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Abstract. In this paper, we investigate a class of stochastic evolution inclusions of
Clarke’s subdifferential type in Hilbert spaces. The existence of mild solutions and
controllability results are given and proved by using stochastic analysis techniques,
semigroup of operators theory, a fixed point theorem of multivalued maps and prop-
erties of generalized Clarke subdifferential. An example is included to illustrate the
applicability of the main results.
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1 Introduction

It is well known that controllability plays a significant role in the concept of control theory
and engineering. Currently, fruitful achievements have been obtained on controllability of
stochastic systems and inclusion problems, see e.g. Bashirov and Mahmudov [1], Mahmudov
[20], Obukhovski and Zecca [24] and Rykaczewski [27] and the references therein. In addi-
tion, the controllability problems for stochastic differential equations have become a field of
increasing interest due to its applications in economics, ecology and finance. More precisely,
Klamka [6–10] studied stochastic controllability systems with different kind of delays. Lin and
Hu [11] considered the existence results of stochastic inclusions with nonlocal initial condi-
tions. Sakthivel et al. [29, 30] obtained the approximate controllability of semilinear fractional
differential systems in Hilbert spaces. Ren et al. [26] studied the controllability of impulsive
neutral stochastic differential inclusions with infinite delay.

Recently, many researchers have paid increasingly attention to the evolution inclusions
with Clarke’s subdifferential type which have have been studied in many papers, we refer the
readers to [12–18, 22, 23, 32, 33] and the references therein. In fact, Clarke’s subdifferential has
important applications in mechanics and engineering, especially in nonsmooth analysis and
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optimization [2, 23]. At present, although some significant results have been obtained for the
solvability and control problems of evolution inclusions of generalized Clarke subdifferential,
it seems that there are still many interesting ideas and unanswered questions. However,
the study of the controllability of the systems described by stochastic evolution inclusions
of generalized Clarke subdifferential in Hilbert spaces has not been investigated yet and the
investigation on this topic has not been appreciated well enough.

Motivated by the above consideration, we will study the existence of mild solutions and
controllability of the following stochastic evolution inclusions of generalized Clarke’s subdif-
ferential type with nonlocal initial conditions:{

dx(t) ∈ (Ax(t) + Bu(t))dt + σ(t, x(t)) dw(t) + ∂F(t, x(t)) dt, t ∈ J = [0, b],

x(0) = x0 + g(x),
(1.1)

where x(·) takes the value in the separable Hilbert space H, A : D(A) ⊂ H → H is the
infinitesimal generator of a C0-semigroup T(t) (t ≥ 0) on H. The control function u(·) takes
values in a separable Hilbert space U and B is a bounded linear operator from U into H.
The notation ∂F stands for the generalized Clarke subdifferential (cf. [2]) of a locally Lipschitz
function F(t, ·) : H → R; σ and g are given appropriate functions to be specified later; w is a
Q-Wiener process on a complete probability space (Ω, Γ, P) and x0 is Γ0 measurable H-valued
random variable independent of w. If the operator A is monotone, there are a lot of results in
this direction (cf. [31]).

The rest of this paper is organized as follows. In Section 2, we will recall some useful
preliminary facts. In Section 3, the existence of mild solutions of the system (1.1) is established
and proved by applying stochastic analysis techniques, semigroup of operators theory, a fixed
point theorem of multivalued maps and properties of generalized Clarke subdifferential. In
Section 4, the controllability of the system (1.1) is formulated and proved mainly by using a
fixed point technique. Finally, an example is given to illustrate our main results in Section 5.

2 Preliminaries

Let (Ω, Γ, {Γt, t ≥ 0}, P) be a complete probability space equipped with a normal filtration
{Γt, t ≥ 0} satisfying that Γ0 contains all P-null sets of Γ. E(·) denotes the expectation of a
random variable or the Lebesgue integral with respect to the probability measure P. Let H, U
be separable Hilbert spaces and {w(t), t ≥ 0} be a Wiener process with the linear bounded
covariance operator Q such that tr Q < ∞.

