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Abstract

We consider the third-order nonlocal boundary value problem

u′′′(t) = f(t, u(t)), a.e. in (0, 1),

u(0) = 0, u′(ρ) = 0,

u′′(1) = λ[u′′],

where 0 < ρ < 1, the nonlinear term f satisfies Carathéodory conditions with
respect to L1[0, T ], λ[v] =

∫ 1

0
v(t) dΛ(t), and the functional λ satisfies the reso-

nance condition λ[1] = 1. The existence of a solution is established via Mawhin’s
coincidence degree theory.

Key words and phrases: Coincidence degree theory, nonlocal boundary value prob-
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1 Introduction

We study the third-order nonlocal boundary value problem

u′′′(t) = f(t, u(t)), a.e. in (0, 1), (1)

u(0) = 0, u′(ρ) = 0, (2)

u′′(1) = λ[u′′], (3)

where 0 < ρ < 1, the nonlinear term f satisfies Carathéodory conditions with respect
to L1[0, T ], and λ[v] is a linear functional defined by the Riemann-Stieltjes integral

λ[v] =
∫ 1

0
v(t) dΛ(t). Here Λ is a suitable monotonically increasing function on [0, 1].

We assume throughout that the functional λ satisfies

λ[1] = 1. (4)
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Due to the condition (4), the boundary value problem (1)-(3) can not be inverted,
and as such, we say that the boundary value problem is at resonance. Recently, several
authors have studied nonlocal boundary value problems at resonance, see for example
[1, 2, 3, 9, 10, 11, 12, 13, 15, 16, 17, 18] and references therein. The literature is rich
also with articles on nonlocal boundary value problems; see [4, 5, 6, 7, 8] and references
therein. The primary motivation for this work is the article [8] due to Graef and Webb.
In [8], the authors consider the existence of multiple positive solutions for the nonlocal
boundary value problem

u′′′(t) = f(t, u(t)), t ∈ (0, 1),

u(0) = 0, u′(ρ) = 0,

u′′(1) = λ[u′′],

where ρ > 1/2 and λ[v] =
∫ 1

0
v(t) dΛ(t), as well as a generalization of this problem. To

ensure that the boundary value problem is invertible, the authors impose the condition
that λ[1] 6= 1.

In Section 2 we give the background information from coincidence degree theory.
So that the paper is self-contained, we state Mawhin’s coincidence theorem, [14], in
this section. We also define appropriate mappings and projectors that will be used in
the sequel. We state and prove our main result in Section 3.

2 Background

Let X and Z be normed spaces. A linear mapping L : dom L ⊂ X → Z is called a
Fredholm mapping if ker L has a finite dimension, and Im L is closed and has finite
codimension. The (Fredholm) index of a Fredholm mapping L is the integer, Ind L,
given by Ind L = dim ker L − codim Im L.

For a Fredholm map of index zero, L : dom L ⊂ X → Z, there exist continuous
projectors P : X → X and Q : Z → Z such that

Im P = ker L, ker Q = Im L, X = ker L ⊕ ker P, Z = Im L ⊕ Im Q,

and the mapping
L|dom L∩ker P

: dom L ∩ ker P → Im L

is invertible. The inverse of L|dom L∩ker P
is denoted by

KP : Im L → dom L ∩ ker P.

The generalized inverse of L, denoted by KP,Q : Z → dom L ∩ ker P , is defined by
KP,Q = KP (I − Q).

If L is a Fredholm mapping of index zero, then for every isomorphism J : Im Q →
ker L, the mapping JQ + KP,Q : Z → dom L is an isomorphism and, for every u ∈
dom L,

(JQ + KP,Q)−1u = (L + J−1P )u.
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Definition 2.1 Let L : dom L ⊂ X → Z be a Fredholm mapping, E be a metric
space, and N : E → Z. We say that N is L-compact on E if QN : E → Z and
KP,QN : E → X are compact on E. In addition, we say that N is L-completely
continuous if it is L-compact on every bounded E ⊂ X.

