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Abstract. In this paper we study questions on solvability of some boundary value
problems for the Laplace equation with boundary integro-differential operators in the
exterior of a unit ball. We study properties of the given integral - differential operators
of fractional order in a class of functions which are harmonic outside a ball. We prove
theorems about existence and uniqueness of a solution of the problem. We construct
explicit form of the solution of the problem in integral form, by solving the Dirichlet
problem.
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1 Introduction

Let D be a bounded domain in the space Rn, n ≥ 3, with sufficiently smooth boundary S.
It is known (see e.g. [4]) that any function u(x), which belongs to the class C2(D) and

satisfies the Laplace equation
∆u(x) = 0, x ∈ D,

is called harmonic function in the domain D.
Laplace’s equation is the most simple example of elliptic partial differential equations. The

general theory of solutions to Laplace’s equation is known as potential theory. The solutions of
Laplace’s equation are the harmonic functions, which are important in many fields of science,
notably the fields of electromagnetism, robotic technique, astronomy, and fluid dynamics,
because they can be used to accurately describe the behavior of electric, gravitational, and
fluid potentials (see [5, 10, 12, 21, 24]). In the study of heat conduction, the Laplace equation
is the steady-state heat equation. The Laplace operator has a great importance in quantum
physics, in particular in the study of the Schrödinger equation.

The present work is devoted to the study of a exterior boundary value problem for the
Laplace equation with a boundary operator of fractional order.
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Recently, interest in the study of various boundary value problems for elliptic equations is
renewed [7, 13, 14, 16, 17, 19, 25–28, 30].

Boundary value problem with boundary operators of fractional order appear in the prob-
lem of diffraction of waves and in the processes of electromagnetic waves. Details about this
can be seen in [1, 31, 32].

In the study of boundary value problems for the Laplace equation on infinite domains
additionally regular solutions are required. Namely, a function u(x), harmonic in the do-
main D1 = Rn\D, is called regular harmonic (at infinity) if the following condition holds as
|x| → ∞:

|u(x)| ≤ C|x|−(n−2), n ≥ 3, (1.1)

where C = const.
Note that if for the function u(x) the estimation (1.1) holds, then for any multi-index

β = (β1, β2, . . . , βn) with |β| = β1 + β2 + · · · + βn the following estimation holds (see [33,
p. 373]:

∂|β|u(x)

∂xβ1
1 ∂xβ2

2 ...∂xβn
n

= O
(
|x|−(n+|β|−2)

)
, n ≥ 3. (1.2)

Let Ω = {x ∈ Rn : |x| < 1}, n ≥ 3, be a unit ball, ∂Ω = {x ∈ Rn : |x| = 1} be a unit sphere.
We denote by Ω+ = Rn\Ω the exterior of the unit ball.

Assume that u(x) is the regular harmonic function in the domain Ω+ r = |x|, (|x| =√
x2

1 + · · ·+ x2
n is the norm in Rn), θ = x

|x| and 0 < α ≤ 1.
For the formulation of the problem, we need to define the fractional differentiation oper-

ator. In the class of functions, harmonic in the domain Ω+, we define integral-differentiation
operators of the fractional order. For a positive number α a fractional integration operator in
Riemann–Liouville sense of α order is the expression [15]:

Iα
−[u](x) =

1
Γ(α)

∞∫
r

(τ − r)α−1u(τθ)dτ,

and the expression:

Dα
−[u](x) =

(
− d

dr

)
[Iα
−[u]](x)

≡ 1
Γ(1− α)

(
− d

dr

) ∞∫
r

(τ − r)−αu(τθ)dτ, 0 < α ≤ 1,
(1.3)

is called a fractional differentiation operator in Riemann–Liouville sense of α order, where d
dr

denotes differentiation operator of the form

d
dr

=
n

∑
j=1

xj

|x|
∂

∂xj
.

Furthermore, we will suppose, that I0
−[u](x) = u(x). Then

D1
−[u](x) =

(
− d

dr

)
I0
−[u](x) = −du

dr
(x),

therefore, when α = 1 the operator (1.3) coincides with derivative by direction of the vector
r = |x|.
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Introduce the additional notation

Bα
−[u](x) = rαDα

−[u](x),

B−α
− [u](x) = Iα

−
[
r−αu

]
(x).

