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Abstract. The k-dimensional system of neutral type nonlinear difference equations with
delays in the following form

B (xi(n) + pi(n) xi(n =) ) = ay(n) f(xesa (n = 07)) + (),
A () + pi(n) xi(n = 7)) = ag(n) fiza (n = 01)) + (),

where i = 1,...,k — 1, is considered. The aim of this paper is to present sufficient
conditions for the existence of nonoscillatory bounded solutions of the above system
with various (p;(n)),i=1,...,k k> 2.
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1 Introduction

In this paper we consider a nonlinear difference system of k (k > 2) equations of the form

B () + piln) xi(n — ) ) = () filisa (n = 07)) + i),

(1.1)
A (xe(n) + pi(m) 2 = 7)) = ai(m) fi(xi (n = o)) + gi(n),

where n € Ny, i = 1,...,k—1, A is the forward difference operator defined by Au(n) =
u(n+1) —u(n). Here R is a set of real numbers, N = {0,1,2,...} and 0;,7; € N for i =
1,...,k. By np we denote max {7, ..., %, 01,...,0¢}, and Nog = {ng,np+1, ... }. Moreover a; =
(ai(n)), g = (gi(n)), pi = (pi(n)) fori =1,...,k are given sequences of real numbers, x; =
(xj(n)) fori=1,...,k are unknown real sequences and functions f;: R — R. Throughout this
paper X denotes an unknown vector (x,...,x;) and X(n) denotes (x;(n),...,xx(n)) € R~
For the elements of R the symbol | - | stands for the maximum norm.
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By B we denote the Banach space of all bounded sequences in R¥ with the supremum
norm, i.e.

B = {X: N — RF: || X|| :su]l}\)T\X(n)] < 00},
ne

and by B the following subset of B
B={X=(x1,...,%) € B:x;is nonnegative or nonpositive fori =1,...,k}.

A sequence of real numbers is said to be nonoscillatory if it is either eventually positive
or eventually negative. By a solution of system (1.1) we mean a vector X such that its compo-
nents, i.e. xq,...,x, satisfy the system (1.1) for sufficiently large n. The solution X of system
(1.1) is called nonoscillatory if all its components are nonoscillatory. The solution X of system
(1.1) is called bounded if all its components are bounded.

Any higher-order nonlinear neutral difference equation could be rewritten as k-dimen-
sional system of difference equations with one equation of neutral type but not vice-versa.
Higher-order nonlinear neutral difference equations have been studied by many authors, see
for example [2—4,8-10,13-23], and the references cited therein. The theorems presented here
generalize and improve the results obtained for three dimensional system in [13].

The following definition and theorems will be used in the sequel.

Definition 1.1 (Uniformly Cauchy subset, [6]). A set () of sequences in [*° is uniformly Cauchy
if for every € > 0, there exists an integer n such that |X(i) — X(j)| < € whenever i,j > n for
any X € Q).

Lemma 1.2 (Arzela—Ascoli theorem, [1]). A bounded and uniformly Cauchy subset of [*° is relatively
compact.

Theorem 1.3 (Krasnoselskii’s fixed point theorem, [7]). Let ) be a bounded closed convex subset
of a Banach space and let F, T be maps such that Fx + Ty € Q) for every pair x,y € Q. If Fisa
contraction and T is completely continuous, then the equation Fx + Tx = x has a solution in Q).

Theorem 1.4 (Schauder’s fixed point theorem, [5]). Let Q) be a nonempty, compact and convex
subset of a Banach space and let T: () — () be continuous. Then T has a fixed point in M.

2 Main results

In this section, using the Krasnoselskii’s fixed point theorem and Schauder’s fixed point the-
orem, we establish sufficient conditions for the existence of nonoscillatory bounded solutions
of system (1.1).

Theorem 2.1. Assume that fori =1,...,k

; la;(n)| < oo, (2.1)
; 1gi(n)| < oo, (2.2)

fi: R — R is a continuous function (2.3)
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and for any closed subset ] C R

max sup {[f(1)]} > 0. 4

Assume also that for each i =1, ...,k the terms of sequence p; are of the same sign for n € INy. If for
eachi =1,...,k there exists a positive real constant cp, such that

0<pi(n) <cp, <1, n € Ny, (2.5)

or
—1< —cp, < pi(n) <0, n € No, (2.6)

then system (1.1) has a bounded nonoscillatory solution.

