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Abstract. The Fučík equation x′′ = −µx+ + λx− with integral nonlocal boundary value
conditions x(0) = x(1) = γ

∫ 1
0 x(s)ds is considered where µ, λ, γ ∈ R. The Fučík spect-

rum for this problem is constructed. The visualization of the spectrum for some values
of γ are provided.
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1 Introduction

There is intensive literature on boundary value problems for the second order ordinary dif-
ferential equations which depend on two parameters, see for example [1,4,6,7,11]. One of the
pioneering works in this field is [3]. In this work the classical Fučík problem

x′′ = −µx+ + λx−, x(0) = 0, x(1) = 0, (1.1)

where x+ = max{x, 0}, x− = max{−x, 0} and µ ∈ R, λ ∈ R, is considered and the spectrum
of this problem is described.

The Fučík spectrum is a set of (µ, λ) such that the problem (1.1) has nontrivial solutions,
it consists of infinite set of curves F+

i and F−i (i = 0, 1, 2, . . .) that look like hyperbolas. Several
branches of the spectrum are shown in the Figure 1.1. The classical Fučík spectrum (for
Dirichlet boundary conditions) is obtained by solving two linear equations x′′ + µx = 0 and
x′′ + λx = 0 with positive µ and λ and combining a solution x(t) of the problem of (multiple)
fragments ± sin

√
µt and ± sin

√
λt looking for smooth gluing at zero points of x(t).

The Fučík spectrum first appeared in the works by S. Fučík (and independently E. Dancer).
It is a relatively simple semilinear equation and the spectrum of the problem can be obtained
analytically. Since this spectrum contains all eigenvalue of the related linear problem x′′ +
λx = 0, x(0) = 0, x(1) = 0 it can be considered as a generalization of the classical discreet
spectrum. The knowledge of the Fučík spectrum is important for nonlinear problems of
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Figure 1.1: Some branches of spectrum
of the classical Fučík problem (1.1).

Figure 1.2: Some branches of spectrum of
the problem with integral condition (1.2).

the type x′′ + g(t, x) = f (t, x, x′), x(0) = 0, x(1) = 0, where nonlinearity g is asymptotically
linear but asymmetric ( f may be bounded). It was clear later that there are important practical
problems [6] involving asymptotically asymmetric equations.

To get analytical expressions for the Fučík spectrum is a relatively simple task: one should
just combine and glue solutions of two linear equations x′′ + µx = 0 and x′′ + λx = 0 with
positive parameters (negative does not fit since then the Dirichlet boundary conditions cannot
be satisfied). When considering more general boundary conditions one finds that in many
cases also negative values of parameters and combinations positive/negative and vice versa
are possible. The resulting solution may consist of fragments of trigonometric functions and
exponential functions as well.

A completely different spectrum was obtained in the case when the Fučík equation was
considered with nonlocal integral condition

x(0) = 0,
∫ 1

0
x(s)ds = 0. (1.2)

This spectrum was obtained in the author’s work [8] only in the first quadrant, but entirely
the spectrum was described in the work [9]. Several branches of the spectrum are shown in
Figure 1.2. The spectrum branches are located in the regions between the branches of the
classical Fučík spectrum.

The importance of integral boundary conditions stems from the fact that they generalize
multi-point and nonlocal boundary conditions. More about the integral conditions and related
references can be found in the paper [5].

In this article we consider the problem

x′′ = −µx+ + λx−, (1.3)

x(0) = γ

1∫
0

x(s)ds = x(1), γ ∈ R. (1.4)

As a motivation for our work let us mention the work [2], where the problem (1.3), (1.4) is
treated for the case µ = λ. We wish also to generalize the results in [10], where the conditions
x(0) = 0, x(1) = γ

∫ 1
0 x(s)ds were considered.
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2 The spectrum of the problem (1.3), (1.4)

2.1 Some features of the branches F±
0

Consider the solutions of the problem (1.3), (1.4) without zeros in the interval (0, 1). The
following results hold.

