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Abstract. This paper presents solutions to the following product-type second-order
system of difference equations

a c f
Yn Zn Xn
Xn+1 = b s Yny1 = 4 ’ Zp+1 = g ne NO/
Zn—1 Xn-1 Y-

where a,b,c,d,f,g € Z,and x_;,y_;,z_; € C\ {0}, i € {0,1}, in closed form.
Keywords: solvable system of difference equations, second-order system, product-type
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1 Introduction

Recently there has been some renewed interest in solving difference equations and systems of
difference equations and their applications (see, e.g., [1-4,7,8,14,18,20,23-38,41-45]), especially
after the publication of note [18] in which a method for solving a nonlinear difference equation
of second-order was presented. Since the end of the 1990s there has been also some interest in
concrete systems of difference equations (see, e.g., [8-13,15-17,23,24,26-28,30-40, 42,43, 45]).
In the line of our investigations [5,6,19,21,22] (see also the references therein) we studied the
long-term behavior of several classes of difference equations related to the product-type ones.
Somewhat later we studied some systems which are extensions of these equations [39,40].
Long-term behavior of positive solutions to the following system

%Z Zh xh
Xp11 = max {c, o7 }, Yn+1 = max {c, xp}' Zp4+1 = Max {c, p}, (1.1)

n—1 n—1 ynfl
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n € Ny, with positive parameters ¢ and p, was investigated in [40]. Note that system (1.1) is
obtained by the action of the max-type operator m,(s) = max{c,s} on the right-hand side of
the following product-type system of difference equations

yZ Zﬁ xZ
Xnt1 = p’ Yn+1 = P’ Zp4+1 = 7 n € INp. (1.2)
Zn—l xn—l n—1

An interesting feature of system (1.2) is that it can be solved in closed form in the case of
positive initial values. Namely, a simple inductive argument shows that in this case

min{x,, yn, z,} >0, foreveryn > —1.

Hence, it is legitimate to take the logarithm of all the three equations in (1.2) and by using the
change of variables

U, = Inx,, v, = Iny,, w, =Inz,, n> -1, (1.3)
the system is transformed into the following linear one

Up+1 = POn — PWp-1
Up1 = PWy — Plp—1 (1.4)

Wp+1 = pln — pUp—1, 1 € No.

Using the third equation of (1.4) in the first and second ones we obtain the following system
of difference equations

Un1 = PUn — PPUin_2 + P* 03 (1.5)
Upt1 = (p2 — p)un,l — p20n_2, ne No. (16)

Using (1.6) in (1.5) we get
Unss — (PP = 3p%)vn + pPon3 =0,  n €Ny (1.7)

This is a linear difference equation which can be solved in closed form, from which along with
(1.6) and the third equation in (1.4) closed form formulas for u,, v, and w, are obtained, and
consequently by using (1.3) we obtain formulas for x,, y, and z,. We leave the details to the
reader as a simple exercise.

A natural question is whether system (1.2) can be solved in closed form if initial values
X_i,Y—i,z—i, i € {0,1}, are complex numbers and for which values of parameter p.

Motivated by all above mentioned and by our recent paper [37], here we will study the
solvability of the following system of difference equations

a c f
Y z Xy
x”+1 = bn s yl’l-‘rl = dl’l 7 Zi’l-‘rl — I3 ’ ne ]NOI (18)
anl xnfl n—1

where a,b,¢,d, f,g € Z, and when initial values x_;,y_;,z_;, i € {0,1}, are complex numbers
different from zero (it is easy to see that a solution to the system is well-defined if and only
if all initial values are different from zero). We present a constructive method for solving the
system. Condition a,b,c,d, f, g € Z is naturally posed, in order not to deal with multi-valued
sequences.
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2 Main result

Here we present our main result in this paper.

Theorem 2.1. Consider system (1.8) with a,b,c,d, f,g € Z. If x_;,y_i,z—; € C\ {0}, i € {0,1},
then the system is solvable in closed form.

