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Abstract

In this paper, we study solutions of Volterra integral and differential equa-
tions,

x′(t) = −a(t)x(t) +

∫ t

t−h

b(s)x(s)ds + f(t, xt), x ∈ R,

or

X(t) = a(t) +

∫ t

t−α

g(t, s)X(s)ds, X ∈ R
n.

With Lyapunov functionals, we obtain inequalities for the solutions of these
equations. As a corollary, we also obtain a result on asymptotic stability which
is simpler and better than some existing results.

Key words and phrases: Differential and integral inequalities, stability, bounded-
ness, functional differential equations.
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1 Introduction

Before proceeding, we shall set forth notation and terminology that will be used
throughout this paper. Let A = (aij) be an n × n matrix. AT denotes the trans-

pose of A, AT = (aji), and |A| =
√

Σn
i,j=1a

2
ij . Let (C, || · ||) be the Banach space

of continuous functions φ : [−h, 0]→ Rn with the norm ||φ|| = max−h≤s≤0|φ(s)| and
| · | is any convenient norm in Rn. In this paper, we will use the norm defined by
|X| =

√

Σn
i=1x

2
i for X = (x1, x2, ..., xn)T ∈ Rn. Given H > 0, by CH we denote the

subset of C for which ||φ|| < H . X ′(t) denotes the right-hand derivative at t if it exists
and is finite. Definitions of stability and boundedness can be found in [1].
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2 Some Results on Inequalities of Solutions of Func-

tional Differential Equations

There have been a lot of discussions on estimating solutions of differential equations.
For the system of ordinary differential equations

X ′(t) = A(t)X(t), X ∈ Rn, (1)

where A is an n × n real matrix of continuous functions defined on R+ = [0,∞),
solutions are estimated by Ważewski’s inequality, which is stated as Theorem 1.1 below
and its proof can be found in [3, 12].

Theorem 2.1 (Ważewski’s inequality) Consider (1). Let H(t) = 1
2
(AT (t)+A(t))

and λ1(t), λ2(t), ..., λn(t) be the n eigenvalues of H(t). Let

λ(t) = min{λ1(t), λ2(t), ..., λn(t)}, Λ(t) = max{λ1(t), λ2(t), ..., λn(t)}.

If X(t) is a solution of (1), then

|X(t0)|e
R t

t0
λ(s)ds ≤ |X(t)| ≤ |X(t0)|e

R t

t0
Λ(s)ds

.

For the nonlinear non-autonomous system

d

dt











x1

x2
...
xr











=







G11(t, X) · · · G1r(t, X)
...

. . .
...

Gr1(t, X) · · · Grr(t, X)

















F1(x1)
F2(x2)

...
Fr(xr)











,

solutions are estimated by Ważewski’s type inequalities and details can be found in [4].
For the linear Volterra integro-differential system

X ′(t) = A(t)X(t) +

∫ t

t−h

B(t, s)X(s)ds + F (t), X ∈ Rn, (2)

where h > 0 is a constant, A is an n×n real matrix of continuous functions defined on
R+ = [0,∞), B is an n×n real matrix of continuous functions defined on {(t, s)|−∞ <
s ≤ t < ∞}, and F : R+ → Rn is continuous, the following inequalities estimate its
solutions [7].

Theorem 2.2 Consider (2). Let Λ(t) be as in Theorem 2.1. Assume that there is a
K > 0 such that for each (t, s),−∞ < t − h ≤ s ≤ t < ∞,

|B(t, s)| − K|Λ(s)| ≤ K(Λ(t) + Kh|Λ(t)|)|Λ(s)|(s − t + h).
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Denote Λ∗(t) = Λ(t) + Kh|Λ(t)|. If X(t) = X(t, t0, φ) is a solution of (2), then for
t ≥ t0,

|X(t)| ≤ e
R t
t0

Λ∗(s)ds

[

M(t0) +

∫ t

t0

|F (s)|e−
R s
t0

Λ∗(u)du
ds

]

,

where M(t0) = |φ(0)| + K
∫ 0

−h

∫ 0

s
|Λ(t0 + u)||φ(u)| duds.