We will formulate the boundary value problem (1)-(3) as Lu = Nu, where L and N
are appropriate operators. The existence of a solution to the boundary value problem
will then be guaranteed by the following theorem due to Mawhin [14].

Theorem 2.1 Let Ω ⊂ X be open and bounded. Let L be a Fredholm mapping of index
zero and let N be L-compact on Ω. Assume that the following conditions are satisfied:

(i) Lu 6= µNu for every (u, µ) ∈ ((domL \ ker L) ∩ ∂Ω) × (0, 1);

(ii) Nu 6∈ Im L for every u ∈ ker L ∩ ∂Ω;

(iii) degB (JQN |ker L∩∂Ω, Ω ∩ ker L, 0) 6= 0, with Q : Z → Z a continuous projector,
such that ker Q = Im L and J : Im Q → ker L is an isomorphism.

Then the equation Lu = Nu has at least one solution in dom L ∩ Ω.

We say that the map f : [0, T ] × R
n → R satisfies Carathéodory conditions with

respect to L1[0, T ] if the following conditions hold.

(i) For each z ∈ R
n, the mapping t 7→ f(t, z) is Lebesgue measurable.

(ii) For a.e. t ∈ [0, T ], the mapping z 7→ f(t, z) is continuous on R
n.

(iii) For each r > 0, there exists αr ∈ L1([0, T ], R) such that for a.e. t ∈ [0, T ] and for
all z such that |z| < r, we have |f(t, z)| ≤ αr(t).

Let AC[0, 1] denote the space of absolutely continuous functions on the interval
[0, 1]. Define Z = L1[0, 1] with norm ‖ · ‖1 and let

X = {u : u, u′, u′′ ∈ AC[0, 1] and u′′′ ∈ L1[0, 1]}

be equipped with the norm ‖u‖ = max {‖u‖0, ‖u
′‖0, ‖u

′′‖0}. Define the mapping L :
dom L ⊂ X → Z, where

dom L = {u ∈ X : u satisfies (2) and (3)},

by
Lu(t) = u′′′(t), t ∈ [0, 1].

Define N : X → Z by
Nu(t) = f(t, u(t)), t ∈ [0, 1].
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Lemma 2.1 The mapping L : dom L ⊂ X → Z is a Fredholm mapping of index zero.

Proof. Let g ∈ Z, and for t ∈ [0, 1], let

u(t) = a
(

t2/2 − ρt
)

+

∫ t

0

∫ s

ρ

∫ r

0

g(τ) dτ dr ds. (5)

Then, u′′′(t) = g(t) for a.e. t ∈ [0, 1], u(0) = 0, and u′(ρ) = 0. Furthermore, if

∫ 1

0

g(s) ds − λ

[
∫ t

0

g(s) ds

]

= 0,

then u satisfies the nonlocal boundary condition u′′(1) = λ[u′′]. If (5) is satisfied, then
u ∈ dom L, and so,

{

g ∈ Z :

∫ 1

0

g(s) ds − λ

[
∫ t

0

g(s) ds

]

= 0

}

⊆ Im L.

Now let g ∈ Im L. Then there exists a u ∈ dom L such that u′′′(t) = g(t) for a.e.
t ∈ [0, 1]. We have,

u′′(t) = u′′(0) +

∫ t

0

g(s) ds. (6)

Apply the functional λ[v] to both sides of (6) to obtain,

λ[u′′] = u′′(0) + λ

[
∫ t

0

g(s) ds

]

. (7)

Also, evaluate (6) at t = 1.

u′′(1) = u′′(0) +

∫ 1

0

g(s) ds. (8)

From the boundary condition u′′(1) = λ[u′′], and (7) and (8), we see that g satisfies

∫ 1

0

g(s) ds = λ

[
∫ t

0

g(s) ds

]

.

Hence

Im L ⊆

{

g ∈ Z :

∫ 1

0

g(s) ds − λ

[
∫ t

0

g(s) ds

]

= 0

}

.