Proof. Let
a = 4a, blzbl 1 =¢ dlzd/ flzf/ g1 =8 (21)

By using the equations in (1.8) we obtain

Clllfbl az

1 z z
xn+1 = yl’l = 11—1 = n—l/ (22)
bl dll] bz
Zn—1 ) Xn_2
c fei—dy 2
- an . xnfl o xnfl 23
Yn+1 = 4 8a T 4 (2.3)
X1 Yn—2 Y2
fi af1—g81 f2
2 _ Xn Y1 _ Y1 (2 4)
n+1l — g1 - bfl - Zgz ’ .
Y- Z, o n—2

where we define ay, by, ¢2, d2, f> and g as follows

ap = cay — bl, bz = d&ll, Cy = fC1 — d], dz = gc, fz = ﬂf] — 81, &= bfl

By using (2.2), (2.3), (2.4) and the equations in (1.8), it follows that

a» far—bo a3
o Zn—l _ xn—Z o xn—Z
Xn+1 = b - ga — b s (25)
2 y 2 3
n—2 n—3 Yu_s
c2 acy—ds 3
o xn—l _ yn—Z o yn—Z (2 6)
yi’H—l - dz - bCz - d3 4 '
Y2 Zn-3 Zn—3
f2 cfra—go f3
z _ yn—l _ Z?’l—z _ Zi’l—Z (2 7)
n+1 — Zg2 - dfz - xgs ’ .
n—2 X, 3 n—3

where we define a3, bs, c3, d3, f3 and g3 as follows

az .= fa;;_ — bz, b3 =gz, C3:=4cy — dz, d3 = bCz, f3 = Cf2 — &, 83:= dfz.

By using (2.5), (2.6), (2.7) and the equations in (1.8), we further get

as aa3fb3 a4
x . xnfz . yn73 o yn73 (2 8)
N N A :
ynfS Zn—4 Zn—4
C3 CC3*d3 Cy4
o yn72 . an?) . an?) (2 9)
Yni1= 50— = " a T T4 :
Zy-3 Xn_a Xn_a
f3 ff—83 fa
2 . anZ o xn73 . xnf?a (2 10)
n+l — xg3 - <f3 - g1 .
n—3 Y, 4 Yn-a
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where we define ay, by, ¢4, dy, f4 and g4 as follows

asg = aas — b3, b4 = ba3, Cq = CC3 — d3, d4 = dC3, f4 = ff3 — 93,

84 = gfs.
Let
azk—1 C3k—1 fak—1
P Zy_3k42 _ Xy 3kt2 . Yu—3k+2
n+l — by Yn41 = Ay’ n+1 Zg3k71 ’
n—3k+1 n—3k+1 n—3k+1
where

A3k—1 := CaAzk—2 — bak_p,  b3r_q := dag_o, Cak—1 = fCak—n — d3k_2,

dzk_1 = gC3k—2, fak—1:=afsk—2 — g3k—2,  3k—1 := bfs—2,

a3k

C3k fak
X3kt ~ Yaskn _ Zu 3kt
Xntl = —5— Yn+1 = —F— Zn+l = — g v
3k z 3k X
Y3k n—3k n—3k
where
azr = fask—q1 — bayk—1,  bzk = gazc_1, Cak 1= ac3k—1 — dzk—1,
day 1= besk—q, f3k = CfSk—l — 83k—1/ 83k = dfak-p
a3k+1 SCoke1 xf3k+1
X _ yVl—3k _ n—3k z _ n—3k (2 11)
n+l — Zb3k+1 ’ Yni1 = xd3k+1 ’ n+1l = Tonn .
n—3k—1 n—3k—1 n—3k—1
where

A3k41 = aaz — bay,  bagyq = bagy, Cak41 := CC3k — dai,

daky1 = dcsy, fak+1 = ffak — &3k $3k+1 = &f3ks
for some k € IN such that n > 3k.