Proof. For the fixed positive real number r we define a set
. 1 7
0 =<{Xe B.g(l—cpi)rg |xi(n)| <r, i=1,...,k, n€N;.

Clearly ()1 is a bounded closed convex subset of the Banach space B. Since condition (2.3) is
satisfied, we can take

.....

From (2.1) and (2.2), there exists such n; € INg that

& (1 —cp)r & (1 —cp)r
laj(n)| < =", |gi(n)| < ——F
L 8My n;;l l 4
Let I, I, I3, I be subsets of the set {1,...,k} and moreover, NI; =@ fori #j,i,j=1,2,3,4
and 11U12U13UI4 = {1,,’(}
We consider four cases

@)
) < cp <1,
forie 1, n>mn,
(ii)
1< —cp < pi(n) <0,
xi(n) < foric b, n>ny,
(ii)
0<pi(n) <cp, <1,
xi(n) <0, fori€ls, n>mn,
(iv)
<—cp < pi(n) <0,
X; n) forie Iy, n > ny.
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Next, we define the maps F, T: (31 — B where

B Ty
F=|: |, T1=|":],
Fi Tk
(F;X)(ny) fori=1,...,k, 0<n<mn,
(FX)(n) = { —pi(m)xi(n — ) + 2 forie LU, n > ny,

1—cy. .
# fori € I3Uly, n> ny,

—pi(n)xi(n — ) +
and fori=1,...,k—1

(T:X)(n1) for 0 <n < my,
T =0 2 2 ai) G —a) ~ £ a(s) forn=m,
and
(T X)(11) for0 <n < m,
(TX)(m) =3 _ :g}n ax(s) fr(x1(s —ox)) — :g:n Qk(s) forn > ny.

(2.7)

(2.8)

(2.9)

We will show that F and T satisfy the assumptions of Theorem 1.3. First we prove that if

X,X € Oy, then FX +TX € Q.
Forn >mnq,i € [ Ul and i # k we have

(14cp,)r
2

—Za ﬁnﬂ—w»—fmw

(1+c1
< — A +Z|ﬂ1 )| |f1 Xiy1(s —03) |+Z‘g1

(EX)(n) + (T:X)(n) = — pi(n)xi(n — ) +

S=n
1 1 (I—=cp)r  (I—cp)r
< Z ZCo . i i
SR M ey T
7 1
= gr + gcpi” <r
Moreover,
S 1+cp)r
(FX)(m)+ () (1) = — pi(m)xi(n ) + )

—Za $) fiFals—a)) - Y gils)

z-ﬂmmmnm—uﬂ+“+f“r

= 1 (o) Lisia(s = o) = 1 lsi(o)

(1 — Clﬂz‘)r N (1 — CPi)r

1 1
=r+ Son! Mg -

> —Cy.
> cp,r+2

8M; 4

(1 —cp)r

Q| =
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Forn >nyand i € I[3U I, and i # k we have

(FX)(n) + (TX) (n) = — pi(n)xi(n — ) + (1—2%>r
_ial ) fi(%iv1(s —(Ti))—igi(s)
A—cp)r

< |pi(n)||xi(n — ;)| + >

+Z!ﬂ ) fi(Fia (s = o) |+Z\gl

1 1 (1 —cp,) (1—cp)r
< Cpt+ =1 — =y : i i
< cpr+ 2r 2cp,r+Mf 3 ; + n

7
= gcp,.r + gr <r.
On the other hand,

(FEX)(n) + (T:X)(n) = — pi(n)xi(n — ) + (A—cp)r

— Zg fz x,+1 _Ui)) - igl(s)
E 3 o) i(aiaats — )l - X L)

