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Abstract
The well known Hartman—Wintner oscillation criterion is extended to
the PDE
div(||[Vul[P?Vu) 4 c(@)|ulPu =0, p>1. (E)

The condition on the function ¢(z) under which (E) has no solution posi-
tive for large ||z||, i.e. oo belongs to the closure of the set of zeros of every
solution defined on the domain Q = {z € R™ : ||z|| > 1}, is derived.
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1 Introduction

Let us consider the following partial differential equation with p—Laplacian
div(||Vau|[P~2Vu) + (@) |ulP~2u =0 (1.1)

where p > 1, © = (21, 22,...,%,), || - || is the usual Euclidean norm in R™ and
V is the usual nabla operator. Define the sets Q(a) = {& € R™ : a < ||z||},
Qa,b) = {x € R" : a < ||z|| < b}. The function c(x) is assumed to be
integrable on every compact subset of ©(1). Under solution of the equation
(1.1) we understand every absolutely continuous function u : (1) — R such
that ||Vu| |p’zg—£ is absolutely continuous with respect to x; and u satisfies the
equation (1.1) almost everywhere on (1).

Equation (1.1) appears for example in the study of non-Newtonian fluids,
nonlinear elasticity and in glaciology. Special cases of the equation (1.1) are the
linear Schrodinger equation

Au+c(z)u=0 (1.2)
if p = 2, the half-linear ordinary differential equation

_ 4
 dx

This paper is in final form and no version of it will be submitted for publication elsewhere.

!/
(=2} + e(@)lul~2u=0 (1.3)
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if n =1, and the ordinary differential equation
' +ce(x)u=0 (1.4)

if both n =1 and p = 2 holds.
Remark that if ¢(x) is radial function, i.e., ¢(z) = é(||z||), then the equation
for radial solution w(z) = a(||z||) of the equation (1.1) becomes

d

/
(r"*1|a’|1”*2a’) el i =0 = o
.

(1.5)
which can be transformed into the equation (1.3).

This paper is motivated by the papers [1, 4] and [5, 6], where the Riccati
technique is used to establish oscillation criteria for the equation (1.3) and (1.2),
respectively.

The well-known result from the theory of second order ODE is the following
theorem.

Theorem (Hartman—Wintner). If either

t—o0 t—o00

o 1 t s ) 1 t s
—00 < hmlnf;/1 /1 c(§)d¢ ds < hmsup;/1 /1 c(€)d¢ ds < oo, (1.6)

or

t—o0 t

lim 1/: /1 c(€)d¢ ds = oo, (1.7)

then the equation (1.4) is oscillatory.

This theorem is proved using Riccati technique in [3, Chap. XI]. The aim of
this paper is to extend this statement to the equation (1.1). Another statement
of this type was proved in [2, Theorem 3.4] under additional condition p > n+1.
Here we prove a similar criterion, without the restriction on p.

We use the following function C(t):

o t
o)== _11/ SH/ 2| "c(z) dz ds. (1.8)
P 1 Q(1,s)

2 Main results

First we introduce main ideas from the Riccati technique.
Suppose that there exists a number a € RT and a solution u of (1.1) which

is positive on (a). The vector function w = % is defined on Q(a) and
solves the Riccati type equation
divaw + () + (p — 1)[|w]]* =0, (2.1)
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where ¢ is the conjugate number to p (i.e.
computation shows

1—1) + % = 1 holds). Really, direct
divw = div(||Vul|[P2Vu)u' 7P — (p — 1)||Vu||P~2u"P(Vu, Vu)

_ [[Vul[?

=—cl@) = (-2~

— —c(2) — (p— )| uw]".

The following Lemma plays a crucial role in our consideration. It is a straigh-
forward generalization of [3, Lemma 7.1, Chap XI.]

Lemma 2.1. Let w be the solution of (2.1) defined on Q(a) for some a > 1.
The following statements are equivalent:

(1)

/ ][ o] |7 dzr < oo (2.2)
Q(a)

(ii) there exists a finite limit

tlim C(t) = Cy; (2.3)
(ii)
litminf C(t) > —oo0, (2.4)

where the function C(t) is defined by (1.8).
Our main theorem now follows from Lemma 2.1.

Theorem 2.2 (Hartman—Wintner type oscillation criterion). If either
—o00 < liminf C(¢) < limsup C(t) < oo
t—o0 t—o0

or

lim C(t) = oo,

t—oo

then the equation (1.1) has no positive solution positive on (a) for any a > 1.

Proof. Tt follows from the assumptions of the theorem that liminf;_ ., C(t) >
—o0. If there would exist a number a > 1 such that (1.1) has a solution pos-
itive on Q(a), then Theorem 2.1 would imply that there exists a finite limit
lim_.o C(t). This contradiction ends the proof. O

Corollary 2.3 (Leighton—Wintner type criterion). If
lim ||z||* " c(x) dz = oo, (2.5)
t—o0 Ja(1,t)

then equation (1.1) has no positive solution on Q(a) for any a > 1.
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Proof. If (2.5) holds, then lim; .o C(t) = oo and the statement follows from
Theorem 2.2. (|

Remark. For the equation (1.2) were the results from this paper proved in [5].
Criteria analogous to the second part of Theorem 2.2 and Corollary 2.3 were
proved in [2] without the term ||z||*~™ but under additional conditions p > n+1
and p > n, respectively.