From the relations in (2.11) and by using the equations in (1.8) we obtain

A3k4+1 cazy1—baks1

A3k42
P Yn-3k _ Zn-3k1 _ Zn-8k-1 2.12)
ntl Zb3k+1 xd‘l3k+1 xb3k+2 ! ’
n—3k—1 n—3k—2 n—3k—2
FC3k+1 feskr1—dzki1 C3k42
o n—3k _ “n—-3k-1 _ 'n-3k-1
Yl = "3 T ygc3k+1 T s (2.13)
X 3k—1 n—3k—2 Yi—3k—2
farr1 af3ki1—83%k+1 fars2
z _ xn*?)k _ yn*?)k*l _ yl’l*3k*1 (2 14)
N bf3ism T 8k 7 :
Y3k Z, k2 n—3k—2

where we define asii2, bski2, 312, A3k+2, fak+2 and gsry2 as follows

A3k42 i= CAzk1 — bakp1, D3y i=

dagii1,
d3k42 = §C3k+1, faks2 =

Cak42 := fCak1 — d3kt1,
afses1 — &3k+1,  §3k+2 = Dfzrsa.
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By using (2.12), (2.13), (2.14) and the equations in (1.8), it follows that

S3k+2 faski2—b3ky2 53
x n—3k—1 _ “n—-3k-2 n—3k—2
LT e, yg“3k+2 T bxgs
n—3k—2 n—3k—3 Yiu-3k—3
5§ C3k+2 acsy2—dsky2 C3k+3
y _ n—3k—1 n—3k—2 _ n—3k—2
n+l d3ii2 SbCar2 S3k+3
n—3k—2 n—3k—3 n—3k—3
fak+2 ZCf 342~ 83k+2 Zf 3k+3
. Yu-3sk-1 _ *n—3k2 _ Zn—3k—2
n+tl Sak+2 dfaks2 T 83k13
n—3k—2 X, 3k_3 n—3k—3

where we define as3, bski3, C3k+3, A3k+3, f3k+3 and gzry3 as follows

a3k4+3 1= fazki2 — bapyo,

d3ki3 := bearp, f3k+3 :

bakys 1=

8a3k+2,

Cf 3k+2 — 83k+2s

(2.15)

(2.16)

(2.17)

Cak43 1= AC3k12 — d3k42,
$3k+3 1= df3rs2-

By using (2.15), (2.16), (2.17) and the equations in (1.8) we further get

a3k+3 aasgy3—baky3 A3k+4
P n-3k—2 _ Yn-3k-3 _ Yu-3k-3
ntl b3y Zbﬂ3k+3 Zb3k+4
n—3k—3 n—3k—4 n—3k—4
C3k+3 CC3k13—d3k43 C3k+4
_ Yusk2 _ Zn3k3 _ Zn3k3
Ynt1 Zd3k+3 desis xd3k+4
n—3k—3 n—3k—4 n—3k—4
fak+s ffak3—83k13 farra
o Zn-3k—2 _ *n-3k-3 _ Xu-3k-3
ntl = “Zs T gfakas —  Sak+s
n—3k—3 Yy ak_a Yi—3k—a

where we define asi 4, b3k ya, C3k14, d3kv4, farra and gaiy4 as follows

A3k44 := AA343 — b3ry3,

Aapra = dcspss,

bskt4 1= bagiys,

fak+a = ffak43 — $3k+3s

C3k+4

83k+4

(2.18)

(2.19)

(2.20)

= cC3k43 — A3k43,
Sf3k+3-

Hence, this inductive argument shows that sequences (4, )neN, (bn)nen, (€n)neN, (dn)neN,
(fn)nen, (§n)nen, satisfy the following recurrent relations

