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1 Introduction

In the present paper we consider weak solutions of the following system of equations:

u′′(t) + Q(u(t)) + ϕ(x)h′(u(t)) + H(t, x; u, z) + ψ(x)u′(t) = F1(t, x; z), (1.1)

−
n

∑
j=1

Dj[aj(t, x, Dz(t), z(t); u)] + a0(t, x, Dz(t), z(t); u, z) = F2(t, x; u), (1.2)

(t, x) ∈ QT = (0, T)×Ω

where Ω ⊂ Rn is a bounded domain and we use the notations u(t) = u(t, x), u′ = Dtu, u′′ =
D2

t u, z(t) = z(t, x), Dz =
(

∂z
∂x1

, . . . ∂z
∂xn

)
, Q may be e.g. a linear second order symmetric elliptic

differential operator in the variable x; h is a C2 function having certain polynomial growth,
H contains nonlinear functional (non-local) dependence on u and z, with some polynomial
growth and F1 contains some functional dependence on z. Further, the functions aj define
a quasilinear elliptic differential operator in x (for fixed t) with functional dependence on u
for i = 1, . . . , n and on u, z for i = 0, respectively. Finally, F2 may non-locally depend on u.
The system (1.1), (1.2) consists of a semilinear hyperbolic functional equation and an elliptic
functional equation (containing the time t as a parameter).

This paper was motivated by some problems which were modelled by systems consist-
ing of (functional) differential equations of different types. In [4] S. Cinca investigated a
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model, consisting of an elliptic, a parabolic and an ordinary nonlinear differential equation,
which arise when modelling diffusion and transport in porous media with variable poros-
ity. In [6] J. D. Logan, M. R. Petersen and T. S. Shores considered and numerically studied a
similar system which describes reaction-mineralogy-porosity changes in porous media with
one-dimensional space variable. J. H. Merkin, D. J. Needham and B. D. Sleeman considered
in [7] a system, consisting of a nonlinear parabolic and an ordinary differential equation, as a
mathematical model for the spread of morphogens with density dependent chemosensitivity.
In [3, 8, 9] the existence of solutions of such systems were studied.

In [12] existence of weak solutions was proved for t ∈ (0, T). In this paper existence and
some qualitative properties of weak solutions for t ∈ (0, ∞) are proved.

In Section 2 the existence theorem in (0, T) will be formulated and in Section 3 we shall
prove existence and certain properties of solutions for t ∈ (0, ∞).

2 Solutions in (0, T)

Denote by Ω ⊂ Rn a bounded domain having the uniform C1 regularity property (see [1]),
QT = (0, T)×Ω. Denote by W1,p(Ω) the Sobolev space of real valued functions with the norm

‖u‖ =
[∫

Ω

(
n

∑
j=1
|Dju|p + |u|p

)
dx

]1/p (
2 ≤ p < ∞, Dju = ∂u

∂xj

)
.

The number q is defined by 1/p + 1/q = 1. Further, let V1 ⊂ W1,2(Ω) and V2 ⊂ W1,p(Ω) be
closed linear subspaces containing C∞

0 (Ω), V?
j the dual spaces of Vj, the duality between V?

j

and Vj will be denoted by 〈·, ·〉, the scalar product in L2(Ω) will be denoted by (·, ·). Finally,
denote by Lp(0, T; Vj) the Banach space of the set of measurable functions u : (0, T)→ Vj with
the norm

‖u‖Lp(0,T;Vj) =

[∫ T

0
‖u(t)‖p

Vj
dt
]1/p

and L∞(0, T; Vj), L∞(0, T; L2(Ω)) the set of measurable functions u : (0, T) → Vj, u : (0, T) →
L2(Ω), respectively, with the L∞(0, T) norm of the functions t 7→ ‖u(t)‖Vj , t 7→ ‖u(t)‖L2(Ω),
respectively.

First we formulate the existence theorem for t ∈ (0, T) which was proved in [12], by using
the results of [11], the theory of monotone operators (see, e.g., [14, 15]) and Schauder’s fixed
point theorem.

Now we formulate the assumptions on the functions in (1.1), (1.2).

(A1) Q : V1 → V?
1 is a linear continuous operator such that

〈Qu, v〉 = 〈Qv, u〉, 〈Qu, u〉 ≥ c0‖u‖2
V1

for all u, v ∈ V1 with some constant c0 > 0.

