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Abstract. This paper considers differential-delay equations of the form

x′(t) = p(t)x(t− 1),

where the coefficient function p : R → C is analytic and not bounded on any
δ-neighborhood of the intervals (−∞, γ], γ ∈ R. For these equations, we cannot apply
the known results regarding the analyticity of the bounded solutions x : (−∞, γ] → C.
We prove Gevrey class regularity for such solutions.
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1 Introduction

The analyticity of globally defined bounded solutions of autonomous analytic delay equa-
tions was studied first in [6]. The result of [6] was generalized to the nonautonomous case
in [4]. Paper [4] verifies that if γ ∈ R, x : (−∞, γ] → Cn is a bounded, uniformly continuous
solution of

x′(t) = f (t, xt)

on the interval (−∞, γ], and f is analytic and bounded on a δ-neighborhood of the set
{(t, xt) : t ∈ (−∞, γ]}, then x is real analytic, i.e., there exists an open neighborhood V of
(−∞, γ] and a complex analytic map x̂ : V → Cn such that x̂|(−∞,γ] = x. It is an interesting
question whether the condition regarding the boundedness of f can be relaxed.

The result of [4] is not applicable to equations of the form

x′(t) = p(t)x(t− 1) (1.1)
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if p is analytic but not bounded on any δ-neighborhood of (−∞, γ]. Typical examples of such
coefficient functions are p(t) = eitq

and p(t) = sin(tq) with an integer q ≥ 2. In this paper we
investigate the case when

p(t) = ∑
m∈F

Ameimωtq
, t ∈ R,

F is a finite set of integers, Am ∈ C for m ∈ F, ω > 0, i =
√
−1, A0 = 0 and q ≥ 2 is an integer.

We know from [5] that for such coefficient functions and for any c ∈ C\{0}, there exists a C∞

function x such that x satisfies the equation (1.1) for all t ∈ R and limt→−∞ x(t) = c. Is this
solution analytic at any t0 ∈ R? We conjecture that the answer is negative. We can prove that
x is of Gevrey class.

Gevrey classes are intermediate spaces between the spaces of C∞ functions and real ana-
lytic functions. Let J be a nonempty, open subset of R. Let q > 1. We say that x : J → C is of
Gevrey class q in J if for each compact set K ⊂ J, there exists a constant CK such that∣∣∣x(n)(t)∣∣∣ ≤ Cn+1

K (n!)q

for all t ∈ K and for all nonnegative integer n [1]. In this work J = R.
Gevrey classes play a prominent role in the theory of partial differential equations; but,

to the best of our knowledge, they have not previously been studied in connection with
differential-delay equations. Our results below suggest that further work in this direction
may be appropriate.

Theorem 1.1. Let

p(t) = ∑
m∈F

Ameimωtq
, t ∈ R,

where F is a finite set of integers, Am ∈ C for m ∈ F, ω > 0, i =
√
−1, A0 = 0 and q ≥ 2 is an

integer. Suppose that x : R→ C satisfies (1.1) for each t ∈ R, and x has a nonzero limit as t → −∞.
Then x is of Gevrey class q in R.

The question of analyticity is even more interesting for delay equations with time-
dependent or state-dependent delays. Mallet-Paret and Nussbaum have constructed a time-
dependent delay equation in [3] such that a given solution is analytic at certain points of its
domain and nonanalytic at others. Krisztin has shown analyticity for a particular class of
equations with state-dependent delay in [2]. As far as we know, this is the only positive result
in the state-dependent delay case.