Since both inclusions hold, then

Im L =

{

g ∈ Z :

∫ 1

0

g(s) ds − λ

[
∫ t

0

g(s) ds

]

= 0

}

.
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Let ϕ ∈ C[0, 1] be such that ϕ(t) > 0 for t ∈ [0, 1] and

C ≡

∫ 1

0

ϕ(t) dt − λ

[
∫ t

0

ϕ(s) ds

]

6= 0.

Define Q1 : Z → R by

Q1g ≡

∫ 1

0

g(s) ds − λ

[
∫ t

0

g(s) ds

]

.

Now define the mapping Q : Z → Z by

(Qg)(t) =
1

C
(Q1g)ϕ(t). (9)

The mapping Q is a continuous linear mapping and

(Q2g)(t) = (Q(Qg))(t)

=
1

C

(

1

C
Q1g

)(
∫ 1

0

ϕ(t) dt − λ

[
∫ t

0

ϕ(s) ds

])

ϕ(t)

=

(

1

C
Q1g

)

ϕ(t) = (Qg)(t).

That is, Q2g = Qg for all g ∈ Z. Furthermore, Im L = ker Q.
For g ∈ Z we have g−Qg ∈ ker Q = Im L and Qg ∈ Im Q. Hence Z = Im L+Im Q.

Let g ∈ Im L ∩ Im Q. Since g ∈ Im Q, then there exists an η ∈ R such that
g(t) = ηϕ(t), t ∈ [0, 1]. Since g ∈ Im L = ker Q, then

0 = Q1g(t) = η

(
∫ 1

0

ϕ(t) dt − λ

[
∫ t

0

ϕ(s) ds

])

= ηC.

Since C 6= 0, then η = 0 and so g(t) ≡ 0, t ∈ [0, 1]. Consequently, Z = Im L ⊕
ker Q. Note ker L = {c (t2/2 − ρt) : c ∈ R} ∼= R, and so dim ker L = codim Im L =
dim Im Q = 1. Thus, L is a Fredholm mapping on index zero. The proof is complete.

We are now ready to give the other projector employed in the proof of our main
result. Define P : X → X by

(Pu)(t) = u′′(0)
(

t2/2 − ρt
)

, t ∈ [0, 1], (10)

and note that ker P = {u ∈ X : u′′(0) = 0} and Im P = ker L. Since (Pu)′′(t) = u′′(0),
then (P 2u)(t) = (Pu)(t), t ∈ [0, 1]. For all u ∈ X we have

u(t) = u′′(0)
(

t2/2 − ρt
)

+ (u(t) − u′′(0)(t2/2 − ρt)),
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and so, X = ker L ⊕ ker P .
Define the mapping KP : Im L → dom L ∩ ker P by

KPg(t) =

∫ t

0

∫ s

ρ

∫ r

0

g(τ) dτ dr ds.

It follows that ‖KP g‖0 ≤ 1
2
(1 − ρ)2‖g‖1, ‖(KPg)′‖0 ≤ (1 − ρ)‖g‖1, and ‖(KPg)′′‖0 ≤

‖g‖1. As such, we have

‖Kpg‖ = max {‖KP g‖0, ‖(KP g)′‖0, ‖(KPg)′′‖0} ≤ ‖g‖1. (11)

If g ∈ Im L then,

(LKP )g(t) =
d3

dt3

∫ t

0

∫ s

ρ

∫ r

0

g(τ) dτ dr ds = g(t).

And if u ∈ dom L ∩ ker P then,

(KpL)u(t) =

∫ t

0

∫ s

ρ

∫ r

0

u′′′(τ) dτ dr ds

= u(t) − u(0) − tu′(ρ) − u′′(0)
(

t2/2 − ρt
)

= u(t).

Consequently, KP = (L|dom L∩ker P
)−1. The generalized inverse of L is defined by

KP,Qu(t) =

∫ t

0

∫ s

ρ

∫ r

0

u(τ) − Qu(τ) dτ dr ds.