Theorem 2.3 Consider (2). Let λ(t) be as in Theorem 1.1. Assume that there is a
k > 0 such that for each (t, s),−∞ < t − h ≤ s ≤ t < ∞,

|B(t, s)| − k|λ(s)| ≤ k(λ(t) − kh|λ(t)|)|λ(s)|(s − t + h).

Denote λ∗(t) = λ(t)−kh|λ(t)|. If X(t) = X(t, t0, φ) is a solution of (2), then for t ≥ t0

|X(t)| ≥ e
R t

t0
λ∗(s)ds

[

m(t0) −
∫ t

t0

|F (s)|e−
R s

t0
λ∗(u)du

ds

]

,

where m(t0) = |φ(0)| − k
∫ 0

−h

∫ 0

s
|λ(t0 + u)||φ(u)| duds.

For the linear scalar functional differential equation

x′(t) = a(t)x(t) + b(t)x(t − h), (3)

where a, b : R+ → R continuous, and h > 0 is a constant, we obtained the following
three inequalities [9].

Theorem 2.4 Assume − 1
2h

≤ a(t) + b(t + h) ≤ −hb2(t + h). Let x(t) = x(t, t0, φ) be
a solution of (3) defined on [t0,∞). Then

|x(t)| ≤ ||φ||
(

1 +

∫ t0+ h
2

t0

|b(u)|du

)

e
R t

t0
a(s)ds

for t ∈ [t0, t0 + h
2
]; and

|x(t)| ≤
√

6V (t0)e
1
2

R t−h
2

t0
[a(s)+b(s+h)]ds

for t ≥ t0 + h
2
, where

V (t0) = [φ(0) +

∫ 0

−h

b(s + t0 + h)φ(s)ds]2 + h

∫ 0

−h

b2(z + t0 + h)φ2(z)dz.

Theorem 2.5 Let x(t) = x(t, t0, φ) be a solution of Equation(3) defined on [t0,∞).

If there is a constant β > 0, such that |b(t)| ≤ hµ(t), where µ(t) = e
R t
0 a(s)ds

1+h
R t+β

t
e

R u
0 a(s)dsdu

,

then
|x(t)| ≤ V (t0)e

R t

t0
[a(s)+hµ(s)]ds

where

V (t0) = |φ(0)| + hµ(t0)

∫ 0

−h

|ϕ(s)|ds.
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Theorem 2.6 Let H > h and

a(t) + b(t + h) − Hb2(t + h) ≥ 0.

If x(t) = x(t, t0, φ) is a solution to (3) defined on [t0,∞), then

x2(t) ≥ H − h

H
V (t0)e

R t
t0

[a(s)+b(s+h)]ds

where V (t0) = [φ(0) +
∫ 0

−h
b(s + h)φ(s)ds]2 − H

∫ 0

−h
b2(s + h)φ2(s)ds.

For the general abstract functional differential system with finite delay

du

dt
= F (t, ut), ut(s) = u(t + s), (4)

we obtained the following results [10].

Theorem 2.7 Let V : R+ × CXH → R+ be continuous and D : R+ × CXH → R+

be continuous along the solutions of (4), and η, L, and P : R+ → R+ be integrable.
Suppose the following conditions hold:

i) W1(|u(t)|X) ≤ V (t, ut) ≤ W2(D(t, ut)) +
∫ t

t−h
L(s)W1(|u(s)|X)ds,

ii) V ′
(1)(t, ut) ≤ −η(t)W2(D(t, ut)) + P (t).

Then the solutions of (4), u(t) = u(t, t0, φ), satisfy the following inequality:

W1(|u(t)|X) ≤
[

K +

∫ t

t0

P (s)e
R s

t0
η(r)dr

ds

]

e
R t

t0
[−η(s)+L(s)(e

R s+h
s η(r)dr−1)]ds

, t ≥ t0, (5)

where K = V (t0, φ) + [e
R t0+h

t0
η(r)dr − 1]

∫ 0

−h
L(s + t0)W1(|φ(s)|X)ds.