It is easy to show that the operators Bα
− and Bβ

− commute for α, β ∈ (0, 1]. Similarly, we can
show that the operators B−α

− and B−β
− also commute.

Hence, we see that in the general case:

Bα
−

[
Bβ
−[u]

]
(x) 6= Bα+β

− [u](x),

B−α
−

[
B−β
− [u]

]
(x) 6= B−(α+β)

− [u](x).

Let now~α=(α1, . . . , αm) and 0 < αj ≤ 1, j = 1, . . . , m. Consider more general operators:

B~α−[u](x) = Bα1
− [B

α2
− · · · B

αm
− [u]](x)

= Bαm
−
[
Bαm−1
− · · · Bα1

− [u]
]
(x),

B−~α− [u](x) = B−α1
−
[
B−α2
− · · · B−αm

− [u]
]
(x)

= B−αm
−

[
B−αm−1
− · · · B−α1

− [u]
]
(x).

Note that properties and applications of similar operators in the class of functions, har-
monic in the ball Ω, were studied in [14,28]. Moreover, note that in [6] in the class of functions,
harmonic in the ball, properties and applications of operators of the following form were stud-
ied:

δc1 = r
d
dr

+ c1,

δm
~c =

(
r

d
dr

+ c1

)
· · ·
(

r
d
dr

+ cm

)
, ~c = (c1, . . . , cm).

2 Formulation and solution of boundary value problems

Now let us consider formulation and solution of some exterior boundary value problems,
including the operators B~α− and B−~α− on the boundary.

Problem 2.1. Find a function u(x), harmonic in the domain Ω+, for which the function Bα
−[u](x) is

continuous in Ω+ ∪ ∂Ω, satisfying the equality

Bα
−[u](x) = f (x), x ∈ ∂Ω,

and the condition (1.1).

Problem 2.2. Find a function u(x), harmonic in the domain Ω+, for which the function B~α−[u](x) is
continuous in Ω+ ∪ ∂Ω, satisfying the equality

B~α−[u](x) = f (x), x ∈ ∂Ω,

and the condition (1.1).
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Papers [2, 3, 9, 11, 18, 20, 23, 29] are dedicated to the study of boundary problems with
boundary operators of integer order in the infinite domains. And boundary value problems
with boundary operators of the fractional order for elliptic equations were studied in [7, 13,
14, 16, 17, 19, 25–28, 30].

Let v(x) be a regular solution of the Dirichlet problem in the domain Ω+, i.e.
∆v(x) = 0, x ∈ Ω+,

v(x) = f (x), x ∈ ∂Ω,

|v(x)| ≤ C|x|−(n−2), |x| → ∞.

(2.1)

It is well known (see [8, p. 73]) that if f (x) ∈ C(∂Ω), then the solution of the problem (2.1)
exists, unique and can be represented as:

v(x) =
1

ωn

∫
∂Ω

|x|2 − 1
|x− y|n−1 f (y)dSy,

where ωn = 2πn/2

Γ(n/2) is the area of the unit sphere in Rn.
Since when α = 1 we have the equality:

B1
−[u](x)

∣∣∣
∂Ω

= −r
∂u(x)

∂r

∣∣∣∣
∂Ω

=
∂u(x)

∂ν

∣∣∣∣
∂Ω

,

where ν is a vector of normal to the sphere ∂Ω, then the Problem 2.1 coincides with the
exterior Neumann problem for the Laplace equation. It is known that (see e.g. [23]), for
any f (x) ∈ C(∂Ω) the solution of the exterior Neumann problem exists, unique and can be
represented as

u(x) =
∞∫

r

v(tx)
t

dt,

where v(x) is a solution of the Dirichlet problem (2.1).
Analogously, the Problem 2.2 when αj = 1, j = 1, . . . , m coincides with external problem

with the boundary operator of the form:

(−1)m r
∂

∂r

(
r

∂

∂r
. . .
(

r
∂

∂r

))
︸ ︷︷ ︸

m

= (−1)m
(

r
∂

∂r

)m

= (−1)m
(

∂

∂ν

)m

.