A-o)r (A-cyr
8M; 4

| \/

For i = k there is a different definition of the mapping T, but all estimations are analogous,
and hence omitted.
The task is now to prove that F is a contraction mapping. It is easy to see that

|(FX)(n) — (EX)(n)] < |pi(n)] [xi(n — ) — %i(n — 7)|
< oy |xi(n — ) — xi(n — 1),
forany X,X € (O3,i=1,...,kand n > ny. Hence

|FX — FX]| < max {c}-|1X %I,

where, by (2.5) and (2.6), there is 0 < max;—1,_x {cp,} < 1.
The next step is to show continuity of T. Let X; = (x1j,...,xj) € Q1 for j € N and for i =
.,k there is x;(n) — x;(n) as j — oo. Since )y is closed, we have X = (x1,...,x;) € Q1. By
(2.1), (2.3), (2.8) and Lebesgue’s dominated convergence theorem we obtain fori =1,...,k—1

[(T:X)(n) — (T X)(n)| < i |ai(s)] [ fi(xit1j(s — 7)) — fi(xiza(s —03))| = 0 if j— oo,

sS=n

where n € IN. Analogously we conclude for i = k. Therefore

1(TX;) — (TX)|| = 0 if j— oo,
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and we see that T is a continuous mapping.

In order to prove that T is completely continuous we can use Lemma 1.2. Hence we have
to show that T(); is uniformly Cauchy (see Definition 1.1). We show transformations for any
T;,i=1,...,k—1. Similar arguments apply to Tj.

Let X € ). We conclude from the assumptions (2.1), (2.2) and (2.3) that for any given
e > 0 there exists an integer n, > n; such that for n > n, we have

0]

L (o) [l s =)l + L lsi(o) < 5.
Hence, for ny > n3 > n,, we obtain
(TX)(10) — (TX) ()| = | Y ai(s) filxia(s — o)) + 3 &i(s)
s=n4 S=1y
- Z ai(s) fi(xiv1(s Z gi(s
= =

Therefore T(); is uniformly Cauchy.

By Theorem 1.3, there exists X such that (FX)(n) + (TX)(n) = X(n).

Fmally, we verify that X satisfies system (1.1) for n > ny. As (FX)(n) + (T;X)(n) = xi(n),
i=1,...,k,wehave foric [ Ul and i # k

= iyt =)+ 3 6) s - 00) — 1 ils) = (o),
A ) + pi(n) (1 = %) = =2 1 as) flrina(s —r)) ~ A L (o)

A(xi(n) + pi(n) xi(n — 7)) = ai(n) fi(xiy1(n — 03)) + gi(n). (2.10)
Similarly, we get (2.10) for i € Iz U Iy and i # k. In all cases, for i = k, the reasoning is also the
same as above. The proof is complete. O

Note that for p;(n) =0,i=1,...,k, system (1.1) is not of the neutral type, but Theorem 2.1
is still true.

Example 2.2. Consider a difference system

3
A (x1(n) + 45 x1(n—1)) = 4,165”16331133421123? 1§1n2 xo(n—2)+ 5,

5_ _
A (xa() = 2 a(n — 2)) = 2SI MSLTT 3y 1) 1,

A (x3(n) + 3 x3(n = 1)) = 2EHEL xy(n —1) +

A (xg(n) — 2 xa(n—1)) = %x%(n 1).

All assumptions of Theorem 2.1 are satisfied. The system above has the bounded (but not
unique) solution X = ((1+ 1), (-2+ %) L(-1-1),2-1)) forn > 3.
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Theorem 2.3. Assume that conditions (2.1), (2.2), (2.3) and (2.4) are satisfied. If there exist positive
real numbers ¢y, i =1,..., k that

1 <&y, < pi(n), n € Ny, (2.11)

or
pi(n) < —¢p, < —1, n € Ny, (2.12)

then system (1.1) has a bounded nonoscillatory solution.

Proof. We define a subset (), of B in the following way
1
0O, = {X €B: §<5Pi —Dr<xi(n)| <épr,i=1,...,k ne ]N}.

where r is a fixed positive real number. Obviously (), is a bounded, closed and convex subset

of B. Let us set .
Mf = zgll,a)fk{m(t” : |t| c |:8(5pi — 1)1’,5%7’] }

From assumptions (2.1) and (2.2), we conclude that there exists 115 € IN( that

& (€, — o (Ep; — D)r
(n)] < P20 (n)| < P20
Ll < a3 Il < g

Let Iy, I, I3, I be such subsets of the set {1,...,k} that ;NI = @ fori # j,i,j=1,2,3,4 and
T1UT2UT3UI~4 = {1,...,’(}.
Since we seek for the nonoscillatory solution, we consider the following cases

1 <&, < pi(n),
xi(n) >0, foriel, n>ns,

(ii)

Pi(n) < _5101‘ <-1,

xi(n) <0, forie L, n>ns,
(iif)

1< ép < pi(n),

xi(n) <0, foriel;, n>ns,
@iv)

pi(n) < —¢p, < —1,
xl-(n) >0, forie I~4, n > ns.