Lemma 2.1. The branches F±0 of the spectrum for the problem (1.3), (1.4) do not exist for negative γ

values.

Proof. Let γ < 0. It is clear that in this case sign x(0) = sign x(1) = sign
∫ 1

0 x(s)ds 6=
sign γ

∫ 1
0 x(s)ds, which proves the lemma.

Lemma 2.2. The branch F+
0 (resp. F−0 ), which is a straight line parallel to the λ (resp. µ) axis

• is located in the first and the fourth (resp. the first and the second) quadrants of the (µ, λ)-plane
for γ ∈ [0, 1);

• coincides with the λ (resp. µ) axis for γ = 1;

• is located in the second and the third (resp. the third and the fourth) quadrants of the (µ, λ)-plane
for γ ∈ (1,+∞).

Proof. If γ = 0 then we obtained the classical Fučík problem (1.1). The branch F+
0 = {(µ, λ) |

µ = π2, λ ∈ R} in this case is located in the first and the fourth quadrant. Similarly the
branch F−0 = {(µ, λ) | µ ∈ R, λ = π2} is located in the first and the second quadrant.

Let us consider the case of γ > 0 and x′(0) > 0. We obtain the equation x′′ = −µx. Solving
this equation for 0 < µ < π2 (it guarantees that the solution without zeros in the interval (0, 1)
exists) we obtain the solution x(t) = C1 cos

√
µt+C2 sin

√
µt. In view of x(0) = x(1) we obtain

that C2 = C1 tan
√

µ

2 . Taking into account the condition x(0) = γ
∫ 1

0 x(s)ds, we arrive to the
following expression √

µ

2 tan
√

µ

2

= γ. (2.1)

Consider the left side of the expression (2.1) as a function of µ. The range of values of this
function is the interval (0, 1). It proves the first assertion of the lemma for F+

0 .
Solving the equation x′′ = −µx for negative values of µ we obtain x(t) = C1 exp(

√−µt) +
C2 exp(−√−µt). It follows that C2 = C1 exp(

√−µ) in view of the condition x(0) = x(1).
Taking into account the condition x(0) = γ

∫ 1
0 x(s)ds, we obtain the next expression

√−µ

2 tanh
√−µ

2

= γ. (2.2)

The study of the equation (2.2) shows that it is solvable only for γ > 1. The last statement of
the lemma for F+

0 follows. The proof for F−0 is similar.
If γ = 1 and µ = 0 (or λ = 0) we obtain the next solution of the problem (1.3), (1.4)

x(t) = A, where A ∈ R. It follows that the axes are included in the spectrum. The proof of
the second statement of the lemma is completed.
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2.2 Some features of the branches F±
2i−1

Consider the solution of the problem (1.3), (1.4) with odd number of zeros in the interval
(0, 1). The following lemma is true.

Lemma 2.3. The odd branches F±2i−1 of the spectrum for the problem (1.3), (1.4) represent the points
on the (µ, λ)-plane bisectrix, F±2i−1 = {(µ, λ) | µ = λ = (2πi)2}.

Proof. It is clear that the solution of the problem must have even number of zeros in the
interval (0, 1) in order to have the same values of the solution at the interval endpoints.
That is why the odd number of zeros in the interval (0, 1) is possible only in the case when
x(0) = 0 = x(1) and the value of integral

∫ 1
0 x(s)ds = 0 also. In this case µ = λ = (2πi)2.

Remark 2.4. The points µ = λ = (2πi)2 are the eigenvalues for the problem x′′ = −µx,
x(0) = 0,

∫ 1
0 x(s)ds = 0.