Let us formulate the main propositions concerning to the Problems 2.1 and 2.2.

Theorem 2.3. Let 0 < α ≤ 1. Then for any f (x) ∈ C(∂Ω) a solution of the Problem 2.1 exists,
unique and can be represented as:

u(x) = B−α
− [v](x), (2.2)

where v(x) is a solution of the Dirichlet problem (2.1).

Theorem 2.4. Let 0 < αj ≤ 1, j = 1, 2, . . . , n. Then for any f (x) ∈ C(∂Ω) a solution of the
Problem 2.2 exists, unique and can be represented as:

u(x) = B−~α− [v](x), (2.3)

where v(x) is a solution of the Dirichlet problem (2.1).

Hence, statement of Theorem 2.3 implies that the Problem 2.1 for any 0 < α ≤ 1 behaves
as a solution of the exterior Neumann problem.
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3 Properties of the operators B~α
− and B−~α

−

In this section we investigate some properties of the operator B~α− and B−~α− .

Lemma 3.1. Let 0 < α < 1 and u(x) is a regular harmonic function in the domain Ω+. Then the
following inequalities hold:∣∣B−α

− u(x)
∣∣ ≤ C|x|2−n, |Bα

−u(x)| ≤ C|x|2−n, |x| → ∞, (3.1)

where C is a some constant.

Proof. Let u(x) be the regular harmonic function in the domain Ω+. Then

|B−α
− u(x)| =

∣∣∣∣∣∣ 1
Γ(α)

∞∫
1

(s− 1)α−1u(sx)ds

∣∣∣∣∣∣
≤ Cr2−n

∞∫
1

(s− 1)α−1s2−nds

= Cr2−nB(α, n− 2− α) = C1|x|2−n.

Here B(α, β) is the Euler beta function. Furthermore, we represent the function

Bα
−u(x) ≡ rαDα

−u(x)

in the form:

rαDα
−u(x) =

rα

Γ(1− α)

d
dr

∞∫
r

(τ − r)−αu(τθ)dτ

=
rα

Γ(1− α)

d
dr

r1−α

∞∫
1

(s− 1)−αu(sx)ds


=

1
Γ(1− α)

∞∫
1

(s− 1)−αr
d
dr

u(sx)ds

+
1− α

Γ(1− α)

∞∫
1

(s− 1)−αu(sx)ds.

Since

r
d
dr

u(x) =
n

∑
i=1

xi
∂u(x)

∂xi
,

then ∣∣∣∣r d
dr

u(x)
∣∣∣∣ = n

∑
i=1

∣∣∣∣xi
∂u(x)

∂xi

∣∣∣∣ ≤ C|x|2−n, |x| → ∞.

Consequently

|rαDα
−u(x)| ≤ C1|x|2−n

∞∫
1

(s− 1)α−1s2−nds

= C2|x|2−n, |x| → ∞.

Lemma 3.1 is proved.
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Remark 3.2. From now on we will consider regular harmonic functions in Ω+. Therefore all
further investigated integrals converge.

Lemma 3.3. Let u(x) be a regular harmonic function in the domain Ω+, then the functions Bα
−[u](x)

and B−α
− [u](x) are also harmonic in Ω+.

Proof. Let u(x) be a regular harmonic function in the domain Ω+. We represent Bα
−[u](x) in

the form:

Bα
−[u](x) = − 1

Γ(1− α)

(
r

d
dr

+ 1− α

) ∞∫
1

(s− 1)−αu(sx)ds

= − 1
Γ(1− α)

∞∫
1

(s− 1)−αδ1−α[u](sx)ds.

Formally applying the operator Laplace ∆ to the function Bα
−[u](x), we get

∆Bα
−[u](x) = − 1

Γ(1− α)
∆

 ∞∫
1

(s− 1)−αδ1−α[u](sx)ds


= − 1

Γ(1− α)

∞∫
1

(s− 1)−αδ3−α[∆[u]](sx)ds = 0.