We assume that there exist a complete orthonormal system {ek}k≥1 in H, a bounded se-
quence of nonnegative real numbers λk such that Qek = λkek (k = 1, 2, . . . ) and a sequence of
independent Brownian motions {βk}k≥1 such that

〈w(t), e〉 =
∞

∑
k=1

√
λk〈ek, e〉βk(t), e ∈ H, t ≥ 0

and Γt = Γw
t , where Γw

t is the σ-algebra generated by {w(s) : 0 ≤ s ≤ t}. Let L2
0 = L2(Q

1
2 H, H)

be a space of all Hilbert–Schmidt operators from Q
1
2 H to H with the inner product 〈φ, ϕ〉L2

0
=

tr[φQϕ∗], L2(Γb, H) be a Banach space of all Γb-measurable square integrable random vari-
ables with values in the Hilbert space H. L2(Γ, H) = L2(Ω, Γ, P, H) denotes a Hilbert space
of strongly Γ-measurable, H valued random variables x satisfying E‖x‖2

H < ∞. Since for each
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t ≥ 0 the sub-σ-algebra Γt is complete, L2(Γt, H) is a closed subspace of L2(Γ, H), and hence
L2(Γt, H) is a Hilbert space. C(J, L2(Γ, H)) denotes the Banach space of all mean square con-
tinuous maps x from J into L2(Γ, H) with the norm ‖x‖ = (supt∈J E‖x(t)‖2)

1
2 < ∞. L2

Γ(J, H)

will denote the Hilbert space of all Γt-adapted measurable random processes defined on [0, b]
with values in H and the norm ‖x‖L2

Γ(J,H) =
(
E
∫ b

0 ‖x(t)‖
2
Hdt
)1/2

< ∞ . The space L2
Γ(J, U) has

the same definition as L2
Γ(J, H) with the norm ‖u‖L2

Γ(J,U) =
( ∫ b

0 E‖u(t)‖2
U
)1/2. For details, we

refer the reader to [3, 28] and references therein.
Next, we introduce some basic definitions on multivalued maps, for more details, please

refer to the books [4, 5].
For a Banach space X with the norm ‖ · ‖, X∗ denotes its dual and 〈·, ·〉 the duality pairing

of X and X∗. For convenience, we use the following notations:

Pf (c)(X) = {Ω ⊆ X : Ω is nonempty, closed (convex)},
P(w)k(c)(X) = {Ω ⊆ X : Ω is nonempty, (weakly) compact (convex)}.

Definition 2.1. Given a Banach space X and a multivalued map G : X → 2X \ ∅ = P(X), we
say

(i) G is convex (closed) valued if G(x) is convex (closed) for all x ∈ X.

(ii) G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X)

(i.e. supx∈B{sup{‖y‖ : y ∈ G(x)}} < ∞).

(iii) G is upper semicontinuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0) is a nonempty
closed subset of X, and if for each open set U of X containing G(x0), there exists an
open neighborhood V of x0 such that G(V) ⊆ U.

(iv) G is completely continuous if G(B) is relatively compact for every bounded subset
B ∈ P(X).

(v) G has a fixed point if there is a x ∈ X such that x ∈ G(x).

Now, recall the definition of the generalized gradient of Clarke for a locally Lipschitzian
functional F : X → R. From [2], we denote by F0(x; v) the Clarke generalized directional
derivative of F at x in the direction v, that is

F0(x; v) = lim
x′→x

sup
λ→0+

F(x′ + λv)− F(x′)
λ

and we denote by ∂F, which is a subset of X∗ given by

∂F(x) = {x∗ ∈ X∗ : F0(x; v) ≥ 〈x∗, v〉, for all v ∈ X}

the generalized gradient of F at x (the Clarke subdifferential).
The following basic properties play important roles in our main results.

Lemma 2.2 (Proposition 3.23 of [2]). If F : Ω → R is a locally Lipschitz function on an open set Ω
of X, then

(i) for every v ∈ X, one has F0(x; v) = max{〈x∗, v〉 : for all x∗ ∈ ∂F(x)};

(ii) for every x ∈ Ω, the gradient ∂F(x) is a nonempty, convex, weak ∗-compact subset of X∗ and
‖x∗‖X∗ ≤ Λ for any x∗ ∈ ∂F(x) (where Λ > 0 is the Lipschitz constant of F near x);
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(iii) the graph of the generalized gradient ∂F is closed in Ω× X∗w∗ topology, i.e., if {xn} ⊂ Ω and
{x∗n} ⊂ X are sequences such that x∗n ∈ ∂F(xn) and xn → x in X, x∗n → x∗ weakly∗ in X∗,
then x∗ ∈ ∂F(x) (where X∗w∗ denotes the Banach space X∗ furnished with the w∗-topology);

(iv) the multifunction Ω 3 x → ∂F(x) ⊆ X∗ is u.s.c. from Ω into X∗w∗ .

