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Introduction

Different notions of stability for ordinary differential equations complement each other in
the following sense. The definition of asymptotic stability requires Lyapunov stability, and
there are examples showing that all solutions to an equation may tend to zero while its trivial
solution is not Lyapunov stable. Further, one should distinguish between global and local
stability, and the stability of a solution is unrelated to its boundedness.

However, definitions of stability for linear equations, as well as relations between different
kinds of stability, are simplified. The purpose of the paper is to investigate some of these
relations. In the first section we consider linear ordinary differential equations. The second
section, which is the main one, is devoted to functional differential equations.

Let Cr be an r-dimensional linear complex space with some norm, Cr×r be the algebra of
r× r complex matrices with unit E and zero Θ, the norm in Cr×r being consistent with the
norm in Cr. The norms will be denoted by | · |. Denote R+ = [0, ∞), ∆ = {(t, s) ∈ R2

+ | t ≥ s}.

1 Interconnection between the types of stability for linear ordinary
differential equations

Consider a homogeneous differential equation of the form

ẋ(t) + A(t)x(t) = 0, t ∈ R+, (1.1)
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where A : R+ → Cr×r is a matrix function with locally integrable components.
We shall say that a solution of equation (1.1) is an absolutely continuous function satisfying

the equality (1.1) almost everywhere.
It is easy to see that there is no distinction between local and global stability for equa-

tion (1.1). This makes the use of the term “the stability of an equation” correct.
The definitions of uniform and uniform asymptotic stability suggest that one should con-

sider the family of equations (1.1) with an arbitrary starting point, instead of a single equation.
However, this complexity of the object of research can be avoided by introducing the notion
of the Cauchy function.

Let X = X(t) be the fundamental solution of equation (1.1), and X(0) = E. As it is known,
X(t) is invertible for any t. Therefore for all (t, s) ∈ ∆ the matrix C(t, s) = X(t)X−1(s) is
defined, which is called the Cauchy function of equation (1.1).

Let us remark the useful property of the Cauchy function, which follows directly from the
definition: for any t, s, τ there holds the equality

C(t, s) = C(t, τ)C(τ, s). (1.2)

Equality (1.2) is often called the semigroup property of the Cauchy function.
It follows from the definition of the Cauchy function that each solution of equation (1.1)

defined for t ≥ s may be represented in the form x(t) = C(t, s)x(s). It is obvious that all
definitions of stability for equation (1.1) can be reformulated in terms of the Cauchy function.

Definition 1.1. Equation (1.1) is:

• Lyapunov stable, if for every s ∈ R+ there exists Ks > 0 such that |C(t, s)| ≤ Ks for every
t ≥ s;

• asymptotically stable, if for every fixed s ∈ R+ we have limt→∞ |C(t, s)| = 0;

• uniformly stable, if there is K > 0 such that for all (t, s) ∈ ∆ we have |C(t, s)| ≤ K;

• uniformly asymptotically stable, if it is uniformly stable, and |C(t, s)| → 0 as t − s → ∞
uniformly with respect to s;

• exponentially stable, if there are K, γ > 0 such that for all (t, s) ∈ ∆ we have |C(t, s)| ≤
K exp(−γ(t− s)).

Note that the definition of asymptotic stability does not include Lyapunov stability, and
the definition of exponential stability does not include uniform stability. In this connection
the following question arises. Suppose that the Cauchy function tends to zero as t− s → ∞
uniformly with respect to s. Does this imply that equation (1.1) is uniformly stable? The
answer is given by the following example.

Example 1.2. Consider a scalar equation of the form (1.1)

ẋ(t) + a(t)x(t) = 0, t ∈ R+.

For each n = 1, 2, . . . define the function a by the rule:

a(t) =

{
−n, if t ∈ [n− 1, n− 2/3];

n, if n ∈ (n− 2/3, n).
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Let ε > 0. By the definition of the function a it is easy to find l(ε) such that for all (t, s) ∈ ∆,
satisfying the condition t− s > l, the inequality

∫ t
s a(τ) dτ ≥ − ln ε holds. Therefore,

0 < C(t, s) = exp

− t∫
s

a(τ) dτ

 ≤ ε.

Consequently, if t− s→ ∞ then the function C(t, s) tends to zero uniformly with respect to s.
On the other hand, for any n = 1, 2, . . . the equality C(n− 2/3, n− 1) = en/3 holds, i.e. the

Cauchy function is not bounded with respect to (t, s).

Thus, the demand for uniform stability cannot be eliminated from the definition of uniform
asymptotic stability.