Now we show harmony of the function B−α
− [u](x). By direct calculation we find, that in

the domain Ω+ the following equality holds:

∆B−α
− [u](x) =

∞∫
1

(s− 1)α−1

Γ(α)
s−α∆u(sx)ds = 0, x ∈ Ω+.

Consequently, functions Bα
−[u](x) and B−α

− [u](x) are harmonic in Ω+. Further, since the
function u(x) is regular at infinity, then the condition (1.1) holds for this function. Then as in
the Lemma 3.1 for the functions Bα

−[u](x) and B−α
− [u](x) are regulars at infinity. Lemma 3.3 is

proved.

Lemma 3.4. Let u(x) be a regular harmonic function in the domain Ω+, then the functions B~α−[u](x)
and B−~α− [u](x) are also harmonic in Ω+.

Proof. Let a function u(x) be regular harmonic in the domain Ω+. Then as in Lemma 3.3, the
function B~α−[u](x) can be represented as:

B~α−[u](x) = −
∞∫

1

ds1

Γ(1− α1)
· · ·

∞∫
1

(s− 1)−~α

Γ(1− αm)
δ1−α1 [· · · δ1−αm [u]](sx)ds.

where (s− 1)−~α = (s1 − 1)−α1 · · · (sm − 1)−αm , sx = s1 · · · smx.
Applying Laplace operator to the function B~α−[u](x), we have

∆B~α−[u](x) =
∞∫

1

−ds1

Γ(1− α1)
· · ·

∞∫
1

(s− 1)−~α

Γ(1− αm)
δ3−α1 [· · · δ3−αm [∆u]](sx)ds = 0.
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Further, now we show that the function B−~α− [u](x) is harmonic. We represent the function
B−~α− [u](x) as:

B−~α− [u](x) =
∞∫

1

ds1

Γ(α1)

∞∫
1

ds2

Γ(α2)
· · ·

∞∫
1

(s− 1)~α−1 s−~α

Γ(αm)
u(sx)dsm,

where (s− 1)~α−1 = (s− 1)α1−1 · · · (s− 1)αm−1, s−~α = s−α1
1 · · · s−αm

m , sx = s1 · · · smx.
Applying the Laplace operator to the function B−~α− [u](x), we get

∆B−~α− [u](x) =
∞∫

1

ds1

Γ(α1)
· · ·

∞∫
1

(s− 1)α−1

Γ(αm)
s−α∆u(sx)dsm = 0, x ∈ Ω.

Regularity of the functions B~α−[u](x) and B−~α− [u](x) at infinity can be checked as in the case of
Lemma 3.3. Lemma 3.4 is proved.

Lemma 3.5. Let u(x) be a regular harmonic function in the domain Ω+ and 0 < α ≤ 1. Then, for
any x ∈ Ω+ the following equality holds:

u(x) =
1

Γ(α)

∞∫
1

(s− 1)α−1s−αBα
−[u](sx)ds. (3.2)

Proof. Let x ∈ Ω and t ∈ [1, ∞). Consider the function:

=t[u](x) =
1

Γ(α)

∞∫
t

(τ − t)α−1τ−αBα
−[u](τx)dτ.

Since u(x) is the regular harmonic function, then it satisfies the estimate (1.1). Then, by the
assertion of Lemma 3.1 for the function Bα

−[u](x) satisfies the estimate (3.1). Therefore for all
t ≥ 1 the integral =t[u](x) exists.

We represent =t[u](x) as:

=t[u](x) =
1

Γ(α)
d
dt


∞∫

t

(τ − t)α

α
τ−αBα

−[u](τx)dτ

.