We close the paper by showing that in general we cannot expect the nonanalytic solutions
of analytic equations to admit Gevrey regularity. We consider the linear inhomogeneous
equation

x′(t) = a(t)x(t) + b(t)x(η(t)) + h(t) (1.2)

from [3], where a, b, h and η are analytic in t in a neighborhood of t = t0 ∈ R. We assume
that t0 is an expansive fixed point of η, i.e., η(t0) = t0 and |η′(t0)| > 1. Let x0 ∈ R be given.
The paper [3] gives a mild technical condition under which equation (1.2) with initial value
x(t0) = x0 has no analytic solution in any open neighborhood of t = t0. Using the results
of [3], we easily show at the end of this paper that such solutions are not of Gevrey class q for
any q > 1 either.
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2 The proof of Theorem 1.1

The proof of the theorem relies on two lemmas and estimates on the derivatives of the coeffi-
cient function p.

Recall that by the product rule,

( f1(t) f2(t))
(n) =

n

∑
i=0

(
n
i

)
f (n−i)
1 (t) f (i)2 (t)

for all n ∈ N = {0, 1, 2, . . .}, f1 ∈ Cn(R, C), f2 ∈ Cn(R, C) and t ∈ R. Hence for any solution
x : R→ C of equation (1.1), t ∈ R and n ∈N with n ≥ 1,

x(n)(t) =
n−1

∑
i=0

(
n− 1

i

)
p(n−1−i)(t)x(i)(t− 1). (2.1)

We use this observation to express x(n)(t), n ≥ 1, t ∈ R, as a function of the values x(t− k),
k ∈ {1, . . . , n}, and the derivatives of p at t− l, where l ∈ {0, . . . , n− 1}.

For all n ≥ 1 and 1 ≤ k ≤ n, let ∑(n,k) denote the sum taken over the elements of the set

Sn,k =
{
(j0, j1, . . . , jk) ∈Nk+1 : n = j0 > j1 > · · · > jk = 0

}
. (2.2)

Lemma 2.1. Assume that x : R→ C satisfies equation (1.1) on R. Then for all t ∈ R and n ≥ 1,

x(n)(t) =
n

∑
k=1

qn,k(t)x(t− k),

where

qn,k(t) = n! ∑(n,k)

k−1

∏
l=0

p(jl−1−jl+1)(t− l)
jl(jl − 1− jl+1)!

(2.3)

for all t ∈ R, n ≥ 1 and 1 ≤ k ≤ n.

Note that by Lemma 2.1,

qn,1(t) = p(n−1)(t) and qn,n(t) =
n−1

∏
l=0

p(t− l) for t ∈ R and n ≥ 1.

Proof. It is clear that x(n)(t) exists for all t ∈ R and n ≥ 1.
The proof goes by induction on n. By definition, q11(t) = p(t) for all real t, hence the

assertion holds for all t ∈ R and n = 1. Let n ≥ 2 and suppose the lemma holds for all t ∈ R

and i ∈N with 1 ≤ i < n. Then applying (2.1) and our induction hypothesis, we deduce that

x(n)(t) =
n−1

∑
i=0

(
n− 1

i

)
p(n−1−i)(t)x(i)(t− 1)

= p(n−1)(t)x(t− 1) +
n−1

∑
i=1

(
n− 1

i

)
p(n−1−i)(t)

i

∑
k=1

qi,k(t− 1)x(t− 1− k)

= p(n−1)(t)x(t− 1) +
n−1

∑
i=1

(
n− 1

i

)
p(n−1−i)(t)

i+1

∑
k′=2

qi,k′−1(t− 1)x
(
t− k′

)
= p(n−1)(t)x(t− 1) +

n

∑
k=2

n−1

∑
i=k−1

(
n− 1

i

)
p(n−1−i)(t)qi,k−1(t− 1)x(t− k).
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Let

q̂n,k(t) =
n−1

∑
i=k−1

(
n− 1

i

)
p(n−1−i)(t)qi,k−1(t− 1), t ∈ R, k ∈ {2, . . . , n}. (2.4)

As p(n−1) ≡ qn,1 by definition, we need to show that q̂n,k ≡ qn,k for all k ∈ {2, . . . , n}.
Formula (2.3) and the substitutions j′l = jl−1, l ∈ {1, . . . , k}, give that

qi,k−1(t− 1) = i! ∑
(j′1,...,j′k)∈Si,k−1

k−1

∏
l=1

p(j′l−1−j′l+1)(t− l)
j′l
(

j′l − 1− j′l+1

)
!