A3k42 = €azkr1 — bapy1, a3k4+3 = fazki2 — barya, A3k44 = AA3c43 — b3y, (2.21)
bskio = dazky1, bski3 = §a3k+2, b3kt4 = bazs, (2.22)
Cak+2 = fC3k+1 — d3k41, C3k43 = AC3k4+2 — d3k42, C3k44 = CC3k13 — d3k43, (2.23)
d3k12 = §C3k+1, d3k43 = bCsria, A3iq = dcspys, (2.24)
fak+2 = af3kr1 — $3k+1s fak+3 = Cf3kt2 — 3k+2/ fak+a = ffak43 — &3k43, (2.25)
$3k+2 = bfaist, 3k+3 = df3k42, $3k+4 = Sf3k+3s (2.26)
for k € INo.
From (2.12)—(2.20) we easily obtain
A3n+1 a3n42 3143
Yo Zy Xo
X = X = X = 2.27
3n+1 ij’”*l ’ 3n+2 xbjTZ ’ 3n+3 bj)?_3 7 ( )
Z(C)3n+1 x(C)3n+2 C3n43
Y3n+1 = dorir” Y3n42 = Y Y3n4+3 = Y (2.28)
X 1 Z
xf3n+1 Sfan+2 Zf311+3
0 0
Z3n+1 = “ganii’ Z3n+2 = E oy Z3n+3 = oy n € No. (2.29)

-1
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From (2.21) and (2.22) we have that

A3k42 = Cazki1 — bagy, ask+3 = f A3k42 — dazeiq, A3k+4 = AA3k43 — A3k+2,

k € Ny, (here we regard that ag = 1 if b # 0, due to the relation b3, 4 = bas,, 3 with k = —1).
Using the first equation in the second and third ones it follows that

A3pis — (¢f —d)azgs1 +bfasz =0, k € Ny, (2.30)
and
3ky4 — A3kt 3 + 8Azc+1 — bgask =0, k€ No. (2.31)
Using (2.30) into (2.31) it follows that
A3kr6+ (ad +bf + cg — acf)azg,s + bdgas, =0, k € Np. (2.32)
Relation (2.32) means that the sequence (a3 )ren, annihilate the linear operator
L(xn) = Xpi2 + (ad + bf +cg — acf)xn1 + bdgx,.

From this along with (2.30) it follows that sequence (as¢41)ren, annihilate the operator too.
Using these facts and the relation az.» = cazr.1 — bagy, it follows that that sequence (43142 ) ke,
also annihilate the operator. This along with the relations in (2.22) implies that sequences
(bskti)keny, i = 0,1,2, annihilate the operator too. Since sequences (czri2+i)ken, and
(d3kt2+i)keN,, thatis, (fakr1+i)ken, and (3k+1+i)keN,, i = 0,1,2, satisfy the relations in (2.21)
and (2.22) it follows that they also annihilate the operator.

Case b = 0. In this case we have that sequences (a3¢+;)keNy, (C3k+i)keNy (f3k+i)keN,, satisfy
the recurrent relation

Xp+1 = (acf —ad — cg)xy, n € IN.

From this and since a1 =4, ¢c1 =¢, fi = f, a0 =ac—b, co = cf —d, fp =af —g a3 =
acf —bf —ad, c3 = acf —ad —cg, f3 = acf —bf — cg, and by using the condition b = 0, it
follows that

azxy1 = a(acf —ad — cg)k, (2.33)
a3x40 = ac(acf — ad — cg)k, (2.34)
azxy3 = a(cf —d)(acf — ad — cg)¥, (2.35)
3 = clacf —ad — cg)k, (2.36)
Cakp = (cf —d)(acf — ad — cg)¥, (2.37)
Carss = (acf —ad — cg)**", (2.38)
faks1 = flacf —ad — cg)¥, (2.39)
fakra = (af —g)(acf —ad —cg)F, (2.40)

fara = c(af — g)(acf —ad —cg)*, k€ No. (2.41)
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Using (2.33)—(2.41) into (2.22), (2.24) and (2.26), as well as the condition b = 0, it follows

that

bak+1 =0,

bakyo = ad(acf — ad — cg)k,
bskss = acg(acf — ad — cg)k,
dyip1 = d(acf — ad — cg)¥,
dsgip = cglacf —ad — cg)k,

d3k+3 =0,
ak1 = cglaf — g)(acf —ad —cg)* ™,
Q3k+2 =0,

g3kr3 = d(af — g)(acf —ad — cg)k, k € Np.