Further, using definition of the operator Bα
−, we get

=t[u](x) = − d
dt


∞∫

t

(τ − t)α

αΓ(α)
τ−ατα d

dτ

∞∫
τ

(ξ − τ)−α

Γ(1− α)
u(ξx)dξdτ


= − d

dt


∞∫

t

(τ − t)α

Γ(α + 1)
d

dτ

∞∫
τ

(ξ − τ)−α

Γ(1− α)
u(ξx)dξdτ


= − 1

Γ(α)Γ(1− α)

d
dt

 (τ − t)α

α

∞∫
τ

(ξ − τ)−αu(ξx)dξ

∣∣∣∣∣∣
τ=∞

τ=t

+

∞∫
t

(τ − t)α−1
∞∫

τ

(ξ − τ)−αu(ξx)dξdτ


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= − d
dt


∞∫

t

(τ − t)α−1

Γ(α)

∞∫
τ

(ξ − τ)−α

Γ(1− α)
u(ξx)dξdτ


= − d

dt


∞∫

t

u(ξx)
ξ∫

t

(τ − t)α−1(ξ − τ)−α

Γ(α)Γ(1− α)
dτdξ

.

It is easy to show that

ξ∫
t

(τ − t)α−1(ξ − τ)−αdτ = Γ(α)Γ(1− α).

Then

=t[u](x) = − d
dt

∞∫
t

u(ξx)dξ = u(tx).

If now we put t = 1, then we get the equality (3.2). Lemma 3.5 is proved.

Lemma 3.6. Let ~α = (α1, . . . , αm), 0 < αj ≤ 1, j = 1, . . . , m and u(x) be harmonic function in the
domain Ω. Then for any x ∈ Ω the following equality holds:

u(x) =
∞∫

1

ds1

Γ(α1)
· · ·

∞∫
1

(s− 1)~α−1

Γ(αm)
s−~αB~α−[u](sx)dsm. (3.3)

Proof. Let x ∈ Ω and tj ∈ [1, ∞), j = 1, m. Denote

(s− t)α−1 = (s1 − t1)
α1−1 · · · (sm − tm)

αm−1.

Consider the function:

It[u](x) =
∞∫

t1

ds1

Γ(α1)
· · ·

∞∫
tm

(s− t)~α−1

Γ(αm)
s−~αB~α−[u](sx)dsm.

Denote

Itm [u](x) =
1

Γ(α)

∞∫
tm

(sm − tm)
αm−1s−αm

m Bαm
− [v](sx)dsm,

where
v(x) = Bαm−1

−
[
· · · Bα1

− [u]
]
(x).

By using results of Lemma 3.5, we obtain:

Itm [u](x) =
1

Γ(α)

∞∫
tm

(sm − tm)
αm−1s−αm

m Bαm
− [v](sx)dsm = v(tx).

Further, repeating this process by all tj, j = 1, . . . , m− 1, we have

It[u](x) = u(tx),

where tx = t1 · · · tmx.
If now we put t1 = 1, t2 = 1, . . . , tm = 1, then we get the equality (3.3). Lemma 3.6 is

proved.
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Lemma 3.7. If function u(x) is harmonic in the domain Ω, then the following equalities hold:

B−α
− [Bα

−[u]](x) = u(x), Bα
−
[
B−α
− [u]

]
(x) = u(x). (3.4)

Proof. Let us prove the first equality of Lemma 3.7. We apply operator B−α
− to the function

Bα
−[u](x). By definition of the operator B−α

− [u](x) and according to Lemma 3.5, we have

B−α
− [Bα

−[u]](x) =
1

Γ(α)

∞∫
1

(s− 1)α−1s−αBα
−[u](sx)ds = u(x).

To prove the second equality of Lemma 3.7 we apply the operator Bα
−[u](x) = rαDα

−[u](x) to
the function B−α

− [u](x). Then we get

Bα
−
[
B−α
− [u]

]
(x) =

1
Γ(α)

Bα
−

 ∞∫
1

(s− 1)α−1s−αu(sx)ds


=
−rα

Γ(α)
d
dr

∞∫
r

(τ − r)−α

Γ(1− α)

 ∞∫
1

(s− 1)α−1s−αu(sτθ)ds

dτ.

Since u(x) is the regular harmonic function, then it satisfies the estimate (1.1). Therefore,
each of the considered integrals exist and by Fubini’s theorem, we can change the order of
integration. Then

Bα
−
[
B−α
− [u]

]
(x) = −

∞∫
1

(s− 1)α−1

Γ(α)
s−α

rα d
dr

∞∫
r

(τ − r)−α

Γ(1− α)
u(sτθ)dτ

ds.