Lastly in this section, we show that N is L-compact.

Lemma 2.2 The mapping N : X → Z given by Nu(t) = f(t, u(t)) is L-completely
continuous.

Proof. Let E ⊂ X be a bounded set and let r be such that ‖u‖ ≤ r for all u ∈ E.
Since f satisfies Carathéodory conditions, there exists an αr ∈ L1[0, 1] such that for a.e.

t ∈ [0, T ] and for all z such that |z| < r we have |f(t, z)| ≤ αr(t). Let M =
∫ 1

0
dΛ(t).

Then,

‖QNu(t)‖1 ≤
1

C

∫ 1

0

∫ 1

0

|f(s, u(s))| ds + λ

[
∫ t

0

|f(s, u(s))| ds

]

ϕ(t) dt

≤
1

C

(
∫ 1

0

∫ 1

0

αr(s) dsϕ(t) dt +

∫ 1

0

λ

[
∫ t

0

αr(s) ds

]

ϕ(t) dt

)

≤
1

C
‖ϕ‖1

(

‖αr‖1 +

∫ 1

0

∫ t

0

αr(s) ds dΛ(t)

)

≤
1

C
‖ϕ‖1‖αr‖1(1 + M).
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Hence, QN(E) is uniformly bounded.
It is clear that the functions QN(u) are equicontinuous on E. By the Arzelà-Ascoli

Theorem, QN(E) is relatively compact.
It can be shown that KP,QN(E) is relatively compact as well. As such, the mapping

N : X → Z is L-completely continuous and the proof is complete.

3 Existence of Solutions

We will assume that the following conditions hold.

(H1) There exists a constant c1 > 0 such that for all u ∈ dom L \ ker L satisfying
|u′′(t)| > c1, t ∈ [0, T ], we have

QNu(t) 6= 0, for all t ∈ [0, 1].

(H2) There exist β, γ ∈ L1[0, T ], such that for all u ∈ R and for all t ∈ [0, 1],

|f(t, u)| ≤ β(t) + γ(t)|u|.

(H3) There exists a B > 0 such that for all c2 ∈ R with |c2| > B, either

c2

(
∫ 1

0

f
(

s, c2(s
2/2 − ρs)

)

ds − λ

[
∫ t

0

f
(

s, c2(s
2/2 − ρs)

)

ds

])

< 0

or

c2

(
∫ 1

0

f
(

s, c2(s
2/2 − ρs)

)

ds − λ

[
∫ t

0

f
(

s, c2(s
2/2 − ρs)

)

ds

])

> 0.

Theorem 3.1 Assume that conditions (H1)-(H3) hold and that

1 − 2‖γ‖1 > 0. (12)

Then the nonlinear periodic problem (1)-(3) has at least one solution.

Proof. Let Q : Z → Z and P : X → X be defined as in (9) and (10), respectively.
We begin by constructing a bounded open set Ω that satisfies Theorem 2.1. To this
end, define the set Ω1 as follows.

Ω1 = {u ∈ dom L \ ker L : Lu = µNu for some µ ∈ (0, 1)}.

Let u ∈ Ω1 and write u as u = Pu + (I − P )u. Then

‖u‖ ≤ ‖Pu‖+ ‖(I − P )u‖. (13)
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Since u ∈ Ω1 then (I−P )u ∈ dom L∩ker P = Im KP , 0 < µ < 1 and Nu = 1
µ
Lu ∈

Im L. From (11) we have,

‖(I − P )u‖ = ‖KPL(I − P )u‖ ≤ ‖L(I − P )u‖ = ‖Lu‖ < ‖Nu‖. (14)

From (H2) we see that ‖Nu‖ ≤ ‖β‖1 + ‖γ‖1‖u‖, and so by (13) and (14), we obtain,

‖u‖ < ‖Pu‖+ ‖β‖1 + ‖γ‖1‖u‖. (15)