(2.42)
(2.43)
(2.44)

Employing (2.33)-(2.50) into (2.27), (2.28) and (2.29) we obtain that the well-defined solu-

tions to system (1.8) in this case are given by the following formulas

a(acf—ad—cg)"

X3n+1 = Yo )
X3n42 = zgc(gcf_”d—cg)”x:tlzd(acf—ad_cg)n,

X3n43 = xg(cf_d)(”Cf—“d—cg)"y:o;cg(acf_ad_cg)n,

Y3n+1 = zg(ucf*”d*%’)”x:r;l(acffadfcg)n,

e AT

Y3ni3 = y(()acf_”d—cg)”“,

Z3n41 = xg(”cf—“d—cg)”y:ig(af—g)(aCf—ad_Cg)M,

Z3p42 = y(()af_g) (acf_”d—cg)”,

Znt3 = Zg(ﬂf_g)(acf_ad_cg)nx:f(“f—g)(acf—ad_cg)n’ .

(2.51)
(2.52)
(2.53)
(2.54)
(2.55)
(2.56)
(2.57)
(2.58)
(2.59)

Case d = 0. In this case we have that sequences (a3¢+)keNys (C3k+i)keNy (f3k-+i)keN,, Satisfy

the recurrent relation
Xpt1 = (acf —bf —cg)xy,, n € IN.

From this and since a1 = a,¢c1 =¢, i = f, a0 =ac—b, co = cf —d, fpr =af —g, a3 =
acf —bf —ad, c3 = acf —ad —cg, f3 = acf —bf — cg, and by using the condition d = 0, it

follows that

g1 = alacf —bf —cg)k,

342 = (ac —b)(acf —bf —cg),
a3c3 = f(ac —b)(acf —bf — cg)",
k1 = c(acf —bf — Cg)kr

Cakyn = cf (acf —bf —cg),

a3 = c(af — g)(acf — bf — Cg)k/
fakp1 = flacf —bf —cg)¥,

(2.60)
(2.61)
(2.62)
(2.63)
(2.64)
(2.65)
(2.66)
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fakra = (af —g)(acf —bf —cg)F, (2.67)
fakrs = (acf —bf — cg)k+1, k € No. (2.68)

Using (2.60)—(2.68) into (2.22), (2.24) and (2.26), as well as the condition d = 0, it follows
that

bsky1 = bf (ac — b)(acf — bf —cg)*, (2.69)
bak2 =0, (2.70)
bsys = glac —b)(acf — bf —cg), 2.71)
dk1 =0, (2.72)
dayra = cglacf —bf —cg), (2.73)
dars = bef (acf — bf —cg)F, (2.74)
8akt1 = glacf —bf —cg)’, (2.75)
gaki2 = bf (acf —bf —cg)¥, (2.76)
g3%3=0, k€& Ny. (2.77)

Employing (2.60)—(2.77) into (2.27), (2.28) and (2.29) we obtain that the well-defined solu-
tions of system (1.8) in this case are given by the following formulas

Xan1 = yg(aCf—bf—cg)” Z:llff(ac—b)(aCf—bf—cg)”‘ll (2.78)
Xanig = Z(()ac—b)(acf—bf—cg)”, (2.79)
Koy = @0 @ef ~bf ~cg)"  ~glac—b)(acf ~bf ~cg)" (2.80)
Yan+1 = Zg(ucfibficg)n' (281)
Y2 = ng(aCf*bf*cg)”y:ig(»wf*bf*cg)”/ (2.82)
Yt = yg(af—g)(aCf—bf—Cg)”Z:?Cf(aCf—bf—cg)”, (2.83)
Tyl = xé‘(aCf—bf—cg)”yif(aCf—bf—cg)”, (2.84)
Zanin = y(()af—g)(aCf—bf—cg)” Z:?f(%f—bf—cg)”, (2.85)
Zanss = 200U e N (2.86)

Case g = 0. In this case we have that sequences (a3c+i)keNy, (C3k+i)keNy, (f3k+i)keN,, Satisfy
the recurrent relation
Xp+1 = (acf —ad —bf)x,, n€N.