We define the maps F, T: () — B in the following way
(F;X)(ns) for i=1,...,k 0<mn<uns,

(FiX)(n) = pi(n+

5 forice [ UL, n>mns, (2.13)

1 . = =
5 ! fori € I3Uly, n > ns,
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and fori=1,...,k—1

(T;X)(ns) for0<n < ns,
(T:X)(n) = {plmi 5 S_;i; . ai(s) fi(xiv1(s = 01) = 5ty S_; . gi(s) forn > ns, (2.14)
and
(T X)(ns) for0 <n < ns,
TX) () = {pk(,;m B al@hba(—o) gy £ sile) fornzns O

Let X, X € Oy, n > ns. Then also FX + TX € (). We will present all transformations for
the i-th components of F and T, wherei =1,...,k — 1. We have fori € LUub

xin+1) | (L+¢p)r
pi(n+ 1) 2
_ p(nl—l—’fl) _ZJ:F ai(s) fi(xiy1(s — 7))

Y gils)

pl(n+Tl s=n+T;

(FX)(n) + (T;X)(n) = —

(1+,)r 1 3
ST ] A, O i =)

L % )l

+ -
lpi(n+7)| S+

On the other hand,

(EX)(n) + (TX)(n) = —

- 72 ‘ai(s) fi(xip1(s — 07))

)l ()
|pi(n + 1) 2
- ] o O] Vitiats - )
1 oo
- WS:;E 18i(s)]
Yo (Cp —Dr  (&p = Dr

1. 1
—r+ §CPi7+§r_Mf 8]\7If — 1

Vv
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Next we have fori € U4
xi(n+ 1) N (Cp — )r
pi(n+ 1) 2

1 (o)

- W 2, ) St (s —on)

Y gils)

(BEX)(n) + (T,X)(n) = —

P (n+Tl S=n+T7;
< Pitn+m)| | (G —Dr
~ pi(n+ )| 2
1 o0

Y lai(s)| |fi(Zisa (s — 01))]

pi(n+7)| s Ax

1 o
], )
<r+ %Epir _ %r + M- (C~p8,~]\;1f1)1’ n (€p; ; 1)r
= gfpi7’+ 3" < é&pr.
Moreover,
1 o

— Y ai(s) fi(Ripa(s — o))

p'(n + Ti) s=n+T;

Pl ”‘*’Tz s ;T gils
s (=D
- 2
1 ad B
"] L O fiia(s = o)
t 1) s=n+1;

1 [ee]

R (s
i, 2, S )
1. 1 - (& —=1Dr  (Cp —Dr
> - ) _ _ . 1 _ _ 1
= chlr 2r My 8N, 1
1,
= g(cpi —1)r.

To see that F is a contraction mapping let us observe that fori =1,...,k

|(F:X)(n) = (FX)(n)] < ] [xi(n + 1) — Xi(n + 7)|

pi(n+7
1
< = lxi(n+ 1) — %i(n+ 7).
pi
Hence )
|FX —FX| < |X = X]|,

min;_,_x {Cp } |
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The proof of the continuity of the mapping T can be performed exactly in the same way

as previously.

By virtue of Theorem 1.3, there exists X that (FX)(n) + (TX)(n)

that X satisfies system (1.1) for n > ns. Let (F;

= X(n). Finally, we show

X)(n)+ (TiX)(n) = xj(n) fori =1,...,k. We

show all transformations only for i € [; UL, and i # k, because for the other cases they are

analogous. Since

) = — 24 j D Ll § ) Al )
pi (ﬂ+T1 s nzﬂgl
then we have
(st + 2T = - <p(1+T> _;axs)fi(xiH(s—m)))
Therefore
ey (s ) + (A ) (sl )+ i (o)
ST <S_§Tiai(5)ﬂ(xi+1(s—m))> et ( L s )

It is easy to notice that

A ( 3 ale) s - o:-)))
and
e
S=n+T;
Then

A (xi(n + ) + piln +w)xi(n) ) = ay(n
Now we can transform the last equation into

A(xi(n) + pi(n)x;(n — Ti)) =

The proof is complete.