(A2) ϕ, ψ : Ω→ R are measurable functions satisfying

c1 ≤ ϕ(x) ≤ c2, c1 ≤ ψ(x) ≤ c2 for a.a. x ∈ Ω

with some positive constants c1, c2.
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(A3) h : R→ R is a twice continuously differentiable function satisfying

h(η) ≥ 0, |h′′(η)| ≤ const|η|λ−1 for |η| > 1 where

1 < λ ≤ λ0 =
n

n− 2
if n ≥ 3, 1 < λ < ∞ if n = 2.

(A4) H : QT × L2(QT) × Lp(0, T; V2) → R is a function for which (t, x) 7→ H(t, x; u, z) is
measurable for all fixed u ∈ L2(Ω), z ∈ Lp(0, T; V2), H has the Volterra property, i.e. for
all t ∈ [0, T], H(t, x; u, z) depends only on the restriction of u and z to (0, t). Further, the
following inequality holds for all t ∈ [0, T] and u, uj ∈ L2(Ω), z ∈ Lp(0, T; V2):∫

Ω
|H(t, x; u, z)|2dx ≤ const

[
‖z‖2

Lp(0,T;V2)
+ 1
] [∫ t

0

∫
Ω

h(u)dxdτ +
∫

Ω
h(u)dx + 1

]
;

∫ t

0

[∫
Ω
|H(τ, x; u1, z)− H(τ, x; u2, z)|2dx

]
dτ ≤ M(K, z)

∫ t

0

[∫
Ω
|u1 − u2|2dx

]
dτ

if ‖uj‖L∞(0,T;V1) ≤ K

where for all fixed number K > 0, z 7→ M(K, z) ∈ R+ is a bounded (nonlinear) operator.

Finally, (zk)→ z in Lp(0, T; V2) implies

H(t, x; uk, zk)− H(t, x; uk, z)→ 0 in L2(QT) uniformly if ‖uk‖L2(QT) ≤ const.

(A5) F1 : QT × Lp(0, T; V2) → R is a function satisfying (t, x) 7→ F1(t, x; z) ∈ L2(QT) for all
fixed z ∈ Lp(0, T; V2) and (zk) → z in Lp(0, T; V2) implies that F1(t, x; zk) → F1(t, x; z) in
L2(QT).

Further, ∫ T

0
‖F1(τ, x; z)‖2

L2(Ω)dτ ≤ const
[
1 + ‖z‖β1

Lp(0,T;V2)

]
with some constant β1 > 0.

(B1) The functions

aj : QT ×Rn+1 × L2(QT)→ R (j = 1, . . . n),

a0 : QT ×Rn+1 × L2(QT)× Lp(0, T; V2)→ R

are such that aj(t, x, ξ; u), a0(t, x, ξ; u, z) are measurable functions of variable (t, x) ∈ QT

for all fixed ξ ∈ Rn+1, u ∈ L2(QT), z ∈ Lp(0, T; V2) and continuous functions of variable
ξ ∈ Rn+1 for all fixed u ∈ L2(QT), z ∈ Lp(0, T; V2) and a.a. fixed (t, x) ∈ QT.

Further, if (uk)→ u in L2(QT) then for all z ∈ Lp(0, T; V2), ξ ∈ Rn+1, a.a. (t, x) ∈ QT, for
a subsequence

aj(t, x, ξ; uk)→ aj(t, x, ξ; u) (j = 1, . . . , n),

a0(t, x, ξ; uk, zk)− a0(t, x, ξ; u, zk)→ 0.

(B2) For j = 1, . . . , n
|aj(t, x, ξ; u)| ≤ g1(u)|ξ|p−1 + [k1(u)](t, x),

where g1 : L2(QT)→ R+ is a bounded, continuous (nonlinear) operator,

k1 : L2(QT)→ Lq(QT) is continuous and ‖k1(u)‖Lq(QT) ≤ const(1 + ‖u‖γ
L2(QT)

);
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|a0(t, x, ξ; u, z)| ≤ g2(u, z)|ξ|p−1 + [k2(u, z)](t, x)

where

g2 : L2(QT)× Lp(0, T; V2)→ R+ and k2 : L2(QT)× Lp(0, T; V2)→ Lq(QT)

are continuous bounded operators such that

‖k2(u, z)‖Lq(QT) ≤ const
[
1 + ‖u‖γ

L2(QT)

]
with some constant γ > 0.