From this and since a1 =4, ¢c1 =¢, fi = f, a0 =ac—b, co = c¢f —d, fp =af —g a3 =
acf —bf —ad, c3 = acf —ad —cg, f3 = acf —bf — cg, and by using the condition g = 0, it
follows that

azx41 = a(acf — ad — bf)k, (2.87)
312 = (ac —b)(acf —bf —ad)¥, (2.88)
a3y = (acf — bf —ad)**", (2.89)
C3epq = clacf —bf —ad)k, (2.90)

cai2 = (cf —d)(acf —bf —ad)F, (2.91)
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Cakys = a(cf —d)(acf —bf —ad)F, (2.92)
faknr = flacf —bf —ad)’, (2.93)
fakra = af(acf —bf —ad)F, (2.94)
fakes = flac —b)(acf —bf —ad)¥, k € No. (2.95)

Using (2.87)—(2.95) into (2.22), (2.24) and (2.26), as well as the condition g = 0, it follows
that

bsks1 = b(acf —bf — ad)¥, (2.96)
bsksr = ad(acf —ad — bf)k, (2.97)
baki3 =0, (2.98)
dyp1 = ad(cf —d)(acf —bf —ad)*?, (2.99)
daryn =0, (2.100)
A3z = b(cf —d)(acf —bf —ad)t, (2.101)
83k+1 =0, (2.102)
g3ks2 = bf(acf — bf — ad), (2.103)
g3kss = adf(acf —bf —ad)¥, k€ Ny. (2.104)

Employing (2.87)—(2.104) into (2.27), (2.28) and (2.29) we obtain that the well-defined solu-
tions of system (1.8) in this case are given by the following formulas

e TR (2.105)
N Z(()ac—b)(acf—bf—ad)”x:?d(acf—ad—bf)”, (2.106)
Yo s = e/ A (2.107)
Yo — 2C00S ) e aef b -ad) (2.108)
Yani2 = Xécffd)(acffbffad)ﬂ, (2.109)
Yansa = Y aeS ~bf—ad)" —blef—d)acf—bf—ad)" (2.110)
Zanyr = xS (2.111)
Zamyg =y @S b —ad)"  =bf acf~bf ~ad)" (2.112)
Zanya = 2SO ad)  medflacf bl N, (2.113)

Case bdg # 0. Let A1, be the roots of the characteristic polynomial
P(A) = A% — (acf —ad — bf — cg)A + bdg,
of difference equation
Upio — (acf —ad —bf — cg)uy41 + bdgu, =0, n € IN. (2.114)
It is known that the general solution of equation (2.114) has the following form

Up = A} + a5, n €N,
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if (acf —ad —bf — cg)* # 4bdg, where a7 and a; are arbitrary constants, while in the case
(acf —ad — bf — cg)? = 4bdg, the general solution has the following form

U, = (,Bln + ,32))\111, n € NN,

where 1 and B, are arbitrary constants.
By some calculation and using the values for a;, b;, ¢;, d;, fi, g for i € {1,2,3,4}, if
(acf —ad — bf — cg)? # 4bdg, we have that

(aM + bg)Ak — (bg + arx) AL

a3k+1 = A — A, (2.115)
A0 = (ac — b))&ll(j::ié+1 (2.116)
tan (acf —bf —ad — )\2))\’{; - E\Al —acf +bf +ad)A5H 2117)
1— 72
byy — pl2ef ~bf —ad - mﬁ + ;21 —acf +bf +ad)AS (2.118)
bypn = d (ari + bg)ﬁ : gig - a)»z))&’gl (2.119)
bakts = glac — b)wf (2.120)
g = (M bd)ﬁ - il;d +cA2)A5 (2.121)
Cak2 = (cf — d)w (2122)
A (acf —ad —cg — /\2))\’{: + ;Al —acf +ad + cg) AL (2.123)
1— /2
by —d (acf —ad — cg — /\2)?\\’{ + g\/\l —acf +ad + cg)As (2.124)
1— 2
Ay = g7 bd)ﬁ — (Abzd terly (2.125)
dycis = b(cf — d)w, (2.126)
fakr1 = (At dg)ﬁ — ﬁig AN (2.127)
faki2 = (af — 8)/\11()::?5+1 (2.128)
Frns = (acf —bf —cg — Az)/\’{; + ;/\1 —acf +bf + cg)A5! (2.129)
1— /2
o =g 8T AZ)?E - Eil AL AL (2.130)
gann = bIME dg)ﬁ - gig +fA)As (2.131)