Lemma 2.3 (Proposition 3.44 of [23]). Let X be a separable reflexive Banach space, 0 < b < ∞ and
h : (0, b)× X → R be a function such that h(·, x) is measurable for all x ∈ X and h(t, ·) is locally
Lipschitz on X for all t ∈ (0, b). Then the multifunction (0, b) × X 3 (t, x) → ∂h(t, x) ⊂ X∗ is
measurable, where ∂h denotes the Clarke generalized gradient of h(t, ·).

Lemma 2.4 (Theorem 2.2.1 of [5]). If (Ω, Σ) is a measurable space, X is a Polish space (i.e., separable
completely metric space) and F : Ω → P f (X) is measurable, then F(·) admits a measurable selection
(i.e., there exists f : Ω→ X measurable such that for every x ∈ Ω, f (x) ∈ F(x)).

Lemma 2.5 (Proposition 3.16 of [23]). Let (Ω, Σ, µ) be a σ-finite measure space, E be a Banach space
and 1 ≤ p < ∞. If fn, f ∈ Lp(Ω, E), fn → f weakly in Lp(Ω, E) and fn(x) ∈ G(x) for µ-a.e.
x ∈ Ω and all n ∈ N where G(x) ∈ Pwk(E) for µ-a.e. x ∈ Ω, then

f (x) ∈ conv
(

w- lim sup{ fn(x)}n∈N

)
for µ-a.e. on x ∈ Ω,

where conv denotes the closed convex hull of a set.

At the end of this section, we present the following lemma and fixed point theorem that
are the key tools in our main results.

Lemma 2.6 ([3]). Let G : [0, b]×Ω→ L2
0 be a strongly measurable mapping such that∫ b

0 E‖G(t)‖p
L2

0
dt < ∞. Then

E
∥∥∥∥ ∫ t

0
G(s) dw(s)

∥∥∥∥p

≤ LG

∫ t

0
E‖G(s)‖p

L2
0

ds

for all 0 ≤ t ≤ b and p ≥ 2, where LG is the constant involving p and b.

Theorem 2.7 ([19]). Let X be a locally convex Banach space and F : X → 2X be a compact convex
valued, u.s.c. multivalued map such that there exists a closed neighborhood V of 0 for which F (V) is
a relatively compact set. If the set

Ω = {x ∈ X : λx ∈ F (x) for some λ > 1}

is bounded, then F has a fixed point.

3 Existence of mild solutions

In this section, we study the existence of mild solutions for the system (1.1). Firstly, according
to the book [25], we may define a mild solution of problem (1.1) as follows.

Definition 3.1. For each u ∈ L2
Γ(J, U), a Γt-adapted stochastic process x ∈ C(J, L2(Γ, H)) is a

mild solution of the control system (1.1) if x(0) = x0 ∈ H and there exists f ∈ L2
Γ(J, H) such

that f (t) ∈ ∂F(t, x(t)) for a.e. t ∈ J and

x(t) = T(t)(x0 + g(x)) +
∫ t

0
T(t− s)[ f (s) + Bu(s)] ds +

∫ t

0
T(t− s)σ(s, x(s)) dw(s), t ∈ J.
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In the following, we impose the following hypotheses.

(H1) A : D(A) ⊆ H → H is the infinitesimal generator of a C0-semigroup T(t)(t ≥ 0) and the
semigroup T(t) is compact for t > 0.

By Theorem 1.2.2 of [25], there exist constants v ≥ 0 and M ≥ 1 such that

‖T(t)‖ ≤ Mevt ≤ Mevb := M, ∀t ∈ J.

(H2) F : J × H → R satisfies the following assumptions:

(i) F(·, x) is measurable for all x ∈ H;

(ii) F(t, ·) is locally Lipschitz continuous for a.e. t ∈ J;

(iii) there exist a function a ∈ L1(J, R+) and a constant c ≥ 0 such that

‖∂F(t, x)‖2 = sup{‖ f (t)‖2 : f (t) ∈ ∂F(t, x)} ≤ a(t) + c‖x‖2,

for a.e. t ∈ J and all x ∈ H.

(H3) σ : J × H → L2
0 is continuous in the second variable for a.e. t ∈ J and there exist a

function η ∈ L2(J, R+) and a constant d ≥ 0 such that

‖σ(t, x)‖2 ≤ η(t) + d‖x‖2.

(H4) g : C(J, H)→ H is continuous and there exists a constant e ≥ 0 such that

‖g(x)‖2 ≤ e(1 + ‖x‖2).

(H5) The linear operator W : L2
Γ(J, U)→ H, defined by

Wu =
∫ b

0
T(b− s)Bu(s) ds

has an inverse operator W−1 which takes value L2
Γ(J, H)/ ker W and there exist two

positive constants M1, M2 > 0 such that

‖B‖ ≤ M1 and ‖W−1‖ ≤ M2.