(B3) The following inequality holds for all t ∈ [0, T] with some constants c2 > 0, β > 0 (not
depending on t, u):∫

QT

n

∑
j=1

[aj(t, x, Dz(t), z(t); u)− aj(t, x, Dz?(t), z?(t); u)][Djz(t)− Djz?(t)]dxdt

+
∫

QT

[a0(t, x, Dz(t), z(t); u, z)− a0(t, x, Dz?(t), z?(t); u, z?)][z(t)− z?(t)]dxdt

≥ c2

1 + ‖u‖β

L2(QT)

‖z− z?‖p
Lp(0,T;V2)

.

(B4) For all fixed u ∈ L2(QT) the function

F2 : QT × L2(QT)→ R satisfies (t, x) 7→ F2(t, x; u) ∈ Lq(QT),

‖F2(t, x; u)‖Lq(QT) ≤ const
[
1 + ‖u‖γ

L2(QT)

]
(see (B2)) and

(uk)→ u in L2(QT) implies F2(t, x; uk)→ F2(t, x; u) in Lq(QT).

Finally,
β1

2
β + γ

p− 1
< 1.

Theorem 2.1. Assume (A1)–(A5) and (B1)–(B4). Then for all u0 ∈ V1, u1 ∈ L2(Ω) there exists
u ∈ L∞(0, T; V1) such that

u′ ∈ L∞(0, T; L2(Ω)), u′′ ∈ L2(0, T; V?
1 ) and z ∈ Lp(0, T; V2)

such that u,z satisfy (1.1) in the sense: for a.a. t ∈ [0, T], all v ∈ V1

〈u′′(t), v〉+ 〈Q(u(t)), v〉+
∫

Ω
ϕ(x)h′(u(t))vdx +

∫
Ω

H(t, x; u, z)vdx +
∫

Ω
ψ(x)u′(t)vdx

=
∫

Ω
F1(t, x; z)v)dx (2.1)

and the initial conditions
u(0) = u0, u′(0) = u1. (2.2)

Further, u, z satisfy (1.2) in the sense: for a.a. t ∈ (0, T), all w ∈ V2∫
Ω

[
n

∑
j=1

aj(t, x, Dz(t), z(t); u)

]
Djwdx +

∫
Ω

a0(t, x, Dz(t), z(t); u, z)wdx

=
∫

Ω
F2(t, x; u)wdx. (2.3)

Remark 2.2. Examples, satisfying the assumptions of Theorem 2.1 can be found in [12].
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Main steps of the proof

Now we formulate the main steps in the proof in Theorem 2.1 which will be applied in the
next section. (For the detailed proof , see [12].)

Consider the problem (2.1), (2.2) for u with an arbitrary fixed z = z̃ ∈ Lp(0, T; V2). Ac-
cording to [11] assumptions (A1)–(A5) imply that there exists a unique solution u = ũ ∈
L∞(0, T; V1) with the properties ũ′ ∈ L∞(0, T; L2(Ω)), ũ′′ ∈ L2(0, T; V?

1 ) satisfying (2.1) and
the initial condition (2.2). Then consider problem (2.3) for z with the above u = ũ. Ac-
cording to the theory of monotone operators (see, e.g., [14, 15]) there exists a unique solu-
tion z ∈ Lp(0, T; V2) of (2.3). By using the notation S(z̃) = z, it is shown that the operator
S : Lp(0, T; V2) → Lp(0, T; V2) satisfies the assumptions of Schauder’s fixed point theorem: it
is continuous, compact and there exists a closed ball B0(R) ⊂ Lp(0, T; V2) such that

S(B0(R)) ⊂ B0(R). (2.4)

Then Schauder’s fixed point theorem implies that S has a fixed point z? ∈ Lp(0, T; V2). Defin-
ing u? by the solution of (2.1), (2.2) with z = z?, functions u?, z? satisfy (2.1)–(2.3).