Theorem 2.8 Let M and c be positive constants, and let u(t) = u(t, t0, φ) be a solution
of (4). Let V : R+×CXH → R+ be continuous and D : R+×CXH → R+ be continuous
along the solutions of (4), and assume the following conditions hold:

i) W1(|u(t)|X) ≤ V (t, ut) ≤ W2(D(t, ut)) + M
∫ t

t−h
W1(|u(s)|X)ds,

ii) V ′
(1)(t, ut) ≤ −cW2(D(t, ut)),

iii) hM < 1.

Then there is a constant ε > 0 such that the solutions of (4) satisfy the following
inequality:

W1(|u(t)|X) ≤ Ke−ε(t−t0), (6)

where K = V (t0, φ) + M(ech − 1)
∫ 0

−h
W1(|φ(s)|X)ds.
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Applying Theorem 2.8 to the following partial functional differential equation,

∂u
∂t

= uxx(t, x) + ωu(t, x) + f(u(t− h, x)),
u(t, 0) = u(t, π) = 0, t ≥ 0, 0 ≤ x ≤ π, f(0) = 0,

(7)

with ω a real constant and f : R → R continuous, we obtained the following estimate
on its solutions.

Theorem 2.9 Let −1 + ω + L < 0. Then the solutions of (7) satisfy the following
inequality:

|u(t, x)|H1
0
≤

√
Ke

1
2
[Le2(1−ω−L)h+2ω+L−2](t−t0), t ≥ t0,

where

K = |φ(0)(x)|2
H

1
0
+ L

∫ 0

−h

|φ(s)(x)|2
H

1
0
ds + L

[

e2(1−ω−L)h − 1
]

∫ 0

−h

|φ(s)(x)|2
H

1
0
ds.

In addition, if hL < 1, then there exists an ε > 0 such that

|u(t, t0, φ)|H1
0
≤

√
Ke−ε(t−t0), t ≥ t0,

and hence, the zero solution of (7) is exponential asymptotically stable in (H1
0, H1

0).

3 More Estimates on Volterra Integral and Differ-

ential Equations

In this part, we investigate more Volterra integral and differential equations. Our
results are new and improve some former results.

Example 3.1 Consider the scalar equation

x′(t) = −a(t)x(t) +

∫ t

t−h

b(s)x(s)ds + f(t, xt), (8)

with a : R+ → R+ and b : [−h,∞) → R continuous, and f(t, φ) : R+ × C → R
continuous.

Theorem 3.1 Suppose that the following conditions hold.

i) There exists a continuous function, P (t) : R+ → R+ such that |f(t, φ)| ≤ P (t)
for (t, φ) ∈ R+ × C.

ii) There is a constant θ > 0 with 0 < θh < 1 such that |b(t)| − θa(t) ≤ 0.
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If x(t) = x(t, t0, φ) is a solution to (8) defined on [t0,∞), then

|x(t)| ≤
[

K +

∫ t

t0

P (s)e
R s
t0

η(r)dr
ds

]

e
−

R t
t0

η(s)e
R s+h
s η(r)drds

, t ≥ t0, (9)

where η(t) := (1 − θh)a(t), K = V (t0, φ) + [e
R t0+h
t0

η(r)dr − 1]
∫ 0

−h
a(s + t0)|φ(s)|ds and

V (t0, φ) = |φ(0)| +
∫ 0

−h
a(u + t0)|φ(u)|du.

Proof. Define

V (t, xt) = |x(t)| + θ

∫ 0

−h

∫ t

t+s

a(u)|x(u)|duds.