.

Recall that j′1 = i in the above expression. Substituting i for j′1 in (2.4), we see that

q̂n,k(t) = n!
n−1

∑
j′1=k−1

p(n−1−j′1)(t)
n
(
n− 1− j′1

)
! ∑
(j′1,...,j′k)∈Si,k−1

k−1

∏
l=1

p(j′l−1−j′l+1)(t− l)
j′l
(

j′l − 1− j′l+1

)
!

. (2.5)

It is clear that
(
n, j′1, . . . , j′k

)
∈ Sn,k if and only if

k− 1 ≤ j′1 ≤ n− 1 and
(

j′1, . . . , j′k
)
∈ Si,k−1.

Writing jl instead of j′l , this means that

q̂n,k(t) = n! ∑(n,k)

k−1

∏
l=0

p(jl−1−jl+1)(t− l)
jl(jl − 1− jl+1)!

= qn,k(t)

for all k ∈ {2, . . . , n} and t ∈ R, and the proof is complete.

We obtain the following as a consequence.

Lemma 2.2. Suppose there exist q > 1, C ≥ 1 and t0 ∈ R such that∣∣∣p(n)(t)∣∣∣ ≤ Cn+1(max(|t|, 1))(q−1)nn! for t ≤ t0 and n ∈N. (2.6)

Let x : R→ C be a solution of equation (1.1) on R such that |x(t)| ≤ M for all t ≤ t0. Then∣∣∣x(n)(t)∣∣∣ ≤ M(2C)n(|t|+ n)(q−1)nn! for all t ≤ t0 and n ∈N.

Proof. By assumption we have |x(t)| ≤ M(2C)0(max(|t|, 1))(q−1)00! for all t ≤ t0.
Fix n ≥ 1 and t ≤ t0. According to Lemma 2.1,

x(n)(t) =
n

∑
k=1

qn,k(t)x(t− k),

where the coefficient functions qn,k, k ∈ {1, . . . , n}, are defined by (2.2) and (2.3). The estimate
(2.6) implies that

|qn,k(t)| ≤ n! ∑(n,k)

k−1

∏
l=0

Cjl−jl+1(max(|t− l|, 1))(q−1)(jl−1−jl+1)

jl

for all 1 ≤ k ≤ n. Notice that

max(|t− l|, 1) ≤ |t|+ k for any k ≥ 1 and 0 ≤ l ≤ k− 1.
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Observe that

|Sn,k| =
(

n− 1
k− 1

)
for all 1 ≤ k ≤ n,

moreover,
k−1

∑
l=0

jl − 1− jl+1 = j0 − jk − k = n− k and
k−1

∏
l=0

jl ≥ n(k− 1)!

hold for all 1 ≤ k ≤ n and (j0, j1, . . . , jk) ∈ Sn,k.
Hence

|qn,k(t)| ≤ (n− 1)! ∑(n,k)
1

(k− 1)!
Cn(|t|+ k)(q−1)(n−k)

= (n− 1)!|Sn,k|
1

(k− 1)!
Cn(|t|+ k)(q−1)(n−k)

= (n− 1)!
(

n− 1
k− 1

)
1

(k− 1)!
Cn(|t|+ k)(q−1)(n−k)

for all 1 ≤ k ≤ n, and∣∣∣x(n)(t)∣∣∣ ≤ n

∑
k=1
|qn,k(t)||x(t− k)| ≤ MCn(n− 1)!

n

∑
k=1

(
n− 1
k− 1

)
(|t|+ k)(q−1)(n−k)

(k− 1)!
. (2.7)

If we note that (
n− 1
k− 1

)
1

(k− 1)!
≤
(

n− 1
k− 1

)
≤ 2n−1

and (|t|+ k)(q−1)(n−k) ≤ (|t|+ n)(q−1)n for 1 ≤ k ≤ n, we obtain from (2.7) that∣∣∣x(n)(t)∣∣∣ ≤ MCn(n− 1)!n(2n−1)(|t|+ n)(q−1)n ≤ M(2C)nn!(|t|+ n)(q−1)n.