2.3 Some features of the branches F±
2

Now consider the solution of the problem (1.3), (1.4) with two zeros in the interval (0, 1) and
x′(0) > 0. Let us recall that the corresponding (µ, λ) values belong to the branch F+

2 .
In this case the solutions of problem (1.3), (1.4) with two zeros τ1 and τ2 in the interval

(0, 1) may be of six types (described in Figure 2.1) for some values of γ. The hyperbolic sine
function, linear function or sine function in the interval (0, τ1) are to be continued by sine
function in the interval (τ1, τ2) and then with hyperbolic sine function, linear function or sine
function in the interval (τ2, 1). The solution, which starts as sine function, may be of four
different types. All types of solutions of problem (1.3), (1.4) with two zeros in the interval
(0, 1) and x′(0) > 0 are shown in Figure 2.1.

A B C

D E F

Figure 2.1: The solutions of the problem (1.3), (1.4) with two zeros
in the interval (0, 1) and x′(0) > 0 (for γ = 4).

Let us consider all of these types of solutions separately.
Case A. The solution which is depicted in the case A corresponds to the negative λ and posi-
tive µ values, so such point of the branch F+

2 are located in the fourth (µ, λ)-plane quadrant.
In view of the structure of a solution we obtain that

τ2 − τ1 =
π
√

µ
, τ1 =

1
2

(
1− π
√

µ

)
, τ2 =

1
2

(
1 +

π
√

µ

)
. (2.3)
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It follows that µ > π2.
Consider a solution of the problem (1.3), (1.4) in the interval (0, τ1). The corresponding

solution is x(t) = A sinh
√
−λ(t− τ1), it follows that x(0) = −A sinh

√
−λτ1.

In the interval (τ1, τ2) we obtain x(t) = A
√
−λ/µ sin

√
µ(t− τ1).

In the last interval (τ2, 1) the solution of problem (1.3), (1.4) is x(t) = −A sinh
√
−λ(t− τ2),

taking into account (2.3) we obtain x(1) = −A sinh
√
−λτ1.

It follows that
τ1∫

0

x(s)ds =
A√
−λ

(1− cosh
√
−λτ1),

τ2∫
τ1

x(s)ds =
2A
√
−λ

µ
,

1∫
τ2

x(s)ds =
A√
−λ

(1− cosh
√
−λτ1).

We obtain from the last relations and (1.4) the equation

γ

(
A√
−λ

(1− cosh
√
−λτ1 +

2A
√
−λ

µ
+

A√
−λ

(1− cosh
√
−λτ1)

)
= −A sinh

√
−λτ1

or

γ

(
2
λ
− 2

µ
− 2

λ
cosh

√
−λ

2

(
1− π
√

µ

))
=

1√
−λ

sinh
√
−λ

2

(
1− π
√

µ

)
. (2.4)

Case B. The solution shown in the case B corresponds to λ = 0 and µ > 0, so the point (µ, λ)

is located on the µ axis.
Similarly as above, the expressions (2.3) hold.
Solutions of the problem (1.3), (1.4) in the intervals (0, τ1), (τ1, τ2) and (τ2, 1) are

x(t) = −A(t− τ1), x(t) = − A
√

µ
sin
√

µ(t− τ1), x(t) = A(t− τ2)

respectively and

τ1∫
0

x(s)ds =
Aτ2

1
2

,
τ2∫

τ1

x(s)ds = −2A
µ

,
1∫

τ2

x(s)ds =
Aτ2

1
2

.

In a similar way as above, we obtain the equation

γ

((
1
2
(1− π

√
µ
)

)2

− 2
µ

)
=

1
2

(
1− π
√

µ

)
that allows to calculate the corresponding values of µ.

Multiplying the last equation by 4µ we obtain

(γ− 2)µ + 2(π − πγ)
√

µ + π2γ− 8γ = 0. (2.5)

The investigation of (2.5) as quadratic equation with respect to k =
√

µ with parameter γ

shows that solutions of this equation exist for any real values of γ, but these solutions satisfy
the condition µ > π2 only for γ < 0 and γ > 2. This proves the next lemma.
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Lemma 2.5. The branch F+
2 (resp. F−2 ) is located in the first and the fourth (resp. the first and the

second) (µ, λ)-plane quadrant for γ < 0 and γ > 2.