Then

|x(t)| ≤ V (t, xt) ≤ |x(t)| + θh

∫ t

t−h

a(u)|x(u)|du

and

V ′(t, xt) ≤ −a(t)|x(t)| +
∫ t

t−h

|b(u)||x(u)|du + |f(t, xt)|

+ θha(t)|x(t)| − θ

∫ t

t−h

a(u)|x(u)|du

= (θh − 1)a(t)|x(t)| +
∫ t

t−h

[|b(u)| − θa(u)]|x(u)|du + |f(t, xt)|

≤ (θh − 1)a(t)|x(t)| + P (t). (10)

In Theorem 2.7, take η(t) = (1 − θh)a(t), L(t) = θha(t). By Theorem 2.7, we obtain
(10).

Many authors have studied (8). Wang [11] gave results on uniform boundedness
and ultimately uniform boundedness. Here we give an estimate for solutions with
simpler conditions. For f(t, xt) = 0, Burton, Casal and Somolinos [2] and Wang
[5, 6] studied asymptotic stability, uniform stability and uniformly asymptotic stability.
In the following theorem, we obtain asymptotic stability with weaker and simpler
conditions and an estimate for the solutions. Its proof is a direct corollary of Theorem
3.1.

Theorem 3.2 Let f(t, xt) = 0 in (8). Suppose that there is a constant θ > 0 with
0 < θh < 1 such that |b(t)| − θa(t) ≤ 0. If x(t) = x(t, t0, φ) is a solution of (8) defined
on [t0,∞), then

|x(t)| ≤ Ke
−

R t

t0
η(s)ds

, t ≥ t0, (11)

where η(t) := (1 − θh)a(t), K = V (t0, φ) + [e
R t0+h

t0
η(r)dr − 1]

∫ 0

−h
a(s + t0)|φ(s)|ds and

V (t0, φ) = |φ(0)|+
∫ 0

−h
a(u + t0)|φ(u)|du. In addition, if a(t) /∈ L1[0,∞), then x = 0 is

asymptotically stable.
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Let us consider the following integral equation:

X(t) = a(t) +

∫ t

t−α

g(t, s)X(s)ds, X ∈ Rn. (12)

Wang [8] obtained uniform boundedness and ultimate uniform boundedness. We
will give an estimate of its solutions.

Theorem 3.3 Let a(t) ∈ Rn be continuous on R and g(t, s) be an n × n real matrix
of continuous functions on −∞ < s ≤ t < ∞. Assume that

i) p(t) := |g(t, t)| − 1
α
≤ 0 for each t ≥ 0,

ii) Dr|g(t, s)| ≤ 0 for (t, s), −∞ < s ≤ t < ∞, where Dr is the derivative from the
right with respect to t.

If X(t) = X(t, 0, φ) is a solution of (12), then

|X(t)| ≤ |a(t)| + 4

α
e

R t
0 p(s)ds

[

V (0, φ) +

∫ t

0

|a(u)|e−
R u
0 p(s)dsdu

]

,

where V (0, φ) =
∫ 0

−α

∫ 0

u
|g(0, s)||φ(s)|dsdu.

Proof. By (12), we easily have

|X(t)| ≤ |a(t)| +
∫ t

t−α

|g(t, s)||X(s)|ds. (13)

Define

V (t, φ) =

∫ 0

−α

∫ 0

u

|g(t, t + s)||φ(s)|dsdu, or

V (t, Xt) =

∫ 0

−α

∫ t

t+u

|g(t, s)||X(s)|dsdu.

Clearly, V (t, Xt) ≤ α
∫ t

t−α
|g(t, s)||X(s)|ds, which implies

−
∫ t

t−α

|g(t, s)||X(s)|ds ≤ − 1

α
V (t, Xt). (14)

Differentiating V (t, Xt) along the solution of (12), we have

V ′
(12)(t, Xt) = α|g(t, t)||X(t)| −

∫ t

t−α

|g(t, s)||X(s)|ds

+

∫ 0

−α

∫ t

t+u

Dr|g(t, s)||X(s)|dsdu
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≤ α|g(t, t)|
[

|a(t)| +
∫ t

t−α

|g(t, s)||X(s)|ds

]

(by (13))

−
∫ t

t−α

|g(t, s)||X(s)|ds

= α|g(t, t)||a(t)| + [−1 + α|g(t, t)|]
∫ t

t−α

|g(t, s)||X(s)|ds

≤ −1 + α|g(t, t)|
α

V (t, Xt) + α|g(t, t)||a(t)| (by (14)).