Remark 2.3. One might hope that by a more careful exploitation of inequality (2.7), one
could improve the estimate in Lemma 2.2 for x(n)(t), but this does not seem to be true. Let
ε ∈ (0, 1/2). If n is large enough, one can give a lower estimate for the sum

MCn(n− 1)!
n

∑
k=1

(
n− 1
k− 1

)
(|t|+ k)(q−1)(n−k)

(k− 1)!
(2.8)

by considering only the kth term

MCn(n− 1)!
(

n− 1
k− 1

)
(|t|+ k)(q−1)(n−k)

(k− 1)!
= MCnn!

k2

n2
n!

(k!)2(n− k)!
(|t|+ k)(q−1)(n−k), (2.9)

where 1 ≤ (ε/2)n ≤ k ≤ εn. Recall that if m is a positive integer, Stirling’s formula asserts
that there is a real number λ(m) ∈ (0, 1) such that

m! =
√

2πm
(m

e

)m
e

λ(m)
12m .

Using this, we see that

n!

(k!)2(n− k)!
=

√
n

2πk
√

n− k
nn

k2k(n− k)n−k exp
(

k +
λ(n)
12n

− λ(k)
6k
− λ(n− k)

12(n− k)

)
.
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As (ε/2)n ≤ k ≤ εn and λ(m) ∈ (0, 1) for all m ≥ 1, there exist a constant C∗ > 0 independent
of n and k such that

n!

(k!)2(n− k)!
≥ C∗

√
n

εn
√

n(1− ε/2)
nn

(εn)2εn(n(1− ε/2))n(1−ε/2)

= C∗
1

n1+3εn/2
1

ε1+2εn

(
1− ε

2

)−1/2−n(1−ε/2)
.

In addition,

k2

n2 ≥
( ε

2

)2
and (|t|+ k)(q−1)(n−k) ≥

( ε

2

)(q−1)(1−ε/2)n
n(q−1)(1−ε)n.

We conclude that there are constants C1 > 0 and C2 > 0 independent of n such that the
expression (2.9) (and thus (2.8)) is not smaller than

MCnn!C1(C2)
nn(q−1)(1−ε)n−1−3εn/2

for each n ∈N and t ≤ t0.

Consider the case when p(t) = eitq
for all real t with an integer q ≥ 2. Our next objective

is to give a formula for p(n)(t) for each n ∈N and t ∈ R.
For each u ∈ C,

uq − tq =
q−1

∏
k=0

(u− ηkt), where ηk = e
2πik

q , k ∈ {0, 1, . . . , q− 1} and i =
√
−1.

It follows that

ei(uq−tq) =
∞

∑
j=0

(i(uq − tq))j

j!
=

∞

∑
j=0

ij

j!

q−1

∏
k=0

(u− ηkt)j. (2.10)

For each j ≥ 0, define a set Rn,q,j of q-tuples as

Rn,q,j =

{(
l0, l1, . . . , lq−1

)
∈Nq :

q−1

∑
k=0

lk = n, l0 = j, 0 ≤ lk ≤ j for 1 ≤ k ≤ q− 1

}
.

Let ∑(n,q,j) denote the sum taken over the elements of Rn,q,j. Let Dn
t denote the n-fold differ-

entiation with respect to t.
Note that η0 = 1 and ηk 6= 1 if 1 ≤ k ≤ q− 1. This observation and the product rule for

higher order derivatives together give that

Dn
u

q−1

∏
k=0

(u− ηkt)j|u=t = ∑(n,q,j) n!
l0!l1! . . . lq−1!

q−1

∏
k=0

j!
(j− lk)!