Let us mention that the equation (2.5) may be obtained from the equation (2.4) if λ → 0
also.
Case C. The points of the spectrum corresponding the solutions which are depicted in the
cases C, D, E and F belong to the first (µ, λ)-plane quadrant, so in this cases µ > 0 and λ > 0.

In view of the structure of a solution in the case C we obtain the same zeros (2.3) as above.
Analogously as in the case A consider the corresponding eigenvalue problems on each of the
intervals (0, τ1), (τ1, τ2) and (τ2, 1), then calculate the integral values. So, in this case we obtain

γ

(
2
λ
− 2

µ
− 2

λ
cos

√
λ

2

(
1− π
√

µ

))
=

1√
λ

sin

√
λ

2

(
1− π
√

µ

)
. (2.6)

It follows from geometrical considerations that branch F+
2 given by the equation (2.6) is

bounded by two restrictions π√
µ < 1 and π√

µ + π√
λ
≥ 1. It means that the corresponding (µ, λ)

values are bounded by two consecutive branches F+
0 and F+

1 of classical Fučík spectrum.
Case F. In view of the structure of a solution it follows that

τ2 − τ1 =
π√
λ

, τ1 =
1
2

(
1− π√

λ

)
, τ2 =

1
2

(
1 +

π√
λ

)
. (2.7)

In a similar way as above we obtain the next equation for F+
2 in this case

γ

(
2
µ
− 2

λ
− 2

µ
cos
√

µ

2

(
1− π√

λ

))
=

1
√

µ
sin
√

µ

2

(
1− π√

λ

)
. (2.8)

This part of branch F+
2 is bounded by two consecutive branches F+

1 ={(µ, λ) | π√
µ+

π√
λ
<1}

and F+
2 = {(µ, λ) | 2π√

µ + π√
λ
≥ 1} of classical Fučík spectrum.

Cases D, E. It follows from geometrical considerations that these parts of branch F+
2 are given

by a similar equation as that for F+
1 in the classical Fučík spectrum, that is

π
√

µ
+

π√
λ
= 1. (2.9)

Let us recall that the point µ = λ = 4π2 does not belong to this branch, because this point
is the degenerate branch F+

1 of the spectrum for the problem (1.3), (1.4).
The values of (µ, λ) which correspond to solution shown in the case D are located in a

part of (2.9) where µ > λ, but the values of (µ, λ) which correspond to solution given in the
case E are located in a part where µ < λ.

Lemma 2.6. The relation (2.9) describes two parts of F±2 for γ ∈ (0, π
2 ]. For γ < 0 and γ > π

2 these

two components of branch are bounded by the points
(π2(π−4γ)2

4γ2 , π2(π−4γ)2

(π−2γ)2

)
and (4π2, 4π2) (in case

E) and (4π2, 4π2) and
(π2(π−4γ)2

(π−2γ)2 , π2(π−4γ)2

4γ2

)
(in case D).

Proof. Consider the solution of intermediate type between cases C and D. The solution with
x(0) < 0 and x′(0) = 0 may exist. This type of solution is shown in Figure 2.2 in the first
graph. In the second graph of Figure 2.2 a similar solution of intermediate type between cases
E and F is depicted.

For definiteness let us consider the second case.
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The solution of the problem (1.3), (1.4) in the interval (0, τ1), where τ1 = π
2
√

µ , is x(t) =

A sin
√

µ(t− τ1) = A cos
√

µt. In view of this, x(0) = x(1) = A.
Similarly as above we obtain that

1∫
0

x(s)ds =
2A
√

µ
−

2A
√

µ

λ
. (2.10)

It follows from the conditions (1.4) and (2.10) that

γ

(
2
√

µ
−

2
√

µ

λ

)
= 1. (2.11)

By solving the system of equations (2.9) and (2.11) we obtain µ = π2(π−4γ)2

4γ2 , λ = π2(π−4γ)2

(π−2γ)2 .