Next, we define an operator N : L2
Γ(J, H)→ 2L2

Γ(J,H) as follows

N (x) = { f ∈ L2
Γ(J, H) : f (t) ∈ ∂F(t, x(t)) a.e. t ∈ J for x ∈ L2

Γ(J, H)}.

To obtain our main results, we also need the following lemmas.

Lemma 3.2. If the assumption (H2) holds, then for each x ∈ L2
Γ(J, H), the set N (x) has nonempty,

convex and weakly compact values.

Proof. The main idea of the proof comes from Lemma 5.3 of [23] and Lemma 2.6 of [16].
Firstly, from Lemma 2.2 (ii), ∂F(t, x) is nonempty, convex and weakly compact in the

Hilbert H and ∂F is Pwkc(H)-valued. Thus N (x) has convex and weakly compact values.
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Next, we will prove that N (x) is nonempty. Let x ∈ L2
Γ(J, H), then there exists a sequence

{ϕn} ⊆ L2
Γ(J, H) of simple functions such that

ϕn(t)→ x(t) in L2
Γ(J, H) for a.e. t ∈ J. (3.1)

From hypotheses (H2) (i)–(ii), and Lemma 2.3, t → ∂F(t, ϕn(t)) is measurable from J into
Pf c(H). By Lemma 2.4, for every n ≥ 1, there exists a measurable function ζn : J → H such
that ζn(t) ∈ ∂F(t, ϕn(t)) a.e. t ∈ J. Next, from (H2) (iii), we get

‖ζn‖2
L2

Γ(J,H) ≤ ‖a‖L1(J,R+) + c‖ϕn‖2
L2

Γ(J,H).

Hence, {ζn} remains in a bounded subset of L2
Γ(J, H). Thus, we can suppose that ζn → ζ

weakly in L2
Γ(J, H) with ζ ∈ L2

Γ(J, H). Then from Lemma 2.5,

ζ(t) ∈ conv
(
w- lim sup{ζn(t)}n≥1

)
a.e. t ∈ J. (3.2)

Moreover, (H2) (iii) and Lemma 2.2 (iv) imply that x → ∂F(t, x) is u.s.c. Recalling that the
graph of an u.s.c. multifunction with closed values is closed (cf. Proposition 3.12 of [23]), we
obtain that for a.e. t ∈ J, if fn ∈ ∂F(t, ζn), fn ∈ H, fn → f weakly in H, ζn ∈ L2

Γ(J, H), ζn → ζ

in L2
Γ(J, H), then f ∈ ∂F(t, ζ). Hence by (3.2), we have

w- lim sup ∂F(t, ϕn(t)) ⊂ ∂F(t, x(t)) a.e. t ∈ J, (3.3)

where the Kuratowski upper limit (cf. Definition 3.14 of [23]) of set ∂F(t, ϕn(t)) is given by

w- lim sup ∂F(t, ϕn(t)) = {ζ ∈ H : ζ = w- lim ζnk , ζnk ∈ ∂F(t, ϕn(t)), n1 < · · · < nk < · · · }.

Further, by (3.2) and (3.3), we get

ζ(t) ∈ conv(w- lim sup{ζn(t)}n≥1) ⊂ conv(w- lim sup ∂F(t, ϕn(t))

⊂ ∂F(t, x(t)) a.e. t ∈ J.

Since ζ ∈ L2
Γ(J, H) and ζ(t) ∈ ∂F(t, x(t)) a.e. t ∈ J, thus ζ ∈ N (x) which implies that

N (x) is nonempty. The proof is completed.

Lemma 3.3 (Lemma 11 of [22]). If (H2) holds, the operator N satisfies: if xn → x in L2
Γ(J, H),

wn → w weakly in L2
Γ(J, H) and wn ∈ N(xn), then we have w ∈ N (x).

Now, we study the existence of mild solutions for the system (1.1).

Theorem 3.4. For each u ∈ L2
Γ(J, U), if the hypotheses (H1)–(H4) are satisfied, then the system (1.1)

has a mild solution on J provided that

K = 5M2[e + b(bc + d)] < 1.