=a;i(n+71) filxin(n+ 1 —03)),
) =gi(n+1).
+7) fi(xiza(n+ 7 —

0i)) + gi(n + 7).

ai(n) fi(xip1(n — i) + gi(n).
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Example 2.4. Now, let us consider a difference system
16" —4-87+4mF
A (x2(n) + (=1 = 5) x2(n—2)) = P52 x3(n — 1)

A (x3(n) + (1+ 5) x3(n— 1)) = 25520 x4(n — 1),

All assumptions of Theorem 2.3 are satisfied. The sequence

O

is the bounded solution of the above system.

Now we can formulate the theorem that join both Theorem 2.1 and Theorem 2.3.

A(xi(n) + 2+ 3) xn(n—2)) = — 2L Bn—2) +

(A (xa(m) + (=1 = ) xa(n = 1)) = grgtiapar oz X101 —2).

11

Let I, Ig, Iy, Ig be subsets of the set {1,...,k} such that I, N Ij=Q@fori#jij=56738

andI5UI6UI7U18:{1,...,k}.

Theorem 2.5. Let assumptions (2.1), (2.2), (2.3) and (2.4) hold. If there exist positive real numbers

Cpiy1 € IsU Ig and ¢p,, i € I7 U Ig that satisfy the inequalities

0<pi(n)<cp <1, foriecls neN,
—1< —cp, <pi(n) <0, foriecls, n €Ny,
1< ¢, < pi(n), fori e Iy, n € Ny,

pi(n) < —¢p, < —1, forie I, n € Ny,

then system (1.1) has a bounded nonoscillatory solution.

Proof. For the fixed positive real number r we define the set
1 .
03 = {X €B: §(1 —cp)r < xi(n)| <1, i€ s U,

1

()3 is bounded closed convex subset of the Banach space B.
Let ng = max {c1, cs5}. From assumptions (2.1) and (2.2) we have

© 1—cy)r
Y lai(n)| < A=) e L,

n=neg 8Mf

- 1—cp)r ,

Z gi(n)] < (4%), i€lsUlg,
n=neg

[e0] ~ - 1

Z ‘ai(n” < (Cpé]\z)r, iel;Ulg,
n=ng f

© ¢, — D)r )
Z lgi(n)| < M, icl,Ul,

n=ng 4

—(Cp, —Dr <|xj(n)| < ¢Gpr, i€ ;UIg, n € ]N}.



12 M. Migda, E. Schmeidel and M. Zdanowicz

where

My = max {150 s 1 € |5(1-cpmr] |,

i€lsUlq
- 1, . ~
= s {10511 € [0~ D] .

We can now proceed analogously as in the proof of Theorem 2.1 and Theorem 2.3. Re-
peating reasoning in these proofs we define for n > ng the maps F,T: Q33 — B by formulas
(2.7)-(2.8) for i € Is U I and (2.13)~(2.15) for i € I; U Ig. The rest of the proof also runs as in
Theorem 2.1 and Theorem 2.3. O

In the next theorem we consider the case p;(n) =1,i =1,...,k and get even better result
than in the previous theorems.

Theorem 2.6. Assume that conditions (2.1), (2.2), (2.3) and (2.4) are satisfied. If pi(n) = 1,
i = 1,...,k then for any real constants dy,...,dy there exists a solution X of system (1.1) that
limn*}oo X(Tl) = (dl, . ,dk).