The above mentioned values of µ and λ are greater then π2 only for γ < 0 and γ > π
2 , so only

for such values of γ the solutions of the problem (1.3), (1.4) shown in Figure 2.2 exist.
The proof for branches F−2 is similar.

Figure 2.2: The solutions of the problem (1.3), (1.4) with two zeros
in the interval (0, 1) and x′(0) = 0 (for γ = 4).

2.4 Some features of the branches F±
2i

Consider the solutions of the problem (1.3), (1.4) with even number of zeros 2i (where i =

2, 3, . . .) in the interval (0, 1). In this case the corresponding (µ, λ) values belong to the
branches F±2i . The solutions of problem (1.3), (1.4) with 2i zeros in the interval (0, 1) sim-
ilarly as in above considered case may be of four types (see Figure 2.5 where all types of
solutions corresponding to different components of F+

4 are shown).

Figure 2.3: The solutions of the problem (1.3), (1.4) with four zeros
in the interval (0, 1) and x′(0) > 0 (for γ = 4).
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Lemma 2.7. The relation iπ√
µ + iπ√

λ
= 1 describes two parts of F±2i for γ ∈ (0, π

2 ]. For γ < 0 and

γ > π
2 these two components of a branch are bounded by the points

( i2π2(π−4γ)2

4γ2 , i2π2(π−4γ)2

(π−2γ)2

)
and(

(2πi)2, (2πi)2) for one component and
(
(2πi)2, (2πi)2) and

( i2π2(π−4γ)2

(π−2γ)2 , i2π2(π−4γ)2

4γ2

)
for other one.

Proof. The proof is similar to the proof of Lemma 2.6.

Lemma 2.8. The equation

γ

(
2i
λ
− 2i

µ
− 2

λ
cos

√
λ

2

(
1− iπ
√

µ
− (i− 1)π√

λ

))
=

1√
λ

sin

√
λ

2

(
1− iπ
√

µ
− (i− 1)π√

λ

)
(2.12)

describes the component of F+
2i bounded by two restrictions iπ√

µ + (i−1)π√
λ

< 1 and iπ√
µ + iπ√

λ
≥ 1.

Proof. The derivation of the expression (2.12) is similar to the previously described derivation
of the formula (2.6) in the above mentioned case C.

Lemma 2.9. The equation

γ

(
2i
µ
− 2i

λ
− 2

µ
cos
√

µ

2

(
1− (i− 1)π

√
µ
− iπ√

λ

))
=

1
√

µ
sin
√

µ

2

(
1− (i− 1)π

√
µ
− iπ√

λ

)
(2.13)

describes the component of F+
2i bounded by two restrictions iπ√

µ + iπ√
µ < 1 and (i+1)π√

µ + iπ√
λ
≥ 1.

Proof. The derivation of the expression (2.13) is similar to the previously described derivation
of the formula (2.8) in the above mentioned case F.

2.5 Analytical and graphical description of the spectrum

The next theorem follows from the above lemmas.

Theorem 2.10. The spectrum of the problem (1.3), (1.4) consists of the branches (if these branches exist
for corresponding value of γ) given by

F+
0 =

{
(µ, λ)

∣∣∣ γ tan
√

µ

2 =
√

µ

2 , 0 < µ < π2, λ ∈ R or µ = 0, λ ∈ R or

γ tanh
√−µ

2 =
√−µ

2 , µ < 0, λ ∈ R
}

,

F+
2i−3 =

{
(µ, λ)

∣∣∣ µ = λ = (2π(i− 1))2
}

,

F+
2 =

{
(µ, λ)

∣∣∣ γ
(

2
λ −

2
µ −

2
λ cosh

√
−λ
2

(
1− π√

µ

))
= 1√

−λ
sinh

√
−λ
2

(
1− π√

µ

)
, µ > π2, λ < 0;