Further, it is easily seen correctness of the following equalities:

rα d
dr

∞∫
r

(τ − r)−α

Γ(1− α)
u(sτθ)dτ =

sτ=t

rα

Γ(1− α)

d
dr

∞∫
rs

(
t
s
− r
)−α

u(tθ)
dt
s

=
rαsα−1

Γ(1− α)

d
dr

∞∫
rs

(t− rs)−αu(tθ)dt

=
(rs)α

Γ(1− α)

d
d(rs)

∞∫
rs

(t− rs)−αu(tθ)dt

= Bα
−[u](sx),

taking into account θ = x
|x| =

sx
|sx| . Therefore, we have

Bα
−
[
B−α
− [u]

]
(x) =

1
Γ(α)

∞∫
1

(s− 1)α−1s−αBα
−[u](sx)ds.

Consequently, the second equality of Lemma 3.7 is proved.

Lemma 3.8. Let a function u(x) be harmonic in the domain Ω. Then the following equalities hold:

B−~α−
[

B~α−[u]
]
(x) = u(x), B~α−

[
B−~α− [u]

]
(x) = u(x). (3.5)
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Proof. Let us prove the first equality. To the function B~α−[u](x) we apply the operator B−~α− .
Then by definition of the operator B−~α− and according to Lemma 3.6, we get

B−~α−
[

B~α−[u]
]
(x) =

∞∫
1

ds1

Γ(α1)
· · ·

∞∫
1

(s− 1)~α−1

Γ(αm)
s−~αB~α−[u](sx)dsm = u(x).

To prove the second equality of Lemma 3.8 we apply the operator Bα1
− [u](x) = rα1 Dα1

− [u](x) to
the function B~α−[u](x). Then

Bα1
−

[
B−~α− [u]

]
(x) = Bα1

−

 ∞∫
1

ds1

Γ(α1)
· · ·

∞∫
1

(s− 1)~α−1

Γ(αm)
s−~αu(sx)dsm


= −rα1

d
dr

∞∫
r

(τ − r)−α1

Γ(1− α1)

 ∞∫
1

ds1

Γ(α1)
· · ·

∞∫
1

(s− 1)~α−1

Γ(αm)
s−~αu(sτθ)dsm

dτ

= −
∞∫

1

ds1

Γ(α1)
· · ·

∞∫
1

(s− 1)~α−1

Γ(αm)
s−~α

rα1
d
dr

∞∫
r

(τ − r)−α1

Γ(1− α1)
u(sτθ)dτ

dsm.

It is easy to show implementation of the following equality:

rα1
d
dr

∞∫
r

(τ − r)−α1

Γ(1− α1)
u(sτθ)dτ =

sτ=t

rα1

Γ(1− α1)

d
dr

∞∫
rs

(
t
s
− r
)−α1

u(tθ)
dt
s

=
rα1 sα1−1

Γ(1− α1)

d
dr

∞∫
rs

(t− rs)−α1 u(tθ)dt

=
(rs)α1

Γ(1− α1)

d
d(rs)

∞∫
rs

(t− rs)−α1 u(tθ)dt

= Bα1
− [u](sx),

where θ = x
|x| =

sx
|sx| . Then

Bα1
−

[
B−~α− [u]

]
(x) =

1
Γ(α1) · · · Γ(αm)

∞∫
1

ds1 · · ·
∞∫

1

(s− 1)~α−1s−~αBα1
− [u](sx)dsm.

Consequently, taking into account definition of the operator

B~α−[u](x) = Bα1
− [B

α2
− · · · B

αm
− [u]](x),

we can write that

B~α−
[

B−~α− [u]
]
(x) =

∞∫
1

ds1

Γ(α1)
· · ·

∞∫
1

(s− 1)~α−1

Γ(αm)
s−~αB~α−[u](sx)dsm = u(x).

The second equality of Lemma 3.8 is proved.