Proof of Lemma 2.1. First we multiply the Riccati equation (2.1) by ||z||1™"
and integrate on (a,t). Application of the identity

1= divw = div([le]['~"w) — (1 = n)Ja]| =" (w, 3),
and Gauss divergence theorem yields
[ et gde [ ) do
~en) [ el wad) e + o= 1) [l ol e
Q(a,t) Q(a

,t

Jr/ ||:E||17”c(z) dz =0, (2.6)
Q(a,t)

where [-do denotes the surface integral, j is the unit outside normal vector to
the sphere in R™ and (-, ) is the usual scalar product.
“(i)=>(ii)” Suppose that (2.2) holds. The Holder inequality implies that

10 oy 3 Lniig g\ ey L\ M7
2", 5) | do < ( e el ) ( I ar )
at) Qa,t) Q(a,t)
1/ t 1/
< ([ el liras) o [sas)™
2(a) a

where w,, is the measure of surface of the n—dimensional unit sphere in R".
Hence

[ il gy de < oc. 1)
Q(a)

C= 1) [ el i+ [ el w5 do

s=m) [l wgido + [ el o) da.
Q(a) Q(La)

Below we will show that C' = Cp. The equation (2.6) can be written in the form
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o [ el ela)de = [ Jlal " wid)do
Q(1,t) [lz||=t
~-0 [l el de + (1) [ el wd) do. (28)
Q(t) Q(t)

1
P we

Multiplying (2.8) by tP~2, integrating over [a,t] and multiplying by 5

obtain

t
_p-1 P2

[|z[]'"(w, §) do ds

[lz||=s

_12 t
= Iy BN C e LR

1—n)(p—-1)
+( ZD T / P 2/ [lz||"™(w, j)dz ds. (2.9)
Q(s)

The second and the third integral on the right hand side tend to zero as ¢ tends
to infinity in view of (2.2) and (2.7). The Hélder inequality implies

=yl T
1/q
<o [ ([ nrriplea) M as
a llz||=s

»/P Vag [t o 1
<@ ([ ) ([t ras)
Q(a,t) 0
1/P 1/ 2
Wn _n 9 (p—1)% .
< ([ el riwlran) M o)
(p—1) Q(a)

and the first integral in (2.9) tends to zero too. Hence
lim C(t) = C = Cy. (2.11)
The implication “(ii)=>(iii)” is trivial.
“(iii)=>(i)” Suppose, by contradiction, that (2.4) holds and

[ dil ol de = +oc. (2.12)
Q(a)

Multiplication of (2.6) by t?~2, integration over the interval [a, b] and multipli-
cation by t!7P gives

1 t
— SP_Q/ 21" aw, 5) do dis
a [|z||=s

bt [ [ el a
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1—n/ 2/
sP~ z|| "™ (w, 7) dx ds
— N

1
=— sp 2ds l|z||* ™™ (w, §) do
tp
a ||z||=a

p=2 l|z||* " c(x)de ds. (2.13)
tp 1/ /Q(as

Define the function

t
o)) = -1 [ [ el s s,
a Q(a,s)

The function v satisfies

tvp(—t)—>oofort—>oo (2.14)

Because of the right hand side of the equality (2.13) is bounded from above,

there exists ¢, such that the right hand side of (2.13) is less than ;,Et,)l for
t > t,. Now we have from (2.13)

sP [|2]['"(w, §) do ds

[|z||=s
t
Jr‘(ln)/ sp_Q/ [lz||""(w, j)dz ds| (2.15)
a Q(a,s)
for t > t,. The same way as in the inequality (2.10) gives

s7 [|2]|'=" (w, j) do ds

[lzl|=s

Vq 1/p, @1
< (/ ||z||1”||w||de> Ot T k() (2.16)
Q(at) (p—1)2/r

where K = wh/?(p — 1)~# 4. The Holder inequality gives

t
}(1—n>/ 27 [ ell g de s
a Q(a,s)
t 1/q 00 1/p
s<n—1>/ w2 ([ rirelas ) [Teerag) as
Q(a,t)
1/q
(n—1) (/ o= 2/ l2]|*="[ew]|* dz ds)
1/p t 1/p
X </ WnS pds) </ sP~ 2ds)
1 0
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) 1/q pT?lw}/p
=(n- 1)(;; @1) (tp — 1y

-1 711/1’ -
_ Do vyt (2.17)
(p—1)a"?

In view of the fact (2.14) there exists a number ¢, > t, such that

—Dwi/? 1
%m < oM7) (2.18)
p—l 97

for ¢ > t,. Combining (2.15), (2.16), (2.17) and (2.18) we get
1
S < K (1 (1)) *

for t > tp. From here

v (t) S 1 ( 1 )q
vi(t) — t\3K

for ¢t > tp. Integration of this inequality from ¢; to co gives a convergent inte-
gral on the left hand side and divergent integral on the right hand side. This
contradiction ends the proof. o
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