Proof. Letd; € R, i =1,...,k and let € be any positive real number. There exists a constant
M > 0 such that
|fl(t)’§M for tE[di—s,dl‘—i—S], i=1,...,k

Let us denote
Sao(n) =) lai()l,  Sg(n) = Z gl i=1...k
j=n j=n

By (2.1) and (2.2) there exists such an index n; > ng that for n > n; we have

s

€ .
Sai(n)gm, and Sgi(n)gi, i=1,...,k
We define a subset ()5 of B by
Os ={XeB:X(0)=---=X(ny—1)=D and |X(n) — D| < M|Sa(n)| + |Sg(n)| for n > ny},

where D = (dy,...,dx), Sa = (Say,---,Sa.), S = (Sg;,--.,Sg,). It is easy to check, that ()5 is
the convex subset of B. It can be also shown that ()5 is compact (see, for example, the proof
of Theorem 1 in [12] or Lemma 4.7 in [11]). Now, for n > 0, we define a map

T: Q5 — B,
as follows, fori=1,...,k—1
(dz-, for n < ny,
00 11+2]T1—1 00 1’!+2]Tl—1
di—Y L als)filxinGs—a)—-LX L  gis),
j=ls=n+(2j-1)7 J=ls=n+(2j-1)7;
(TiX)(n) = forn >ny and 7; > 0,
di—3 ¥ ai(s)fi (xisa(s — 7)) — 3 ¥ &i(s),
S=n S=n

forn >ny; and T; =0,
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and

dk, for n <ny,

n+2jt—1

o0 1’l+2ka*1 00
de— Y L omG)fitn—o)—X L &ls),
j=1s=n+(2j-1)7 j=1s=n+(2j—-1)1
(TiX)(n) = forn > ny; and 1 > 0,

R I ACTACICEE ) EESAC)

forn > ny; and 1, = 0.

We will show that T(Qs) C Qs. It is obvious that

o n+2j5—1

Y, X Iﬂi(S)ISZIHi(S)I, i=1,...k (2.16)

j:1 S:I’H‘(Zj—l)'l'l‘

o n+2jTi— 0
Z Z 1gi(s)] < Z\gi(s)|, i=1,... k. (2.17)
j=ls=n+(2j-1)7 s=n

Moreover, if X € Qs, then |x;(n)—d;|] < h forall n € N,i = 1,...,k. Hence
lfi(xixa(n))] < M, i =1,...,k—1 and also |fi(x1(n))| < M for every X € Qs, n € IN.
Therefore and by (2.16) and (2.17), for n > ny and 7; > 0, we get

(T;X)(n) —d;| < MZ |la;(s)| + Z 18i(s)] = MS,,(n) + Sg,(n), (2.18)

fori=1,...,k — 1. The same estimation holds for i = k.
For n > ny, 7; = 0 we have

(TX) () 1§m $)fi (xia(s =) + 5 i)
MS, (1) + Sg,(n), i=1,....k—1,

and similarly for i = k. This gives T(X) € Q5 for every X € 5 and T(Q)5) C Q5. Similarly as
in the proof of Theorem 2.1, it can be shown that T is continuous.

By Schauder’s fixed point theorem there exists X € Qs such that T(X) = X, which is a
solution of system (1.1). In fact, forn > ny, ; >0andi=1,...,k —1 we have

o n+2jT— o  Nn+2jTi—
=d;— Z Z ai(s) fi (xi41(s Z Z gi(s).
j=ls=n+(2j-1)7 j=ls=n+(2j-1)7

Hence

o N2t

xi(n) +xi(n — 1) = 2d; — ) Z ai(s) fi (xiya (s — 1))

j=1s= n+2] 17
oo N+2jTi—

- Z Z gi(s)

j=ls=n+2(j-1)7

Za s)fi (xiy1(s Zg, i=1,...,k—1.
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Therefore
Axi(n)+xi(n—7)) = — Y, ai(s)fi (xiza(s — 7))
s=n+1
+ Eal s)fi (xit1(s — 07))
Z 8i(5)+2gi(5), i=1,...,k—1,
s=n+1 s=n
and finally

A(xi(n)+xi(n—7)) =a;(n)f; (xip1(n — o)) +gi(n),  i=1,...,k—1.
In the case 7; = 0 we obtain
A (xi(n) + x;(n)) = 2Ax;(n)

(o]

=2A (di_;z ( )fz(szrl Egl )

=a;(n)fi (xiz1(n—03)) + gi(n), i=1,...,k—1.

