem y(n) = 0, Li(y) = 0, i = 1, . . . , n, are
unique when they exist. Also assume

|f(t, y1, . . . , yn)|

[max{|y1|, . . . , |yn|}]
p ≤ M,

for some M > 0 and for all (y1, . . . , yn) ∈ Rn such that |(y1, . . . , yn)| > R, for some
R > 0, 0 < p < 1. Then solutions to the nonlinear (k; j) problem (1), (3) exist for all
choices of boundary values.
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Proof. Assume ϕ : Rn → Rn is defined as in (4). Theorem 1.1 implies the image of ϕ

is open. The image of ϕ is clearly non-empty. To complete the proof we will show the
image of ϕ is both open and closed which will imply the image is Rn, and hence the
mapping ϕ is onto. By Lemma 1.3, we will obtain existence of solutions to (1), (3).

First, suppose there exists a sequence ~ck ∈ Rn such that ϕ(~ck) → y0. If < ~ck >

is bounded, then there exists a convergent subsequence < ~ckl
>. Suppose ~ckl

→ ~c0

for some ~c0 ∈ Rn. Then, the continuity of ϕ implies ϕ(~ckl
) → ϕ(~c0), which implies

y0 = ϕ(~c0). And, hence, the image of ϕ is closed.
We may now assume ϕ(~ck) → y0 and |~ck| → ∞. Let ~ck = (c0k

, c1k
, . . . , cn−1k

).

Since y
(i)
n (t,~ck) is continuous in t for 0 ≤ i ≤ n − 1, there exists tk ∈ [a, b] such

that |y(ik)(tk,~ck)| = max
{

‖y(t,~ck)‖, . . . , ‖y
(n−1)(t,~ck)‖

}

for some ik ∈ {0, . . . , n − 1}.
Since 0 ≤ ik ≤ n − 1 and each ik is an integer, there exists a subsequence of the
ik that is constant. By choosing this subsequence, we may assume |y(j)(tk,~ck)| =
max ‖y(t,~ck)‖, . . . , ‖y

(n−1)(t,~ck)‖, for all k and some fixed j. Applying our Represen-
tation Theorem, we have

y(j)(tk,~ck) = L1(y(t,~ck))p
(j)
1 (tk) + · · ·+ Ln(y(t,~ck))p

(j)
n (tk)

+

∫ b

a

∂(j)G

∂tj
(tk, s)f(s, y(s,~ck), . . . , y

(n−1)(s,~ck))ds.

This will then give us

y(j)(tk,~ck)

[max {‖y(t,~ck)‖, . . . , ‖y(n−1)(t,~ck)‖}]
p =

L1(y(t,~ck))p
(j)
1 (tk)

[max {‖y(t,~ck)‖, . . . , ‖y(n−1)(t,~ck)‖}]
p

+
...

+
Ln(y(t,~ck))p

(j)
n (tk)

[max {‖y(t,~ck)‖, . . . , ‖y(n−1)(t,~ck)‖}]
p

+

∫ b

a

∂(j)G

∂tj
(tk, s)

f(s, y(s,~ck), . . . , y
(n−1)(s,~ck))

[max {‖y(t,~ck)‖, . . . , ‖y(n−1)(t,~ck)‖}]
pds. (5)

As

|y(j)(tk,~ck)| = max
{

‖y(t,~ck)‖, . . . , ‖y
(n−1)(t,~ck)‖

}

≥ max{|c0k
|, |c1k

|, . . . , |cnk−1|} → ∞

and p < 1, we see that

|y(j)(tk,~ck)|

[max {‖y(t,~ck)‖, . . . , ‖y(n−1)(t,~ck)‖}]
p = |y(j)(tk,~ck)|

1−p → ∞

We will obtain a contradiction by showing the right hand side of (5) is bounded. By
assumption ϕ(~ck) → y0 implies < ϕ(~ck) > is a bounded sequence. From the definition
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of ϕ(~ck), we obtain each of its component functions Si(y(t,~ck)) is bounded. By our
dominance assumption, |Li(y(t,~ck))| ≤ |Si(y(t,~ck))|, we obtain that Li(y(t,~ck)) are all
bounded.

Moreover,
∫ b

a

∣

∣

∣

∣

∂(j)G

∂tj
(tk, s)

∣

∣

∣

∣

·

∣

∣

∣

∣

f(s, y(s,~ck), . . . , y
(n−1)(s,~ck))

[max {‖y(t,~ck)‖, . . . , ‖y(n−1)(t,~ck)‖}]
p

∣

∣

∣

∣

ds ≤

∫ b

a

∣

∣

∣

∣

∂(j)G

∂tj
(tk, s)

∣

∣

∣

∣

Mds,

which is clearly bounded.This implies the right hand side of (5) is bounded, which is a
contradiction. Hence, |~ck| 9 ∞. This yields the image of ϕ is closed and the proof is
complete.

If the gil are actually linear (k; j) boundary conditions, then we obtain the following
special case of results recently proved by Eloe and Henderson in [6] using completely
different techniques.

Theorem 3.2. Assume (A1) and (A2), and solutions of (1), (2) are unique when
they exist. Assume solutions of the linear problem y(n) = 0 satisfying Li(y) = 0, i =
1, . . . , n, are unique when they exist. Also assume

|f(t, y1, . . . , yn)|

[max{|y1|, . . . , |yn|}]
p ≤ M,

for some M > 0 and for all (y1, . . . , yn) ∈ Rn such that |(y1, . . . , yn)| > R, for some
R > 0, 0 < p < 1. Then solutions to the linear (k; j) boundary problem (1), (2) exist
for all choices of boundary values.