Now we formulate some details of the proof which will be used in the next section.
According to [11] the solution ũ of (2.1), (2.2) with z = z̃ we obtain as the weak limit in

Lp(0, T; V1) of Galerkin approximations

ũm(t) =
m

∑
l=1

glm(t)wl where glm ∈W2,2(0, T)

and w1, w2, . . . is a linearly independent system in V1 such that the linear combinations are
dense in V1, further, the functions ũm satisfy (for j = 1, . . . , m)

〈ũ′′m(t), wj〉+ 〈Q(ũm(t)), wj〉+
∫

Ω
ϕ(x)h′(ũm(t))wjdx

+
∫

Ω
H(t, x; ũm, z̃)wjdx +

∫
Ω

ψ(x)ũ′m(t)wjdx =
∫

Ω
F1(t, x; z̃)wjdx, (2.5)

ũm(0) = um0, ũ′m(0) = um1 (2.6)

where um0, um1 (m = 1, 2, . . . ) are linear combinations of w1, w2, . . . , wm, satisfying (um0)→ u0

in V1 and (um1)→ u1 in L2(Ω) as m→ ∞.
Multiplying (2.5) by (gjm)

′(t), summing with respect to j and integrating over (0, t), by
Young’s inequality we find

1
2
‖ũ′m(t)‖2

L2(Ω) +
1
2
〈Q(ũm(t)), ũm(t)〉+

∫
Ω

ϕ(x)h(ũm(t))dx

+
∫ t

0

[∫
Ω

H(τ, x; ũm, z̃k)ũ′m(τ)dx
]

dτ +
∫ t

0

[∫
Ω

ψ(x)|ũ′m(τ)|2dx
]

dτ

=
∫ t

0

[∫
Ω

F1(τ, x; z̃)ũ′m(τ)dx
]

dτ +
1
2
‖ũ′m(0)‖2

L2(Ω) +
1
2
〈Q(ũm(0)), ũm(0)〉

+
∫

Ω
ϕ(x)h(ũm(0))dx ≤ 1

2

∫ T

0
‖F1(τ, x; z̃)‖2

L2(Ω)dτ +
1
2

∫ T

0
‖ũ′m(τ)‖2

L2(Ω) + const (2.7)
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where the constant is not depending on m, k, t. (See [11].)
By using (A2), (A4), (A5) and the Cauchy–Schwarz inequality, we obtain from (2.7)

1
2
‖ũ′m(t)‖2

L2(Ω)dτ +2 +
c0

2
‖ũm(t)‖2

V1
+ c1

∫
Ω

h(ũm(t))dx (2.8)

≤
∫ T

0
‖F1(τ, x; z̃)‖2

L2(Ω)dτ + const
{

1 +
∫ t

0
‖ũ′m(τ)‖2

L2(Ω)dτ +
∫ t

0

[∫
Ω

h(ũm(τ))dx
]

dτ

}
where the constants are not depending on m, t, z̃. Hence, by Gronwall’s lemma one obtains

‖ũ′m(t)‖2
L2(Ω) +

∫
Ω

h(ũm(t))dx

≤ const
∫ T

0
‖F1(τ, x; z̃)‖2

L2(Ω)dτ + const
∫ t

0

[∫ T

0

[
1 + ‖F1(τ, x; z̃)‖2

L2(Ω)dτ
]
· et−s

]
ds

= const
∫ T

0
‖F1(τ, x; z̃)‖2

L2(Ω)dτ (2.9)

where the constants are independent of m, t, z̃. Thus by (2.8) and (A5) we find

‖ũm(t)‖2
V1
≤ const

∫ T

0
‖F1(τ, x; z̃)‖2

L2(Ω)dτ ≤ const
[
1 + ‖z̃‖β1

Lp(0,T;V2)

]
which implies (for the limit of (ũm))

‖ũ‖2
L2(QT)

≤ const
[
1 + ‖z̃‖β1

Lp(0,T;V2)

]
. (2.10)

On the other hand, by (B3), (B4) we have for the solution z of (2.3) with u = ũ

c2

1 + ‖ũ‖β

L2(QT)

‖z‖p
Lp(0,T;V2)

≤ ‖F2(t, x; ũ)‖L2(QT)‖z‖Lp(0,T;V2) + const
[
‖k1(ũ)‖Lq(QT) + c(ũ)

]
‖z‖Lp(0,T;V2) (2.11)

where the constant is not depending on ũ, further, by (B2)

‖k1(ũ)‖Lq(QT) ≤ const
[
1 + ‖ũ‖γ

L2(QT)