(γ− 2)µ + 2(π − πγ)
√

µ + π2γ− 8γ = 0, µ > π2, λ = 0;

γ
(

2
λ −

2
µ −

2
λ cos

√
λ

2

(
1− π√

µ

))
= 1√

λ
sin

√
λ

2

(
1− π√

µ

)
, µ > π2, π√

µ + π√
λ
≥ 1;

γ
(

2
µ −

2
λ −

2
µ cos

√
µ

2

(
1− π√

λ

))
= 1√

µ sin
√

µ

2

(
1− π√

λ

)
, π√

µ + π√
λ
< 1, 2π√

µ + π√
λ
≥ 1;

π√
µ + π√

λ
= 1, µ ∈

(π2(π−4γ)2

4γ2 , 4π2) ∪ (4π2, π2(π−4γ)2

(π−2γ)2

)
,

λ ∈
(π2(π−4γ)2

4γ2 , 4π2) ∪ (4π2, π2(π−4γ)2

(π−2γ)2

)}
,
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F+
2i =

{
(µ, λ)

∣∣∣ γ
(

2i
λ −

2i
µ −

2
λ cos

√
λ

2

(
1− iπ√

µ −
(i−1)π√

λ

))
= 1√

λ
sin

√
λ

2

(
1− iπ√

µ −
(i−1)π√

λ

)
,

iπ√
µ + (i−1)π√

µ < 1, iπ√
µ + iπ√

λ
≥ 1;

γ
(

2i
µ −

2i
λ −

2
µ cos

√
µ

2

(
1− (i−1)π√

µ − iπ√
λ

))
= 1√

µ sin
√

µ

2

(
1− (i−1)π√

µ − iπ√
λ

)
,

iπ√
µ + iπ√

µ < 1, (i+1)π√
µ + iπ√

λ
≥ 1; iπ√

µ + iπ√
λ
= 1,

µ ∈
( i2π2(π−4γ)2

4γ2 , (2πi)2) ∪ ((2πi)2, i2π2(π−4γ)2

(π−2γ)2

)
,

λ ∈
( i2π2(π−4γ)2

4γ2 , (2πi)2) ∪ ((2πi)2, i2π2(π−4γ)2

(π−2γ)2

)}
,

F−i =
{
(µ, λ)

∣∣∣ (λ, µ) ∈ F+
i

}
,

where i = 2, 3, . . .

Some branches of the spectrum for the problem (1.3), (1.4) are shown in Figures 2.4 and 2.5
for selected values of γ. The dashed curves form the classical Fučík spectrum (the spectrum of
the problem (1.1)), the red ones are for F+

i branches and the blue curves are for F−i branches
of the spectrum for the problem (1.3), (1.4). The marked points on the bisectrix are degenerate
odd branches F±2i−1 of the spectrum, the points which separate even branches from each other
are shown with red (for F+

2i ) and blue (for F−2i ) colours. Some points are specially marked with
letters A, B and so on in the third graph in Figure 2.5, these points correspond to the solutions
which are shown in Figure 2.1.

γ = −20 γ = −2

Figure 2.4: The spectrum for the problem (1.3), (1.4) for some negative values of γ.
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γ = 1 γ = 3

γ = 4 γ = 20

Figure 2.5: The spectrum for the problem (1.3), (1.4) for some positive values of γ.

3 Conclusions

• The new Fučík spectra were obtained for nonlocal integral boundary conditions (1.4).

• The full analytical description of the spectrum for the problem (1.3), (1.4) was obtained.
It would be natural to consider in the future the more general boundary conditions of
the form x(0) = γ1

∫ 1
0 x(s)ds, x(1) = γ2

∫ 1
0 x(s)ds, where γ1 6= γ2.

• The following new feature of spectra was observed: positive (F+
i ) and negative (F−i )

parts of the spectrum may contain common segments and entire branches for selected
values of γ.

• The visualization of the spectrum for the problem (1.3), (1.4) was obtained for some
selected values of γ.
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