The hypotheses on f in Theorem 3.1 are satisfied by any bounded function f . In
addition, any unbounded function f such that

|f(t, y1, . . . , yn)| ≤ α1y
p1
1 + · · · + αny

pn

n ,

where αi ≥ 0, 0 < pi < 1, i = 1, ..., n, for all (y1, . . . , yn) ∈ Rn such that |(y1, . . . , yn)| >

R, for some R > 0 will also satisfy the hypothesis of Theorem 3.1.
We will now consider the case when pi = 1, i = 1, ..., n. This case is satisfied by

functions f that are bounded by linear functions. That is,

|f(t, y1, . . . , yn)| ≤ α1|y1| + · · ·+ αn|yn|,

for appropriate αi ∈ R+ and for all (y1, . . . , yn) ∈ Rn such that |(y1, . . . , yn)| > R, for
some R > 0.

Theorem 3.3. Assume (A1) and (A2), and solutions to (1), (3) are unique when they
exist. Assume solutions of y(n) = 0 satisfying Li(y) = 0, i = 1, . . . , n, are unique. Also
assume there exists an α such that

|f(t, y1, . . . , yn)|

max{|y1|, . . . , |yn|}
< α <

1

maxl∈{0,1,...,n−1}

{

maxt∈[a,b]

{

∫ b

a
∂(l)G
∂tl

(t, s)ds
}}
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for all (y1, . . . , yn) ∈ Rn such that |(y1, . . . , yn)| > R, for some R > 0. Then solutions
to (1), (3) exist for all choices of boundary values.

Because the proof of Theorem 3.3 is similar to the proof of Theorem 3.1, we provide
a sketch of the proof.
Sketch of Proof. Building on our work in the proof of Theorem 3.1, it suffices to
consider the equality

y(j)(tk,~ck) = L1(y(t,~ck))p
(j)
1 (tk) + · · ·+ Ln(y(t,~ck))p

(j)
n (tk)

+

∫ b

a

∂(j)G

∂tj
(tk, s)f(s, y(s,~ck), . . . , y

(n−1)(s,~ck))ds,

where |y(j)(tk,~ck)| = max
{

‖y(t,~ck)‖, . . . , ‖y
(n−1)(t,~ck)‖

}

, for all k, as in the proof of
Theorem 3.1. As before, |Li(y(t,~ck))| ≤ |Si(y(t,~ck))|, for all i and all k, and hence the
|Li(y(t,~ck))| are bounded. Thus,

y(j)(tk,~ck)

max {‖y(t,~ck)‖, . . . , ‖y(n−1)(t,~ck)‖}
=

L1(y(t,~ck))p
(j)
1 (tk)

max {‖y(t,~ck)‖, . . . , ‖y(n−1)(t,~ck)‖}
+ · · ·

+
Ln(y(t,~ck))p

(j)
n (tk)

max {‖y(t,~ck)‖, . . . , ‖y(n−1)(t,~ck)‖}

+

∫ b

a

∂(j)G

∂tj
(tk, s)

f(s, y(s,~ck), . . . , y
(n−1)(s,~ck))

max {‖y(t,~ck)‖, . . . , ‖y(n−1)(t,~ck)‖}
ds. (6)

Then, max
{

‖y(t,~ck)‖, . . . , ‖y
(n−1)(t,~ck)‖

}

→ ∞, as k → ∞, and as before,

Li(y(t,~ck))p
(j)
i (tk)

max {‖y(t,~ck)‖, . . . , ‖y(n−1)(t,~ck)‖}
→ 0.

By construction,

∣

∣

∣

∣

y(j)(tk ,~ck)

max{‖y(t,~ck)‖,...,‖y(n−1)(t,~ck)‖}

∣

∣

∣

∣

= 1, for all k. However,

∣

∣

∣

∣

∫ b

a

∂(j)G

∂tj
(tk, s)

f(s, y(s,~ck), . . . , y
(n−1)(s,~ck))

max {‖y(t,~ck)‖, . . . , ‖y(n−1)(t,~ck)‖}
ds

∣

∣

∣

∣

≤

∫ b

a

∣

∣

∣

∣

∂(j)G

∂tj
(tk, s)

∣

∣

∣

∣

·

∣

∣

∣

∣

f(s, y(s,~ck), . . . , y
(n−1)(s,~ck))

max {|y(t,~ck)|, . . . , |y(n−1)(t,~ck)|}
ds

∣

∣

∣

∣

≤

∫ b

a

∣

∣

∣

∣

∂(j)G

∂tj
(tk, s)

∣

∣

∣

∣

· α ds < 1,

from our assumption on α. We see the right hand side of (6) is eventually less than 1
in an absolute value, which is a contradiction.

Applying Theorem 3.3 to linear (k; j) boundary value problems yields the following
theorem.
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Theorem 3.4. Assume (A1) and (A2), and solutions to (1), (2) are unique when they
exist. Assume solutions of y(n) = 0 satisfying Li(y) = 0, i = 1, . . . , n, are unique. Also
assume there exists an α such that

|f(t, y1, . . . , yn)|

max{|y1|, . . . , |yn|}
< α <

1

maxl∈{0,1,...,n−1}

{

maxt∈[a,b]

{

∫ b

a
∂(l)G
∂tl

(t, s)ds
}}

for all (y1, . . . , yn) ∈ Rn such that |(y1, . . . , yn)| > R, for some R > 0. Then solutions
to (1), (2) exist for all choices of boundary values.
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