]
and c(ũ) ≤ const

[
1 + ‖ũ‖γ

L2(QT)

]
. (2.12)

The inequalities (2.11), (2.12) imply

‖z‖p−1
Lp(0,T;V2)

≤ const
[
1 + ‖ũ‖β

L2(QT)

]
·
[
‖F2(t, x; ũ)‖L2(QT) + 1 + ‖ũ‖γ

L2(QT)

]
(2.13)

thus by (2.10) and (B4)

‖z‖Lp(0,T;V2) ≤ const
[

1 + ‖ũ‖
β+γ
p−1

L2(QT)

]
≤ const

[
1 + ‖z̃‖

β1(β+γ)
2(p−1)

Lp(0,T;V2)

]
(2.14)

where the constants are not depending on ũ and z̃.
According to the assumption (B4)

β1(β + γ)

2(p− 1)
< 1, (2.15)

so (2.14) implies that there is a closed ball B0(R) ⊂ Lp(0, T; V2) such that S(B0(R)) ⊂ B0(R).
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3 Solutions in (0, ∞)

Now we formulate an existence theorem with respect to solutions for t ∈ (0, ∞). Denote by
Lp

loc(0, ∞; V1) the set of functions u : (0, ∞) → V1 such that for each fixed finite T > 0, their
restrictions to (0, T) satisfy u|(0,T) ∈ Lp(0, T; V1) and let Q∞ = (0, ∞)×Ω, Lα

loc(Q∞) the set of
functions u : Q∞ → R such that u|QT ∈ Lα(QT) for any finite T.

Now we formulate assumptions on H, F1, aj, F2.

(Ã4) The function H : Q∞ × L2
loc(Q∞) × Lp

loc(0, ∞; V2) → R is such that for all fixed u ∈
L2

loc(Q∞), z ∈ Lp
loc(0, ∞; V2) the function (t, x) 7→ H(t, x; u, z) is measurable, H has the

Volterra property (see (A4)) and for each fixed finite T > 0, the restriction HT of H to
QT × L2(QT)× Lp(0, T; V2) satisfies (A4).

Remark 3.1. Since H has the Volterra property, this restriction HT is well defined by the
formula

HT(t, x; ũ, z̃) = H(t, x; u, z), (t, x) ∈ QT, ũ ∈ L2(QT), z̃ ∈ Lp(0, T; V2)

where u ∈ L2
loc(Q∞), z ∈ Lp

loc(0, ∞; V2) may be any functions satisfying u(t, x) = ũ(t, x),
z(t, x) = z̃(t, x) for (t, x) ∈ QT.

(Ã5) F1 : Q∞ × Lp
loc(0, ∞; V2) → R has the Volterra property and for each fixed finite T > 0,

the restriction of F1 to (0, T) satisfies (A5).

(B̃) aj : Q∞ × Rn+1 × L2
loc(Q∞) → R (j = 1, . . . , n) and a0 : Q∞ × Rn+1 × L2

loc(Q∞) ×
Lp

loc(0, ∞; V2) → R have the Volterra property and for each finite T > 0, their restric-
tions to (0, T) satisfy (B1)–(B3).

(B̃4) F2 : Q∞ × L2
loc(Q∞) → R has the Volterra property and for each fixed finite T > 0, the

restriction of F2 to (0, T) satisfies (B4).

Theorem 3.2. Assume (A1)–(A3), (Ã4), (Ã5), (B̃), (B̃4). Then for all u0 ∈ V1, u1 ∈ L2(Ω) there
exist

u ∈ L∞
loc(0, ∞; V1), z ∈ Lp

loc(0, ∞; V2) such that

u′ ∈ L∞
loc(0, ∞; L2(Ω)), u′′ ∈ L2

loc(0, ∞; V?
1 ),

(2.1) and (2.3) hold for a.a. t ∈ (0, ∞) and the initial condition (2.2) is fulfilled.
Assume that the following additional conditions are satisfied: there exist H∞, F∞

1 ∈ L2(Ω), u∞ ∈
V1, a bounded function β̃, belonging to L2(0, ∞; L2(Ω)) such that