Remark 1.3. If for some K > 0 we have |A(t)| ≤ K, t ∈ R+, then for every l > 0 we have
sup0≤t−s≤l |C(t, s)| ≤ eKl . Therefore, in this case the condition of uniform stability can be
excluded from the definition of uniform asymptotic stability.

Now we can put in order the different types of stability of equation (1.1). Exponential
and uniform asymptotic stabilities imply uniform stability and asymptotic stability and, con-
sequently, Lyapunov stability.

Theorem 1.4. For equation (1.1) uniform asymptotic stability is equivalent to exponential stability.

Proof. Obviously, uniform asymptotic stability follows from exponential stability.
Suppose equation (1.1) is uniformly asymptotically stable. We use induction principle. Fix

an arbitrary ε ∈ (0, 1) and find l(ε) > 0 such that for all (t, s) ∈ ∆ satisfying t − s ≥ l the
estimate |C(t, s)| ≤ ε holds. Assume that if t− s ≥ nl then |C(t, s)| ≤ εn, and consider the case
t− s ≥ (n + 1)l. By the semigroup property of the Cauchy function we obtain

|C(t, s)| ≤ |C(t, s + l)||C(s + l, s)| ≤ εn+1.

To complete the proof it remains to note that by virtue of the uniform stability of equation
(1.1) there is K > 0 such that if t < s + l then |C(t, s)| ≤ K.

Remark 1.5. The properties of uniform asymptotic and exponential stability are closely con-
nected with the well-known result by Massera and Schäffer [6], from which it follows that the
exponential stability of equation (1.1) is equivalent to the existence of a continuous positive
function σ : R+ → (0, ∞) such that inft∈R+ σ(t) < 1 and |C(t, s)| ≤ σ(t− s) for all (t, s) ∈ ∆.

If equation (1.1) is uniformly asymptotically stable, then the existence of such a function σ

is obvious. However, the proof of Theorem 1.4 shows that it is due to the semigroup property
that exponential stability follows from uniform asymptotic stability.

2 Uniform asymptotic stability and exponential stability of linear
functional differential equations

Consider an equation (more precisely, the family of equations depending on the parameter
s ∈ R+)

ẋ(t) +
t∫

s

dτR(t, τ)x(τ) = f (t), t ≥ s ≥ 0, (2.1)
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where f : R+ → Cr is a vector function with locally integrable components. The integral in
(2.1) is understood in the Riemann–Stieltjes sense. The matrix function R : ∆ → Cr×r has the
following properties:

• the matrix function R(·, τ) is locally integrable;

• R(t, ·) is a matrix function of bounded variation, and the function ρ(t) = vart
0 R(t, ·) is

locally integrable.

By a solution of equation (2.1) we mean a locally absolutely continuous vector function
x : [s, ∞)→ Cr that satisfies the equality (2.1) almost everywhere.

Equation (2.1) is a significant generalization of equation (1.1). It is a linear functional
differential equation of retarded type. Equation (2.1) includes [1, pp. 8–11], [2, pp. 1–6] ordi-
nary differential equations, differential equations with concentrated aftereffect, and Volterra
integro-differential equations, as special cases. If a linear delay differential equation is writ-
ten in the traditional form [3], then it is necessary to specify an initial function x(τ) = ϕ(τ),
τ < s. It is shown in [1] that the initial function can be rearranged to the right-hand part and
the equation can be turned into the form (2.1).

It is known [1] that equation (2.1) with an initial condition given is uniquely solvable, and
its solution can be represented in the form

x(t) = C(t, s)x(s) +
t∫

s

C(t, τ) f (τ) dτ.

Here components of the matrix function C : ∆ → Cr×r are locally absolutely continuous with
respect to the argument t, and C is a solution of the initial problem

∂C(t, s)
∂t

+

t∫
s

dξ R(t, ξ)C(ξ, s) = Θ, C(s, s) = E, t ≥ s,

for every fixed s ∈ R+.
The function C is called the Cauchy function of equation (2.1). The above representation

of a solution makes it possible to apply the definition of stability, given for equation (1.1), to
equation (2.1), and to use the Cauchy function as a central object in the study of stability.

However, it should be noted that the Cauchy function of the functional differential equa-
tion (2.1) has a significantly more complicated structure in comparison with the Cauchy func-
tion of equation (1.1). In particular, it does not possess the remarkable semigroup property
(1.2): it is proved in [4] that equality (1.2) is satisfied if and only if equation (2.1) degenerates
into (1.1).