Now, Pu(t) = u′′(0) (t2/2 − ρt). Since 0 < ρ < 1, then ‖Pu‖ = |u′′(0)|. Also, since
u ∈ Ω1 and ker Q = Im L, then QNu(t) = 0 for all t ∈ [0, 1]. By (H1), there exists
t0 ∈ [0, 1] such that |u′′(t0)| ≤ c1. Now,

u′′(0) = u′′(t0) −

∫ t0

0

u′′′(s) ds,

and so,

|u′′(0)| ≤ |u′′(t0)| +

∫ t0

0

|u′′′(s)| ds ≤ c1 + ‖Nu‖.

Consequently,
‖Pu‖ = |u′′(0)| ≤ c1 + ‖β‖1 + ‖γ‖1‖u‖. (16)

By (15) and (16), we have for u ∈ Ω1,

‖u‖ ≤ c1 + 2‖β‖1 + 2‖γ‖1‖u‖,

which, using (12), implies that

‖u‖ ≤
c1 + 2‖β‖

1 − 2‖γ‖1

.

The set Ω1 is bounded.
Next define the set Ω2 by

Ω2 = {u ∈ ker L : Nu ∈ Im L}.

Let u ∈ Ω2. Since u ∈ ker L, then u(t) = c2 (t2/2 − ρt) for some c2 ∈ R. We also know
that Nu ∈ Im L = ker Q and so,

0 = Q1Nu =

∫ 1

0

f
(

s, c2(s
2/2 − ρs)

)

ds − λ

[
∫ t

0

f
(

s, c2(s
2/2 − ρs)

)

ds

]

.

It follows from (H3) that |c2| < B and so Ω2 is bounded.
Before we define the set Ω3, we must state our isomorphism, J : Im Q → ker L. Let

J(cϕ(t)) = c(t2/2 − ρt).
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Suppose that the first part of (H3) is satisfied. Then define

Ω3 =
{

u ∈ ker L := −µJ−1u + (1 − µ)QNu = 0, µ ∈ [0, 1]
}

and note that for each u ∈ Ω3,

µcϕ(t) = (1 − µ)
1

C

(
∫ 1

0

f
(

s, c2(s
2/2 − ρs)

)

ds − λ

[
∫ t

0

f
(

s, c2(s
2/2 − ρs)

)

ds

])

.

Suppose that µ = 1, then c = 0. If |c| > B, then

µc2ϕ(t) = (1 − µ)
c

C

(
∫ 1

0

f
(

s, c2(s
2/2 − ρs)

)

ds

− λ

[
∫ t

0

f
(

s, c2(s
2/2 − ρs)

)

ds

])

< 0.

In either case we get a contradiction and hence Ω3 is bounded.
If the second part of (H3) is satisfied then define Ω3 by

Ω3 =
{

u ∈ ker L := µJ−1u + (1 − µ)QNu = 0, µ ∈ [0, 1]
}

.

A similar argument as above shows that Ω3 is bounded.
Let Ω be an open and bounded set such that ∪3

i=1Ωi ⊂ Ω. Then the assumptions
(i) and (ii) of Theorem 2.1 are satisfied. By Lemma 2.1, L : dom L ⊂ X → Z is
a Fredholm mapping of index zero. By Lemma 2.2, the mapping N : X → Z is L-
completely continuous. We only need to verify that condition (iii) of Theorem 2.1 is
satisfied.

We apply the invariance under a homotopy property of the Brower degree. Let

H(u, µ) = ±Id u + (1 − µ)JQNu.

If u ∈ ker L ∩ ∂Ω, then

degB (JQN |ker L∩∂Ω, Ω ∩ ker L, 0) = degB (H(·, 0), Ω ∩ ker L, 0)

= degB (H(·, 1), Ω ∩ ker L, 0)

= degB ( ± Id, Ω ∩ ker L, 0)

6= 0.

All the assumptions of Theorem 2.1 are fulfilled and the proof is complete.
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