Therefore
V ′

(12)(t, Xt) − p(t)V (t, Xt) ≤ α|g(t, t)||a(t)|.

Multiplied by e−
R t

0
p(s)ds and integrated, the last inequality can be written as

V (t, Xt) ≤ e
R t
0 p(s)ds

[

V (0, X0) +

∫ t

0

α|g(u, u)||a(u)|e−
R u
0 p(s)dsdu

]

≤ e
R t
0 p(s)ds

[

V (0, X0) +

∫ t

0

|a(u)|e−
R u
0 p(s)dsdu

]

. (15)

By changing the order of integration,

V (t, Xt) =

∫ t

t−α

|g(t, u)||X(u)|(u− t + α)du

=

∫ t

t−α

|g(t, u)||X(u)|udu + (−t + α)

∫ t

t−α

|g(t, u)||X(u)|du.

If 0 ≤ t ≤ α
2
,

V (t, Xt) ≥
α

2

∫ t

t−α

|g(t, u)||X(u)|du.

Then for 0 ≤ t ≤ α
2
,

|X(t)| ≤ |a(t)| +
∫ t

t−α

|g(t, u)||X(u)|du

≤ |a(t)| + 2

α
V (t, Xt)

≤ |a(t)| + 2

α
e

R t

0
p(s)ds

[

V (0, X0) +

∫ t

0

|a(u)|e−
R u

0
p(s)dsdu

]

(by (15)).

If t > α
2
,

V (t, Xt) =

∫ t

t−α

|g(t, u)||X(u)|(u− t + α)du

≥ α

2

∫ t

t−α
2

|g(t, u)||X(u)|du.
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Therefore

V (t, Xt) + V (t − α

2
, Xt−α

2
) ≥ α

2

∫ t

t−α

|g(t, u)||X(u)|du.

So for t > α
2
,

|X(t)| ≤ |a(t)| +
∫ t

t−α

|g(t, u)||X(u)|du

≤ |a(t)| + 2

α

[

V (t, Xt) + V (t − α

2
, Xt−α

2
)
]

≤ |a(t)| + 2

α
e

R t
0 p(s)ds

[

V (0, X0) +

∫ t

0

|a(u)|e−
R u
0 p(s)dsdu

]

+
2

α
e

R t−α
2

0 p(s)ds

[

V (0, X0) +

∫ t−α
2

0

|a(u)|e−
R u
0 p(s)dsdu

]

(by (15))

≤ |a(t)| + 4

α
e

R t
0 p(s)ds

[

V (0, X0) +

∫ t

0

|a(u)|e−
R u
0 p(s)dsdu

]

.

Therefore, for t ≥ 0,

|X(t)| ≤ |a(t)| + 4

α
e

R t
0 p(s)ds

[

V (0, X0) +

∫ t

0

|a(u)|e−
R u
0 p(s)dsdu

]

.

References

[1] T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differ-
ential Equations, Academic Press, Orlando, Florida, 1985.

[2] T.A. Burton, A. Casal and A. Somolinos, Upper and lower bounds for Liapunov
functionals, Funkcial. Ekvac. 32 (1989), 23-55.

[3] G. Sansone and R. Conti, Nonlinear Differential Equations, Pergamon Press, New
York, 1964.

[4] T. Wang, The modular estimations of solutions of a type of non-autonomous
nonlinear systems, J. East China Inst. of Tech. 42 (1987), 23-33.

[5] T. Wang, Weakening the condition W1(|φ(0)|) ≤ V (t, φ) ≤ W2(‖φ‖) for uniform
asymptotic stability, Nonlinear Anal. 23 (1994), 251-264.

[6] T. Wang, Stability in abstract functional differential equations. II. Applications,
J. Math. Anal. Appl. 186 (1994), 835-861.
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