(t− ηkt)j−lk

= n!tqj−n ∑(n,q,j)
q−1

∏
k=0

(
j
lk

)
(1− ηk)

j−lk .

As lk ≤ j for all 0 ≤ k ≤ q− 1, we see that n ≤ qj. The above sum is nonempty if and only if

n
q
≤ j ≤ n.
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Substituting into equation (2.10), we deduce that

Dn
ueiuq |u=t = eitq

Dn
uei(uq−tq)|u=t

= eitq

∑
n
q≤j≤n

ij

j!
n!tqj−n ∑(n,q,j)

q−1

∏
k=0

(
j
lk

)
(1− ηk)

j−lk .

Actually we eventually shall need a formula for Dn
t eiαtq

, where α ∈ R is a constant. How-
ever, such a formula follows easily from the above formula for Dn

t eitq
. Select β ∈ C such that

βq = α and write u = βt. Then

Dn
t ei(βt)q

= βnDn
ueiuq |u=βt.

By the above equation for Dn
ueiuq

,

Dn
t eiαtq

= βnDn
ueiuq |u=βt

= eiαtq

∑
n
q≤j≤n

(iα)j

j!
n!tqj−n ∑(n,q,j)

q−1

∏
k=0

(
j
lk

)
(1− ηk)

j−lk .

Next we obtain upper estimates for
∣∣Dn

t eiαtq ∣∣ for each t ∈ R and n ∈ N when α ∈ R and
q ∈N with q ≥ 2.

Assume that n/q ≤ j ≤ n. If |t| ≥ 1, then |t|qj−n ≤ |t|qn−n = |t|(q−1)n. If |t| ≤ 1, then
|t|qj−n ≤ 1. Thus for all t ∈ R, we have

|t|qj−n ≤ (max(|t|, 1))(q−1)n.

Since (
j
lk

)
≤ 2j for 1 ≤ k ≤ q− 1 and

(
j
l0

)
= 1,

we see that
q−1

∏
k=0

(
j
lk

)
≤ 2(q−1)j.

As |1− ηk| ≤ 2 and 0 ≤ lk ≤ j,

|1− ηk|j−lk ≤ 2j−lk and

∣∣∣∣∣q−1

∏
k=0

(1− ηk)
j−lk

∣∣∣∣∣ ≤ 2qj−n,

where we have used that ∑
q−1
k=0 lk = n. It follows that∣∣∣∣∣q−1

∏
k=0

(
j
lk

)
(1− ηk)

j−lk

∣∣∣∣∣ ≤ 2(q−1)j2qj−n = 2(2q−1)j−n.

It is an elementary combinatorial result that the number of ordered (q− 1)-tuples of non-
negative integers

(
l1, . . . , lq−1

)
such that ∑

q−1
k=1 lk = n− j is(

n− j + q− 2
q− 2

)
.
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This estimate does not take into account that lk ≤ j for 1 ≤ k ≤ q − 1. It follows that for
n/q ≤ j ≤ n, ∣∣∣∣∣∑(n,q,j)

q−1

∏
k=0

(
j
lk

)
(1− ηk)

j−lk

∣∣∣∣∣ ≤
(

n− j + q− 2
q− 2

)
2(2q−1)j−n

≤ 2n−j+q−22(2q−1)j−n = 22(q−1)j+q−2.

Our estimates imply that∣∣∣Dn
t eiαtq

∣∣∣ ≤ ∑
n
q≤j≤n

|α|j n!
j!(n− j)!