Proof. Firstly, for any x ∈ C(J, L2(Γ, H)) ⊂ L2(J, H), from Lemma 3.2, we can consider the
multivalued map F : C(J, L2(Γ, H))→ 2C(J,L2(Γ,H)) defined by

F (x) =



h ∈ C(J, L2(Γ, H)) : h(t) = T(t)(x0 + g(x))

+
∫ t

0
T(t− s) f (s) ds +

∫ t

0
T(t− s)Bu(s) ds

+
∫ t

0
T(t− s)σ(s, x(s)) dw(s), f ∈ N (x)


.
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It is clear that problem (1.1) is reduced to find a fixed point of F . We will show that the
operator F satisfies all the conditions of Theorem 2.7. Next, to complete the proof, we divide
the proof into six steps.
Step 1: F (x) is convex for each x ∈ C(J, L2(Γ, H)).

By Lemma 3.2, N (x) has convex values. So if f1, f2 ∈ N (x), then a f1 + (1− a) f2 ∈ N (x)
for all a ∈ [0, 1], which implies clearly that F (x) is convex.
Step 2: The operator F is bounded on bounded subset of C(J, L2(Γ, H)).

For ∀r > 0, let Br = {x ∈ C(J, L2(Γ, H)) : ‖x‖2 6 r}. Obviously, Br is a bounded, closed
and convex set of C(J, L2(Γ, H)). We claim that there exists a positive number ` such that for
each ϕ ∈ F (x), x ∈ Br, ‖ϕ‖2 ≤ `.

In fact, if ϕ ∈ F (x), then there exists a f ∈ N (x) such that

ϕ(t) = T(t)x0 + T(t)g(x) +
∫ t

0
T(t− s) f (s) ds

+
∫ t

0
T(t− s)Bu(s) ds +

∫ t

0
T(t− s)σ(s, x(s)) dw(s), t ∈ J. (3.4)

From (H1)–(H4), the Hölder inequality and Lemma 2.6, for t ∈ J, we have

E‖ϕ(t)‖2 ≤ 5
(

E‖T(t)x0‖2 + E‖T(t)g(x)‖2 + b
∫ t

0
E‖T(t− s) f (s)‖2 ds

+ b
∫ t

0
E‖T(t− s)Bu(s)‖2 ds +

∫ t

0
E‖T(t− s)σ(s, x(s))‖2 dw(s)

)
≤ 5M2

[
E‖x0‖2 + e(1 + ‖x‖2) + b

∫ t

0
(a(s) + cE‖x(s)‖2) ds

+ b
∫ t

0
‖B‖2E‖u(s)‖2

U ds +
∫ t

0
(η(s) + dE‖x(s)‖2) ds

]
≤ 5M2

[
E‖x0‖2 + e(1 + r) + b(‖a‖L1(J,R+) + bcr)

+ bM2
1‖u‖2

L2
Γ(J,U) +

√
b‖η‖L2(J,R+) + bdr

]
=: `.

Thus, F (Br) is bounded in C(J, L2(Γ, H)).
Step 3: {F (x) : x ∈ Br} is equicontinuous.

Firstly, for ∀x ∈ Br, ϕ ∈ F (x), there exists an f ∈ N (x) such that (3.4) holds for each
t ∈ J. Next, for 0 < τ1 < τ2 ≤ b, we get

E‖ϕ(τ2)− ϕ(τ1)‖2 ≤ 5‖T(τ2)− T(τ1)‖2E‖x0‖2 + ‖T(τ2)− T(τ1)‖2E‖g(x)‖2

+ 5E
∥∥∥∥∫ τ2

0
T(τ2 − s) f (s) ds−

∫ τ1

0
[T(τ1 − s) f (s) ds

∥∥∥∥2

+ 5E
∥∥∥∥∫ τ2

0
T(τ2 − s)Bu(s) ds−

∫ τ1

0
[T(τ1 − s)Bu(s) ds

∥∥∥∥2

+ 5E
∥∥∥∥∫ τ2

0
T(τ2 − s)σ(s, x(s)) dw(s)−

∫ τ1

0
T(τ1 − s)σ(s, x(s)) dw(s)

∥∥∥∥2

.

= 5‖T(τ2)− T(τ1)‖2E‖x0‖2 + D1 + D2 + D3 + D4.
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Then, we have

D1 ≤ 5e(1 + r)‖T(τ2)− T(τ1)‖2,

D2 ≤ 5
(

τ1

∫ τ1

0
‖T(τ2 − s)− T(τ1 − s)‖2[a(s) + E‖x(s)‖2] ds

+ (τ2 − τ1)
∫ τ2

τ1

‖T(τ2 − s)‖2[a(s) + E‖x(s)‖2] ds
)

≤ 5τ1(‖a‖L1(J,R+) + τ1r) sup
s∈[0,τ1]

‖T(τ2 − s)− T(τ1 − s)‖2

+ 5M2[‖a‖L1(J,R+) + r(τ2 − τ1)](τ2 − τ1).