Q(u∞) = F∞
1 − H∞, (3.1)

|H(t, x; u, z)− H∞(x)| ≤ β̃(t, x), |F1(t, x; z)− F∞
1 (x)| ≤ β̃(t, x) (3.2)

for all fixed u ∈ L2
loc(Q∞), z ∈ Lp

loc(0, ∞; V2)). Further, there exist functions

a∞
j : Ω×Rn+1 ×V1 → R, j = 1, . . . , n

a∞
0 : Ω×Rn+1 ×V1 ×V2 → R, F∞

2 : Ω×V1 → R

such that for each fixed z0 ∈ V2 and w0 ∈ V1 with the property

lim
t→∞
‖u(t)− w0‖L2(Ω) = 0,
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lim
t→∞
‖aj(t, x, Dz0, z0; u)− a∞

j (x, Dz0, z0; w0)‖Lq(Ω) = 0, j = 1, . . . , n, (3.3)

lim
t→∞
‖a0(t, x, Dz0, z0; u, z0)− a∞

0 (x, Dz0, z0; w0, z0)‖Lq(Ω) = 0, (3.4)

lim
t→∞
‖F2(t, x; u)− F∞

2 (x; w0)‖Lq(Ω) = 0. (3.5)

Finally, (B3) is satisfied such that the following inequalities hold for all t > 0 with some constants
c2 > 0, β > 0 (not depending on t):∫

Ω

n

∑
j=1

[aj(t, x, Dz(t), z(t); u)− aj(t, x, Dz?(t), z?(t); u)][Djz− Djz?]dx

+
∫

Ω
[a0(t, x, Dz(t), z(t); u, z)− a0(t, x, Dz?(t), z?(t); u, z?)][z(t)− z?(t)]dx

≥ c2

1 + ‖u‖β

L2(Qt\Qt−a)

‖z− z?‖p
V1

(3.6)

with some fixed a > 0 (finite delay).
Then for any solution u, z of (2.1)–(2.3) in (0, ∞) we have

u ∈ L∞(0, ∞; V1), (3.7)

‖u′(t)‖H ≤ const e−c1T (3.8)

where c1 is given in (A2) and there exists w0 ∈ V1 such that

u(T)→ w0 in L2(Ω) as T → ∞, ‖u(T)− w0‖H ≤ const e−c1T (3.9)

and w0 satisfies
Q(w0) + ϕh′(w0) = F∞

1 − H∞. (3.10)

Finally, there exists a unique solution z0 ∈ V2 of

n

∑
j=1

∫
Ω

a∞
j (x, Dz0, z0; w0)Djvdx +

∫
Ω

a∞
0 (x, Dz0, z0; w0, z0)vdx

=
∫

Ω
F∞

2 (x; w0)vdx for all v ∈ V2 (3.11)

(where w0 is the solution of (3.10)) and

lim
t→∞
‖z(t)− z0‖V2 = 0. (3.12)

Proof. Let (Tk)k∈N be a monotone increasing sequence, converging to +∞. According to The-
orem 2.1, there exist solutions uk, zk of (2.1)–(2.3) for t ∈ (0, Tk). The Volterra property of H,
F1, aj, F2 implies that the restrictions of uk, zk to t ∈ (0, Tl) with Tl < Tk satisfy (2.1)–(2.3) for
t ∈ (0, Tl).

Now consider the restrictions uk|(0,T1), zk|(0,T1), k = 2, 3, . . . Applying (2.14) to T = T1 and
z = z̃ = zk|(0,T1), by (2.15) we obtain that the sequence(

zk|(0,T1)

)
k∈N

is bounded in Lp(0, T1; V2). (3.13)

The operator S : Lp(0, T1; V2) → Lp(0, T1; V2) is compact thus there is a subsequence (z1k)k∈N

of (zk)k∈N such that the sequence of restrictions (z1k|(0,T1))k∈N is convergent in Lp(0, T1; V2).
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Now consider the restrictions z1k|(0,T2) By using the above arguments, we find that there
exists a subsequence (z2k)k∈N of (z1k)k∈N such that (z2k|(0,T2))k∈N is convergent in Lp(0, T2; V2).