The same reasoning applies to the case i = k. It is clear that X fulfills system (1.1) for
n > ny. By (2.1) and (2.2) sequences S;, and S, i = 1,...,k, tend to zero. From (2.18) we get
lim X(n) = D, that is our claim. O

n—00

Example 2.7. Let us consider the following system

A(xi(n) +x1(n—1)) = — 5 1110gns"+243 x5(n—2) + 3%'
A(xp(n) +x2(n—2)) = % x3(n —3),

A (x3(n) +x3(n—2)) = g5 xa(n—1) — 3,

| (xa(1) + x4(n = 3)) = g Toggrrazs X1 (1 —2) + 3.

All assumptions of Theorem 2.6 are satisfied. It is easy to check that

=(Cr3) (243) (25) (-5))

for n > 3 is the solution of the above system having the property lim,_,« X(n) = (2, -2, -2,3).

In the theorem below we consider the case p;(n) = —-1,i=1,...,k.
Theorem 2.8. Let conditions (2.3) and (2.4) be satisfied and assume
Y nlai(n)] <oo,  i=1,...k (2.19)
n=1
Y nlgi(n)| <eo, i=1,...,k (2.20)
n=1
If pi(n) = —1,i=1,...,k, then for any real constants dy, ..., dy there exists a solution X of system

(1.1) that limy, e X(n) = (dy, ..., dx).
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Proof. We can now proceed analogously to the proof of Theorem 2.6. Letd; ¢ R,i =1,...,k
and let € be any positive real number. There exists a constant M > 0 such that

i) <M forteldi—edi+e, i=1,...k
Write

=Yl Se() =Ygl i=1.. .k
j=n j=n

If the sequences ay, ..., ar and g1, ..., gk satisfy (2.19) and (2.20), then immediately satisfy (2.1)
and (2.2) consequently. Hence, for n > ny, we have

€
< _ < = i=1,...,k.
Sa; (1) 2M and Sg(n )_2 i=1,...,k
We define a map
T: Q5 — B,
in the following way, fori =1,...,k—1
d; for n < ny
T: X — [e] e} [} [}
TX)m =94 -5 ¥ ai(s)fi (xipa(s—0i)) — X L &(s) forn=ng,
j=1s=n+j; j=ls=n+jy
and
d for n < ny,
TiX)(n) = © 2 SR
(T X)(n) di— Y L a@)fi(xils—a))— L L gkl(s) forn>mny.
j=1s=n+j1; j=ls=n+jn

We will prove that T(Qs) C Qs. It is easy to observe that

Z Z la;i(s)] < Zs\ai(s)], i=1,...,k (2.21)
j=1s=n+j7; s=n
Z Z lgi(s)] < Zs|gi(s)], i=1,...,k (2.22)
j=1s=n+j7 s=n

By (2.21) and (2.22) for n > ny; we get

[(TiX)(n i i a;(s) fi (xit1(s — 7)) +Z Z gi(s

j=1s=n+j7; j=1s=n+j7 (2.23)

ji=1s
MY slais)| + 1 s18i09)] = MSq () + )

| /\

fori=1,...,k— 1. Analogously we get this for i = k. Hence T(X) € Qs for any X € ()5 and
T(Qs) C Os. Reasoning similarly as in the proof of Theorem 2.1, it can be shown that T is
continuous.

By Schauder’s fixed point theorem there exists X € Qs such that T(X) = X and it is a
solution of system (1.1). For n > ny; we have

(o] [ee]

—d—Z Z ai(s)fi (xiv1(s Z Z gi(s

j=1s=n+j7; j=1s=n+j7;
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fori=1,...,k—1,and

M- =d-Y. Y a@fimaG-o)-Y L &)
j=1ls=n+(j-1)5 j=ls=n+(j-1)1
Since - -
xi(n) —xiln— 1) = — ; a;(s) fi (xiy1(s — 7)) — ; gi(s),
we have

A(xi(n) —xi(n—7)) =a;(n) f; (xip1(n — 7)) +gi(n),  i=1,...,k—1.

The same conclusion can be drawn for i = k.
Finally we see that X satisfies system (1.1) for n > ny. By (2.19) and (2.20) sequences S,,
and S¢, i =1,...,k, tend to zero. From (2.23) we get

lim X(n) = D. O

n—oo
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