Similarly, we have

D3 ≤ 5M2M2
1 sup

s∈[0,τ1]

‖T(τ2 − s)− T(τ1 − s)‖2 + 5M2M2
1‖u‖2

L2
Γ(J,U)(τ2 − τ1),

D4 ≤ 5
( ∫ τ1

0
‖T(τ2 − s)− T(τ1 − s)‖2[η(s) + E‖x(s)‖2] ds

+
∫ τ2

τ1

‖T(τ2 − s)‖2[η(s) + E‖x(s)‖2] ds
)

≤ 5(
√

b‖η‖L2(J,R+) + τ1r) sup
s∈[0,τ1]

‖T(τ2 − s)− T(τ1 − s)‖2

+ 5M2[‖η‖L2(J,R+)

√
τ2 − τ1 + r(τ2 − τ1)].

Hence, using the compactness of T(t) (t > 0), we conclude that the right-hand side of the
above inequalities tends to zero as τ2− τ1 → 0. Thus we conclude F (x)(t) is continuous from
the right in (0, b]. Similarly, for τ1 = 0 and 0 < τ2 ≤ b, we may prove that E‖ϕ(τ2)− x0‖2

tends to zero independently of x ∈ Br as τ2 → 0.
Hence, by the above arguments, we can deduce that {F (x) : x ∈ Br} is an equicontinuous

family of functions in C(J, L2(Γ, H)).
Step 4: F is completely continuous.

According to Definition 2.1 (iv), we will show the set Π(t) = {ϕ(t) : ϕ ∈ F (Br)} is
relatively compact in H for t ∈ J be fixed. To this end, taking account Steps 2–3 and making
use of Ascoli–Arzelà theorem, we have to prove that the set Π(t) = {ϕ(t) : ϕ ∈ F (Br)} is
relatively compact in H.

Clearly, Π(0) = {x0} is compact. So we consider t > 0. Let 0 < t ≤ b be fixed. For any
x ∈ Br, ϕ ∈ F (x), there exists an f ∈ N (x) such that (3.4) holds for each t ∈ J. For each
ε ∈ (0, t), t ∈ (0, b] and any x ∈ Br, we define

ϕε(t) = T(t)(x0 + g(x)) +
∫ t−ε

0
T(t− s)[ f (s) + Bu(s)] ds +

∫ t−ε

0
T(t− s)σ(s, x(s)) dw(s).

From the boundedness of
∫ t−ε

0 T(t− s)[ f (s) + Bu(s)] ds,
∫ t−ε

0 T(t− s)σ(s, x(s)) dw(s) and
the compactness of T(t)(t > 0), we obtain that the set Πε(t) = {ϕε(t) : ϕε ∈ F (Br)} is
relatively compact in H. Moreover, we have

E‖ϕ(t)− ϕε(t)‖2 ≤ 3M2
[

ε
∫ t

t−ε
(a(s) + cr) ds + εM2

1‖u‖2
L2

Γ(J,U) +
∫ t

t−ε
(η(s) + dr) ds

]
≤ 3M2

[
ε‖a‖L2(J,R+) + εM1‖u‖2

L2
Γ(J,U) +

√
ε‖η‖L2(J,R+) + (cε + d)rε

]
,
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which implies the set Π(t) (t > 0) is totally bounded. In view of Step 3, it is relatively compact
in H, which completes the proof of Step 4.
Step 5: F has a closed graph.

Let xn → x∗ in C(J, L2(Γ, H)), ϕn ∈ F (xn) and ϕn → ϕ∗ in C(J, L2(Γ, H)). We will show
that ϕ∗ ∈ F (x∗). Indeed, ϕn ∈ F (xn) means that there exists a fn ∈ N (xn) such that

ϕn(t) = T(t)(x0 + g(xn)) +
∫ t

0
T(t− s)[ fn(s) + Bu(s)] ds +

∫ t

0
T(t− s)σ(s, xn(s)) dw(s). (3.5)

From (H2)–(H4), it is not difficult to show that {g(xn), fn, σ(·, xn)}n≥1 ⊆ H× L2
Γ(J, H)× L2

0
is bounded. Hence, passing to a subsequence if necessary,

(g(xn), fn, σ(·, xn))→ (g(x∗), f∗, σ(·, x∗)) weakly in H × L2
Γ(J, H)× L2

0. (3.6)

It follows from (3.5), (3.6) and the compactness of the operator T(t) that

ϕn(t)→ T(t)(x0 + g(x∗)) +
∫ t

0
T(t− s)[ f∗(s) + Bu(s)] ds +

∫ t

0
T(t− s)σ(s, x∗(s)) dw(s). (3.7)

Note that ϕn → ϕ∗ in C(J, L2(Γ, H)) and fn ∈ N (xn). From Lemma 3.3 and (3.7), we
obtain f∗ ∈ N (x∗). Thus we have shown that ϕ∗ ∈ F (x∗), which implies that F has a closed
graph. By Proposition 3.3.12 (2) of [23], F is u.s.c.
Step 6: A priori estimate.