/\k+1 _ Ak+1
Qakss = d(af — g)ﬁ, (2.132)
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for k € INo.
By using (2.115)—(2.132) in (2.27), (2.28) and (2.29) we obtain that the well-defined solutions
of system (1.8) in this case are given by the following formulas

(a)\lJrlng)/\’lZ —(bg+ary)Ay acf—bffadf)\z))qu(/\l —acf+bf-+ad)Ay

—b<

A A=A
X3n+1 = Yy v zZ_4 v p (2.133)
(ac—b) ALl _d(aAlerg)A?—(ngra/\z)/\g
. Ay Ay
X3nt2 = Zg ! X_q ! , (2.134)
(acf—bf —ad—Ag) AW (A —acf+bf +ad) A5 T ALl
Xapiz = X s y S (2.135)
3n+3 — 0 —1 7 .
(cAq +bd)/\’117(bd+c/\2)/\§ _d (acf—adfcg—/\z)/\’lhr(/\l —acf-+ad+cg)Ay
A=A M-
Yan+1 = Zg X_4 , (2.136)
(cf—d) AL+l g(c/\1+bd)/\q’—(bd+c)»2)}u§‘
. - =1y - Ay
Yant+2 = Xy ! Y4 ! , (2137)
(ﬂCf*ﬂd*Cg*)\2))L’f+1+(}L1*ﬂCf+ﬂd+Cg)/\g+l )\Trl—/\;’*l
Yanis =V = 2 DT (2.138)
3n+3 — Yo -1 7 .
(fA+dg)AY —(dg+fAp)AL 7g(acf—bf—cgf)\z)/\i’+(/\17acf+bf+cg)/\’21
=1, -1,
Z3n4+1 = Xy Y4 , (2.139)
(af—g) ML MM (g /200
A A
Z3n+2 = Yy v Z_1 e p (2.140)
(acf—bf—cg—Az)A;’+1+(A1—acf+bf+cg))\;+1 A;’*l—)\’zwl
A —d(af-g) Ay
Z3n4+3 = % X_4 , n € INp. (2.141)

If (acf —ad — bf — cg)? = 4bdg, that is, if \; = A, = (acf —ad — bf — cg)/2, we have that

A
ypsq = ((a n ﬁ) k+ a) Ak (2.142)
a3k40 = (ac — b)(k+1)AK (2.143)
—bf —ad— A
oz = <”Cf fAl WM (kv 1)+ 1>A’1‘+1 (2.144)
byss = b(”cf_ bfA: ad_/\lk+1>/\’1‘ (2.145)
A
byiis = d ( (a n jl)k + a) Ak, (2.146)
barys = g(ac — b)(k +1)AL, (2.147)
A
Caein = ((c + gl)k + c) Ak (2.148)
Cakan = (cf —d)(k+1)AK (2.149)
—ad—cg—A
O3z = (”Cf 4 T E- M (ky1)+ 1) Ak (2.150)
oy = d <”Cf - ”dg =My 1>/\’1‘ (2.151)
A
a0 = g((c—|— gl)k+c)Ak, (2.152)
dagys = blcf —d)(k+1)A], (2.153)

far = ((f+ %)Hf)ﬂ{ (2.154)
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faer2 = (af = g)(k+1)A} (2.155)
fakra = (acf - bf); @My 1y 1>A’;+1 (2.156)
S3ki1 = g(acf — bf); =My 1) Ak (2.157)
Sak2 = b((f+ %)k—kf))\k, (2.158)
gakss = d(af — g)(k+1)AT, (2.159)

for k € INj.
By using (2.142)—(2.159) into (2.27), (2.28) and (2.29) we obtain that the well-defined solu-
tions of system (1.8) in this case are given by the following formulas