(n− j)!(max(|t|, 1))(q−1)n22(q−1)j+q−2

≤ 2q−2(max(|t|, 1))(q−1)n(n− j∗)! ∑
n
q≤j≤n

(
n
j

)(
|α|22(q−1)

)j
,

where j∗ denotes the smallest positive integer j such that n/q ≤ j ≤ n. By the binomial
theorem,

∑
n
q≤j≤n

(
n
j

)(
|α|22(q−1)

)j
≤ ∑

0≤j≤n

(
n
j

)(
|α|22(q−1)

)j
=
(

1 + |α|22(q−1)
)n

,

so ∣∣∣Dn
t eiαtq

∣∣∣ ≤ 2q−2(max(|t|, 1))(q−1)n
(

1 + |α|4(q−1)
)n

(n− j∗)!. (2.11)

We conclude that there exists a constant C ≥ 1 such that for all t ∈ R and n ∈N,∣∣∣Dn
t eiαtq

∣∣∣ ≤ Cn+1(max(|t|, 1))(q−1)n(n− j∗)! ≤ Cn+1(max(|t|, 1))(q−1)nn!.

As a consequence we can verify the theorem.

Proof of Theorem 1.1. Let p(t) = ∑m∈F Ameimωtq
for all t ∈ R, where F is a finite set of integers,

Am ∈ C for m ∈ F, ω > 0, A0 = 0 and q ≥ 2 is an integer. Our calculations above show that p
satisfies inequality (2.6) in Lemma 2.2. The boundedness of x on intervals of the form (−∞, t0]
is clear because limt→−∞ x(t) exists and is finite. If one applies Lemma 2.2 and uses Stirling’s
formula, the theorem follows.

Remark 2.4. In fact, with the aid of the advanced calculus form of Stirling’s formula, one can
replace (n− j∗)! in (2.11) with (n!)1−1/q.

It is obvious that (n− j∗)! = 1 for n = 1, 2 because q ≥ 2. Thus we can assume that n ≥ 3.
Note that n/q ≤ j∗ < n/q + 1, so if we choose q∗ > 0 such that j∗ = n/q∗, then

1
q
≤ 1

q∗
<

1
q
+

1
n

and n− n
q
≥ n− n

q∗
> n− n

q
− 1.

Also, since n ≥ 3 and q ≥ 2, it is true that n− n/q > 1.
By Stirling’s formula,

(n− j∗)! =

(
n
(

1− 1
q∗

))n
(

1− 1
q∗

)

en
(

1− 1
q∗

)
√

2πn
(

1− 1
q∗

)
exp

λ
(

n
(

1− 1
q∗

))
12n

(
1− 1

q∗

)
.
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Since n(1− 1/q) > 1 and n(1− 1/q) ≥ n(1− 1/q∗),(
n
(

1− 1
q∗

))n
(

1− 1
q∗

)√
2πn

(
1− 1

q∗

)
≤
(

n
(

1− 1
q

))n
(

1− 1
q

)√
2πn

(
1− 1

q

)
.

Since

en
(

1− 1
q∗

)
> en

(
1− 1

q

)
−1,

we conclude that

(n− j∗)! ≤ e
(n

e

)n
(

1− 1
q

)(q− 1
q

)( q−1
q

)n√
2πn

(
1− 1

q

)
exp

λ
(

n
(

1− 1
q∗

))
12n

(
1− 1

q∗

)
.

Stirling’s formula for n! gives that

(n
e

)n
(

1− 1
q

)
= (n!)1− 1

q (2πn)−
1
2

(
1− 1

q

)
exp

−λ(n)
(

1− 1
q

)
12n

.

Substituting for (n/e)n
(

1− 1
q

)
gives that

(n− j∗)! ≤

(q− 1
q

)( q−1
q

)n

(n!)1− 1
q (2πn)

1
2q exp

1 +
λ
(

n
(

1− 1
q∗

))
12n

(
1− 1

q∗

)
.

It follows, using our previous estimates for
∣∣Dn

t eiαtq ∣∣, that there exists a constant C∗ ≥1
such that for all t ∈ R and n ∈N,∣∣∣Dn

t eiαtq
∣∣∣ ≤ Cn+1

∗ (max(|t|, 1))(q−1)n(n!)1− 1
q .
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