By Steps 1–5, we have obtained that F is compact convex valued and u.s.c., F (Br) is a
relatively compact set. According to Theorem 2.7, it remains to prove the set

Ω = {x ∈ C(J, L2(Γ, H)) : λx ∈ F (x), λ > 1} is bounded.

Let x ∈ Ω and suppose that there exists a f ∈ N (x) such that

x(t) = λ−1T(t)(x0 + g(x)) + λ−1
∫ t

0
T(t− s) f (s) ds

+ λ−1
∫ t

0
T(t− s)Bu(s) ds + λ−1

∫ t

0
T(t− s)σ(s, x(s)) dw(s).

Then by the assumptions (H1), (H2) (iii), (H3) and (H4), we obtain

E‖x(t)‖2 ≤ 5
(

E‖T(t)x0‖2 + E‖g(x))‖2 + E
∥∥∥∥∫ t

0
T(t− s) f (s) ds

∥∥∥∥2

+ E
∥∥∥∥∫ t

0
T(t− s)Bu(s) ds

∥∥∥∥2

+ E
∥∥∥∥∫ t

0
T(t− s)σ(s, x(s)) dw(s)

∥∥∥∥2 )
≤ 5M2E‖x0‖2 + 5M2e(1 + ‖x‖2) + 5bM2(‖a‖L1(J,R+) + bc‖x‖2)

+ 5bM2M2
1‖u‖2

L2
Γ(J,U) + 5M2(‖η‖L2(J,R+)

√
b + bd‖x‖2)

≤ ρ + 5M2[e + b(bc + d)]‖x‖2, (3.8)

where

ρ = 5M2
[

E‖x0‖2 + e + 5bM2‖a‖L1(J,R+) + bM2
1‖u‖2

L2
Γ(J,U) + ‖η‖L2(J,R+)

√
b
]
.

Since K < 1, from (3.8), we obtain

‖x‖2 = sup
t∈J

E‖x(t)‖2 ≤ ρ + K‖x(t)‖2, thus ‖x‖2 ≤ ρ

1− K
.

Hence, the set Ω is bounded. By Theorem 2.7, F has a fixed point. The proof is completed.
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4 Controllability results

In this section, we mainly investigate the complete controllability of the system (1.1). The
following definition of the controllability is standard. We state it here for the sake of conve-
nience.

Definition 4.1 (Complete controllability). The system (1.1) is said to be completely controllable
on the interval J if, for every x0, x1 ∈ H, there exists a stochastic control u ∈ Lp

Γ(J, U)(p > 1)
which is adapted to the filtration {Γt}t≥0 such that a mild solution x of system (1.1) satisfies
x(b) = x1.

Theorem 4.2. Suppose that the assumptions (H1)–(H5) are satisfied. Then the system (1.1) is com-
pletely controllable on J provided that

K1 = 5M2(1 + 5bM2
1 M2

2 M2)[e + b(bc + d)] < 1.

Proof. Firstly, for any x ∈ C(J, L2(Γ, H)) ⊂ L2(J, H) and x1 ∈ L2
Γ(Γb, H), from Lemma 3.2, we

can define a multivalued map Fu : C(J; L2(Γ, H))→ 2C(J,L2(Γ,H)) by

Fu(x) =



h ∈ C(J; L2(Γ, H)) : h(t) = T(t)x0 + T(t)g(x)

+
∫ t

0
T(t− s) f (s) ds +

∫ t

0
T(t− s)Buα(s) ds

+
∫ t

0
T(t− s)σ(s, x(s)) dw(s), f ∈ N (x)


,

where

uα(t) = W−1
(

x1 − T(b)x0 − T(b)g(x)−
∫ b

0
T(b− s) f (s) ds

−
∫ b

0
T(b− s)σ(s, x(s)) dw(s)

)
. (4.1)

Using the control uα and the assumptions, it is easy to see that the multivalued map Fu is
well defined and x1 ∈ (Fux)(b). Thus to obtain the complete controllability, we only need to
prove that Fu has a fixed point.