Thus for all l ∈ N we obtain a subsequence (zlk)k∈N of (zk)k∈N such that (zlk|(0,Tl))k∈N is
convergent in Lp(0, Tl ; V2). Then the diagonal sequence (zkk)k∈N is a subsequence of (zk)k∈N

such that for all fixed l ∈ N, (zkk|(0,Tl))k∈N is convergent in Lp(0, Tl ; V2) to some z? ∈
Lp

loc(0, ∞; V2). Since zll is a fixed point of S = Sl : Lp(0, Tl ; V2) → Lp(0, Tl ; V2) and Sl is
continuous thus the limit z?|(0,Tl) in Lp(0, Tl ; V2) of (zkk|(0,Tl))k∈N is a fixed point of S = Sl .

Consequently, the solutions u?
l of (2.1), (2.2) when z is the restriction of z? to (0, Tl) and

the restriction of z? to (0, Tl) satisfy (2.1)–(2.3) for t ∈ (0, Tl). Since for m < l, u?
l |(0,Tm) = u?

m
(by the Volterra property of H, F1, aj, F2), we obtain u? ∈ L2

loc(Q∞) such that for all fixed l,
u?|(0,Tl), z?|(0,Tl) satisfy (2.1)–(2.3) for t ∈ (0, Tl), so the first part of Theorem 3.2 is proved.

Now assume that the additional conditions (3.1), (3.2) are satisfied. Then we obtain (3.7)–
(3.10) for u = u?, z = z? by using the arguments of the proof of Theorem 3.2 in [11]. For
convenience we formulate the main steps of the proof.

Let u, z be arbitrary solutions of (2.1)–(2.3) for t ∈ (0, ∞) and zkk = z|(0,Tk), ukk = u|(0,Tk).
Then zkk, ukk are solutions of (2.1)–(2.3) for t ∈ (0, Tl) if k ≥ l, hence the sequence (zkk)|k∈N

is bounded in Lp(0, Tl ; V2) for each fixed l (see, e.g., (3.13)), consequently, from (2.7) (with
z̃k = zkk) we obtain for the solutions ukk of (2.1), (2.2) with z̃ = zkk (since ukk is the limit of the
Galerkin approximations)

1
2
‖u′kk(t)‖2

H +
1
2
〈Q(ukk(t)), ukk(t)〉+

∫
Ω

ϕ(x)h(ukk(t))dx

+
∫ t

0

[∫
Ω

ψ(x)|u′kk(τ)|2dx
]

dτ +
∫ t

0

[∫
Ω

H(τ, x; ukk, zkk)u′kk(τ)dx
]

dτ

=
∫ t

0

[∫
Ω

F1(τ, x; zkk)u′kk(τ)dx
]

dτ +
1
2
‖u′kk(0)‖2

H +
1
2
〈Q(ukk(0)), ukk(t)〉

+
∫

Ω
ϕ(x)h(ukk(0))dx (3.14)

for all t > 0. Hence we find by (3.1), (3.2) and Young’s inequality for wkk = ukk − u∞

1
2
‖w′kk(t)‖2

L2(Ω) +
c0

2
‖ukk(t))‖2

V1
+ c1

∫
Ω

h(ukk(t))dx + const
∫ t

0

[∫
Ω
|w′kk|2dx

]
dτ

≤ const
{∫ t

0
‖F1(τ, x; zkk)− F∞

1 ‖2
L2(Ω)dτ +

∫ t

0
‖H(τ, x; ukkzkk)− H∞‖2

L2(Ω)dτ

}
+ ε

∫ t

0

[∫
Ω
|w′kk|2dx

]
dτ +

1
2
‖u′kk(0)‖2

L2(Ω) +
1
2
〈Q(ukk(0)), ukk(0)〉+ c2

∫
Ω

h(ukk(0))dx

≤ ε
∫ t

0

[∫
Ω
|w′kk|2dx

]
dτ + const + C(ε)‖β̃‖2

L2(0,∞;L2(Ω)). (3.15)

Choosing sufficiently small ε > 0, we obtain∫ t

0

[∫
Ω
|w′kk|2dx

]
dτ ≤ const (3.16)

and thus by (3.15)

‖u′kk(t)‖2
L2(Ω) + c̃

∫ t

0
‖u′kk(τ)‖2

L2(Ω)dτ ≤ c?

with some positive constants c̃ and c? not depending on k and t ∈ (0, ∞). Hence by Gronwall’s
lemma we obtain (3.8) for the weak limit of the sequence (ukk) and by (3.15) we find (3.7).
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It is not difficult to show that

‖u(T2)− u(T1)‖L2(Ω) ≤
∫ T2

T1

‖u′(t)‖L2(Ω)dt (3.17)

(see [11]), thus (3.8) implies (3.9) and by u ∈ L∞(0, ∞; V1), the limit w0 of u(t) as t → ∞ must
belong to V1.