Nevertheless, for the Cauchy function of equation (2.1) the following similar property [2]
is valid. For all (t, s) ∈ ∆ and all ξ such that s ≤ ξ ≤ t there holds the equality:

C(t, s) = C(t, ξ)C(ξ, s) +
t∫

ξ

C(t, θ)

ξ∫
s

dη R(θ, η)C(η, s) dθ. (2.2)

Let us introduce some auxiliary functions to describe the properties of the function R : ∆→
Cr×r:

• the function h : R+ → R+, putting h(t) = inf{s | R(t, s) 6= Θ};
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• the function µ : R+ → R+ ∪ {∞}, putting µ(t) = sup{τ | h(τ) ≤ t};

• the function ν : R+ → R+, putting ν(t) = inf{τ | µ(t) ≥ t}.

Now the integration limits in equality (2.2) can be set more precisely.

Lemma 2.1. For all (t, s) ∈ ∆ and all ξ such that s ≤ ξ ≤ t for the Cauchy function of equation (2.1)
there holds the equality

C(t, s) = C(t, ξ)C(ξ, s) +

µ(ξ)∫
ξ

C(t, θ)

ξ∫
ν(ξ)

dη R(θ, η)C(η, s) dθ. (2.3)

Proof. If θ > µ(η), i.e. θ > sup{t | inf{s | R(t, s) 6= Θ} ≤ η}, then inf{s | R(t, s) 6= Θ} > η, so
R(θ, η) = Θ.

The condition θ > µ(η) in equality (2.2) will be established, if θ > µ(ξ) (because the
function µ is non-decreasing) or if η < ν(ξ) = inf{s | µ(s) ≥ ξ}. Thus, for all θ > µ(ξ) and
for all η < ν(ξ) we have R(θ, η) = Θ in equality (2.2), i.e. (2.2) turns into (2.3).

Remark 2.2. If the function h satisfies supξ∈R+
(ξ − h(ξ)) = δ < ∞, then, in terms of [2], the

function R satisfies the ‘δ-condition’. In this case equation (2.2) is often called an equation with
bounded delay. If the function satisfies the δ-condition, then equality (2.3) holds for µ(ξ) = ξ + δ

and ν(ξ) = ξ − δ.

Now we investigate the relation between the uniform asymptotic stability and exponential
stability of equation (2.1). The next example shows that these two types of stability are not
equivalent.

Example 2.3. Consider a scalar equation of the form

ẋ(t) = −x(t) +
x(0)

(t + 1)2 , t ≥ 0.

Let us construct its Cauchy function. If s = 0, we have C(t, 0) = exp(−t) +
∫ t

0
exp(−(t−τ))

(τ+1)2 dτ,

i.e. limt→∞ |C(t, 0)| = 0, but at the same time C(t, 0) ≥ 1
(t+1)2 . For all s > 0 we get C(t, s) =

exp(−(t− s)).
Thus, the equation is uniformly asymptotically stable but not exponentially stable.

The possibility to construct such an example is provided by the fact that the asymptotic
behavior of a solution depends essentially on its value at the point t = 0. Below we introduce
restrictions on parameters of equation (2.1) to make it “forget the history” of its solutions as
the argument increases.

Lemma 2.4. If there holds the condition

sup
t∈R+

t∫
h(t)

ρ(τ) dτ = V < ∞, (2.4)

where ρ(t) = vart
0 R(t, ·), then for each t ∈ R+ there also holds the inequality

∫ µ(t)
t ρ(τ) dτ ≤ V.
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Proof. Suppose that there is t0 ∈ R+ such that µ(t0) < ∞ and
∫ µ(t0)

t0
ρ(τ) dτ = V + ε > V.

By the definition of the function µ, one can find t1 ≤ µ(t0) such that h(t1) ≤ t0 and∫ µ(t0)
t1

ρ(τ) dτ < ε. But then

V ≥
t1∫

h(t1)

ρ(τ) dτ ≥
µ(t0)∫
t0

ρ(τ) dτ −
µ(t0)∫
t1

ρ(τ) dτ > V,

which is impossible.
Suppose now that there is t0 ∈ R+ such that µ(t0) = ∞ and

∫ ∞
t0

ρ(τ) dτ > V. Then there

exists t1 > t0 such that for all ξ > t1 the inequality
∫ ξ

t0
ρ(τ) dτ > V holds. Since µ(t0) = ∞,

there exists t∗ > t1 such that h(t∗) ≤ t0. Again, we get a contradiction:

V ≥
t∗∫

h(t∗)

ρ(τ) dτ ≥
t∗∫

t

ρ(τ) dτ > V.