—bf—ad—\
(o yta)ng b=

X3n+1 = Yy 1 , (2.160)
N Z(()acfb)(n+1))\§'x:f((a+%1)n+u)/\;', (2.161)
Xapes — xé%(n+1)+1)/\¥+1y:f(ac—b)(n-i—l))\{’, (2.162)
P Z(()(c+%1)n+cmx:;i(%nﬂml (2.163)
Yanyo = x7 *d)(”“)A?yif((ﬁ%)"ﬂw, 2.164)
Yamia = yé“fﬂﬂifg“(n+1)+1)A¥+IZ:,;(Cf_d)(n+1m’ (2.165)
zans1 = xS Wy:f(wifmww, (2.166)
Zansz = S TOEFDN A (2.167)
Zanin = Zé%(1’1+1)+1)7\;’+1x:‘lj(af—g)(n—i-l)/\’f, 1 € No. (2.168)
finishing the proof of the theorem. O

Remark 2.2. To get formulas (2.115)—(2.132) and (2.142)—(2.159) we need to know values of a;,
bi, ci, 4, fi, gi, i = 1,6. Since the expressions of these initial values become more and more
complicated when index i increases, if we want to get the formulas by hand then the process
is time-consuming because of much calculations. Hence, we suggest the following procedure
which facilitates getting the formulas. Namely, recurrent relations (2.21)—(2.26) can be used
in a natural way to calculate also 4;, b;, ¢;, d;, f;, i, for i € {—2,—1,0}. This is possible since
relations (2.21)—(2.26) define values of a;, b;, ¢;, d;, fi, g uniquely, for all non-positive i, when

bdg # 0. For example, if in the relation bz, 4 = bazr;3, we choose k = —1, then we get
by = bay, from which it follows that ap = 1 (here the assumption b # 0 is used). Using this
fact in the relation as;4 = aasi3 — baxy3, with k = —1, we obtain that a; = a -1 — by, from
which it follows that by = 0. From this and the relation b3 = gasr42, with k = —1, we get
a_1 = 0 (here the assumption g # 0 is used). Continuing in this way it can be obtained that
1 c 1 f 1 a
= —— = —— = — — dﬁ = — = = — — = ——
a_p 7 b_, 7 2 pl 2 pl fo 82 ;
a1=0, b—l = —1, c.1 =0, d—l =-1, f—l =0, 8-1= -1

ap =1, bp =0, co=1, do =0, fo=1, g0 = 0.
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Using these “initial values” along with a;, b;, ¢;, d;, fi, gi, i = 1,3, all the calculations in getting
formulas (2.115)—(2.132) and (2.142)—(2.159) become somewhat simpler.

From the proof of Theorem 2.1 we obtain the following corollary.

Corollary 2.3. Consider system (1.8) with a,b,c,d, f,g € Z. Assume that x_;,y_;,z_;, € C\ {0},
i € {0,1}. Then the following statement are true.

(a) If b = 0, then the general solution to system (1.8) is given by (2.51)—(2.59).
(b) If d = 0, then the general solution to system (1.8) is given by (2.78)—(2.86).
(c) If g = 0, then the general solution to system (1.8) is given by (2.105)—(2.113).

(d) Ifbdg # 0and (ad + bf + cg — acf)? # 4bdg, then the general solution to system (1.8) is given
by (2.133)~(2.141).

(e) If bdg # 0and (ad + bf + cg — acf)? = 4bdg, then the general solution to system (1.8) is given
by (2.160)~(2.168).

Remark 2.4. Formulas (2.51)—-(2.59), (2.78)—(2.86), (2.105)—(2.113), (2.133)—(2.141) and (2.160)-
(2.168) can be used in describing the long term behavior of well-defined solutions of system
(1.8). We leave the formulations and proofs of these results to the reader as some exercises.
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