Therefore, Lemma 3.8 yields that B~α− and B−~α− are inverse on functions, which are harmonic
in Ω+.
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4 Proofs of the main propositions

Proof of Theorem 2.3. Let a solution of the Problem 2.1 exist and be equal to u(x). We apply the
operator Bα

− to the function u(x) and denote it by Bα
−[u](x) = v(x). By assumption Bα

−[u](x) ∈
C(Ω+ ∪ ∂Ω), then v(x) ∈ C(Ω+ ∪ ∂Ω). Since u(x) is a harmonic function in Ω+, regular at
infinity, then due to Lemma 3.3 the function v(x) is also harmonic in the domain Ω+ and
regular at infinity. Moreover,

v(x)|∂Ω = Bα
−[u](x)|∂Ω = f (x) .

We apply the operator B−α
− to the equality Bα

−[u](x) = v(x). Since the integral of the form

∞∫
1

(τ − 1)α−1τ−αv(τx) dτ

has week singularity when α ∈ (0, 1], τ = 1 and τ = ∞, then it is a continuous function
by x ∈ Ω+ ∪ ∂Ω, where v(x) ∈ C(Ω+ ∪ ∂Ω) is continuous. Thus, the operator B−α

− can be
applied to functions from C(Ω+ ∪ ∂Ω) . Due to the first equality (3.4) we get (2.2). Moreover,
due to Lemma 3.3, the function B−α

− [v](x) is regular at infinity. Therefore, the function v(x)
is a solution of the Dirichlet problem (2.1). Moreover, if f (x) ∈ C(∂Ω), then solution of
the problem exists, unique and v(x) ∈ C(Ω+ ∪ ∂Ω) . Let, on the contrary, function v(x) be
a solution of the Dirichlet problem (2.1) with boundary value f (x) ∈ C(∂Ω). Then v(x) ∈
C(Ω+ ∪ ∂Ω). Consider the function u(x) = B−α

− [v](x). Due to the second equality (3.4), we
have

Bα
−[u](x) = Bα

−
[
B−α
− [v]

]
(x) = v(x).

It means that the function u(x) is harmonic in Ω, regular at infinity and

Bα
−[u](x)|∂Ω = v(x)|∂Ω = f (x).

Theorem 2.3 is proved.

Proof of Theorem 2.4. Let a solution of the Problem 2.2 exist and be u(x). Apply the differential
operator B~α− to the function u(x) and denote it by

B~α−[u](x) = v(x).

By assumption B~α−[u](x) ∈ C(Ω+ ∪ ∂Ω), and, therefore v(x) ∈ C(Ω+ ∪ ∂Ω). Since u(x) is
a harmonic function in the domain Ω+, regular at infinity, then due to the Lemma 3.4 the
function v(x) is also harmonic outside the ball, regular at infinity and

v(x)|∂Ω = B~α−[u](x)|∂Ω = f (x) .

Therefore, v(x) is a solution of the problem (2.1). Moreover, if f (x) ∈ C(∂Ω), then solution
of the problem exists, unique and v(x) ∈ C(Ω+ ∪ ∂Ω). We apply the integral operator B−~α− to
the function B~α−[u](x) = v(x). Since the integral of the form

∞∫
1

ds1 . . .
∞∫

1

(s− 1)~α−1s−~αv(sx)dsm
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has week singularity at sj = 1 and sj = ∞, j = 1, . . . , m, when α ∈ (0, 1], then it is a continuous
function by x ∈ Ω+ ∪ ∂Ω where v(x) ∈ C(Ω+ ∪ ∂Ω) is continuous. Thus, the operator B−~α−
can be applied to functions from C(Ω+ ∪ ∂Ω). Due to the first equality of (3.5), we obtain (2.3).
On the contrary, let function v(x) be a solution of the problem (2.1) when f (x) ∈ C(∂Ω). Then
v(x) ∈ C(Ω+ ∪ ∂Ω). Consider the function

u(x) = B−~α− [v](x).

Due to (3.5) we have B~α−[u](x) = B~α−
[
B−~α− [v]

]
(x) = v(x). Hence, u(x) is harmonic in the

domain Ω+ and B~α−[u](x)|∂Ω = v(x)|∂Ω = f (x). Theorem 2.4 is proved.
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