Lemma 2.5. If condition (2.4) holds and equation (2.1) is uniformly asymptotically stable then
supt∈R+

(t− h(t)) < ∞.

Proof. Choose l > 0 such that for all s ∈ R+ and t ≥ s + l the inequality |C(t, s)| < 1/2 holds.
Then |C(s, s)− C(s + l, s)| > 1/2.

On the other hand, by virtue of the uniform stability of the equation there exists K > 0
such that for all (t, s) ∈ ∆ the estimate |C(t, s)| < K is valid. From the definition of the Cauchy
function we have

|C(s, s)− C(s + l, s)| ≤

∣∣∣∣∣∣
s+l∫
s

t∫
s

dτR(t, τ)C(τ, s) dt

∣∣∣∣∣∣ ≤ K
s+l∫
s

ρ(t) dt.

Thus for every s ∈ R+ the inequality
∫ s+l

s ρ(t) dt > 1
2K holds. Let l∗ > 2KlV + l. Then for all

s ≥ l∗ we have
∫ s

s−l∗ ρ(t) dt > V.
If supt∈R+

(t− h(t)) = ∞, then there exists t∗ > l∗ such that t∗ − h(t∗) ≥ l∗. But this leads
to a contradiction:

V ≥
t∗∫

h(t∗)

ρ(t) dt ≥
t∗∫

t∗−l∗

ρ(t) dt > V.

Theorem 2.6. Suppose condition (2.4) holds. Then for equation (2.1) uniform asymptotic stability is
equivalent to exponential stability.

Proof. Uniform asymptotic stability follows from exponential stability.
Let equation (2.1) be uniformly asymptotically stable. Fix ε > 0 so that ε(1 + V) < 1, and

find l > 0 such that for all (t, s) ∈ ∆, where t− s ≥ l, the inequality |C(t, s)| ≤ ε holds.
By Lemma 2.5, we have supt∈R+

(ξ − h(ξ)) = δ < ∞. It is easily seen that supt∈R+
(ξ −

ν(ξ)) = δ. We prove by induction on n ∈ N that if t− s ≥ nl + 2(n− 1)δ then the inequality
|C(t, s)| ≤ εn(1 + V)n−1 holds .

Let t − s ≥ (n + 1)l + 2nδ. Suppose ξ = s + l + δ. By Lemma 2.1, equality (2.2) can be
written in the form (2.3). In equality (2.3) we have ν(ξ) = ξ − δ, t − ξ ≥ nl + 2(n − 1)δ,
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t − θ ≥ nl + 2(n − 1)δ, ξ − s ≥ l, η − s ≥ l. By the induction hypothesis, the properties of
Stieltjes integral, and Lemma 2.4, we have:

|C(t, s)| ≤ |C(t, ξ)||C(ξ, s)|+
µ(ξ)∫
ξ

|C(t, θ)|

∣∣∣∣∣∣
ξ∫

ξ−δ

dη R(θ, η)C(η, s)

∣∣∣∣∣∣ dθ ≤

≤ εn(1 + V)n−1

ε + sup
ξ−δ≤η≤ξ

|C(η, s)|
µ(ξ)∫
ξ

ρ(θ) dθ

 ≤ εn+1(1 + V)n.

To complete the proof it remains to note that by virtue of the uniform stability of equation
(2.1), there is K > 0 such that if t < s + l, then |C(t, s)| ≤ K.

Remark 2.7. It is obvious that Theorem 1.4 is the simplest special case of Theorem 2.6, because
for equation (1.1) we have h(t) = t, i.e. (2.4) is satisfied automatically.

Results associating uniform asymptotic and exponential stability for equation (2.1) were
obtained in [3] and [5] under the assumption that the δ-condition and the Massera condition

sup
t∈R+

t+1∫
t

ρ(s) ds < ∞

are satisfied. As is shown by Lemma 2.5, the condition (2.4) and uniform asymptotic stability
taken together provide the δ-condition, and (2.4) follows from the δ-condition and the Massera
condition. Thus, the mentioned results of [3] and [5] follow from Theorem 2.6. It is easy to
see that the converse is not true.

Remark 2.8. Note that the delay is unbounded in Example 2.3. The reviewer of the paper
suggested us the following question, which we suppose to be an interesting open problem.
Suppose delay is bounded, while condition (2.4) and, consequently, the Massera condition are
not satisfied. In this case, is there an equation of the form (2.1) that is uniformly asymptotically
stable and is not exponentially stable?
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