In order to prove (3.10) we apply equation (1.1) to vχTk(t) with arbitrary fixed v ∈ V1

where limk→∞(Tk) = +∞ and

χTk(t) = χ(t− Tk), χ ∈ C∞
0 , supp χ ⊂ [0, 1],

∫ 1

0
χ(t)dt = 1.

Then by (3.8) one obtains (3.10) as k→ ∞.
Now we show that there exists a unique solution z0 ∈ V2 of (3.11). This statement follows

from the fact that the operator (applied to z0 ∈ V2) on the left-hand side of (3.11) is bounded,
demicontinuous and uniformly monotone (see, e.g. [14,15]) by (B1), (B2), (3.9) (3.3), (3.4), (3.6).

Finally, we show (3.12). By (3.6) we have

c2

1 + ‖u‖L2(Qt\Qt−a)
‖z(t)− z0‖p

V2

≤
∫

Ω

n

∑
j=1

[aj(t, x, Dz, z; u)− aj(t, x, Dz0, z0; u)](Djz− Djz0)dx

+
∫

Ω
[a0(t, x, Dz, z; u, z)− a0(t, x, Dz0, z0; u, z0)](z− z0)dx

=
∫

Ω
[F2(t, x; u)− F∞

2 (x, w0)](z− z0)dx

−
∫

Ω

n

∑
j=1

[aj(t, x, Dz0, z0; u)− a∞
j (x, Dz0, z0; w0)](Djz− Djz0)dx

−
∫

Ω
[a0(t, x, Dz0, z0; u, z0)− a∞

0 (t, x, Dz0, z0; w0, z0)](z− z0)dx

≤ ‖F2(t, x; u)− F∞
2 (x, w0)‖Lq(Ω)‖z(t)− z0‖Lp(Ω)

+
n

∑
j=1
‖aj(t, x, Dz0, z0; u)− a∞

j (x, Dz0, z0; w0)‖Lq(Ω)‖Djz(t)− Djz0‖Lp(Ω)

+ ‖a0(t, x, Dz0, z0; u, z0)− a∞
0 (x, Dz0, z0; w0, z0)‖Lq(Ω)‖z(t)− z0‖Lp(Ω). (3.18)

Since p > 1 and ‖u‖β

L2(Qt\Qt−a)
is bounded for t ∈ (0, ∞) by (3.9), thus (3.3)–(3.5), (3.18)

imply (3.12).

Remark 3.3. Assume that the inequalities (3.3)–(3.5) hold such that for j = 1, . . . , n

|aj(t, x, ξ; u)− a∞
j (x, ξ; u)| ≤ const

[
‖u(t)− w0‖Lp(Qt\Qt−a) + η(t)

] [
1 + |ξ|p−1

]
,

|a0(t, x, ξ; u, z0)− a∞
0 (x, ξ; u, z)| ≤ const

[
‖u(t)− w0‖Lp(Qt\Qt−a) + η(t)

] [
1 + |ξ|p−1

]
,

|F2(t, x; u)− F∞
2 (x; w0)| ≤ const

[
‖u(t)− w0‖Lp(qt\Qt−a) + η(t)

]
.

Then
‖z(t)− z0‖p−1

V2
≤ const

[
e−c1t + η(t)

]
, t > 0.
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The above inequalities are satisfied e.g. if

aj(t, x, ξ; u) = gj(x, ξ)

[
1 +

∫ t

t−a
|u(τ, x)|dτ + η(t)

]
, j = 1, . . . , n

a0(t, x, ξ; u, z) = g0(x, ξ)

[
1 +

∫ t

t−a
|u(τ, x)|dτ + η(t)

]
where

|gj(x, ξ)| ≤ const[|ξ|p−1 + g̃(x)], g̃ ∈ Lq(Ω), η ≥ 0, lim
∞

η = 0,

n

∑
j=0

[gj(x, ξ)− gj(x, ξ?)](ξ j − ξ?j ) ≥ c2|ξ − ξ?|p

with some constant c2 > 0.
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