The proof is similar to Theorem 3.4. To complete the proof, a simple version of proof is
given.
Step 1: Clearly, for ∀x ∈ C(J, L2(Γ, H)), Fu is convex by the convexity of N (x).
Step 2: The operator F is bounded on bounded subset of C(J, L2(Γ, H)).

Let Bζ = {x ∈ C(J, L2(Γ, H)) : ‖x‖2 ≤ ζ}. In fact, it is enough to show that there exists a
positive constant `0 such that for each ϕ ∈ Fu(x), x ∈ Bζ , ‖ϕ‖2 ≤ `0. If ϕ ∈ Fu(x), then there
exists a f ∈ N (x) such that for t ∈ J

ϕ(t) = T(t)(x0 + g(x)) +
∫ t

0
T(t− s) f (s + Buα(s)] ds

+
∫ t

0
T(t− s)Buα(s) ds +

∫ t

0
T(t− s)σ(s, x(s)) dw(s). (4.2)

where uα is given by (4.1). Then notice that

E‖uα(t)‖2 ≤ 5M2
2

[
E‖x1‖2 + M2

(
E‖x0‖2 + e(1 + ζ) + b‖a‖L1(J,R+)

+
√

b‖η‖L2(J,R+) + (bc + d)bζ
)]

=: Λ
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and

E‖ϕ(t)‖2 ≤ 5M2
[

E‖x0‖2 + e(1 + ζ) + b(‖a‖L1(J,R+) + bcζ)

+ bM2
1Λ +

√
b‖η‖L2(J,R+) + bdζ

]
=: `0.

Thus, Fu(Bζ) is bounded in C(J, L2(Γ, H)).
Step 3: {Fu(x) : x ∈ Bζ} is equicontinuous.

For ∀x ∈ Bζ , ϕ ∈ Fu(x), there exists a f ∈ N (x) such that for each t ∈ J, we have ϕ

as (4.2). Using the estimation on E‖uα(t)‖2 similarly to Step 3 of Theorem 3.4, we know that
{Fu(x) : x ∈ Bζ} is equicontinuous family of functions in C(J, L2(Γ, H)).
Step 4: Fu is completely continuous.

Let t ∈ J be fixed. We show that the set Π(t) = {ϕ(t) : ϕ ∈ Fu(Bζ)} is relatively compact
in H. Clearly, Π(0) = {x0} is compact. So it is sufficient to consider t > 0. Let 0 < t ≤ b be
fixed. For any x ∈ Bζ , ϕ ∈ Fu(x), there exists f ∈ N (x) such that ϕ(t) satisfies (4.2). For each
ε ∈ (0, t), t ∈ (0, b] and any x ∈ Bζ , we can use the way in Theorem 3.4 to prove that the set
Π(t) = {ϕ(t) : ϕ ∈ Fu(Bζ)} is totally bounded.

Taking account Steps 2–3 and making use of Ascoli–Arzelà theorem, we obtain that Fu is
completely continuous.
Step 5: Fu has a closed graph.

Let xn → x∗ in C(J, L2(Γ, H)), ϕn ∈ Fu(xn) and ϕn → ϕ∗ in C(J, L2(Γ, H)). We will show
that ϕ∗ ∈ Fu(x∗). Indeed, ϕn ∈ Fu(xn) means that there exists a fn ∈ N (xn) such that

ϕn(t) = T(t)x0 + T(t)g(xn) +
∫ t

0
T(t− s) fn(s) ds +

∫ t

0
T(t− s)σ(s, xn(s) dw(s)

+
∫ t

0
T(t− s)BW−1

(
x1 − T(b)x0 − T(b)g(xn)−

∫ b

0
T(b− τ) fn(τ) dτ

−
∫ b

0
T(b− τ)σ(τ, xn(τ) dw(τ)

)
ds. (4.3)

From (H2)–(H4), it is not difficult to show that {g(xn), fn, σ(·, xn)}n≥1 ⊆ H× L2
Γ(J, H)× L2

0
is bounded. Hence, passing to a subsequence if necessary,

(g(xn), fn, σ(·, xn))→ (g(x∗), f∗, σ(·, x∗)) weakly in H × L2
Γ(J, H)× L2

0. (4.4)

From the compactness of T(t), (4.3) and (4.4), we obtain

ϕn(t) → T(t)x0 + T(t)g(x∗) +
∫ t

0
T(t− s) f∗(s) ds +

∫ t

0
T(t− s)σ(s, x∗(s) dw(s)

+
∫ t

0
T(t− s)BW−1

(
x1 − T(b)x0 − T(t)g(x∗)−

∫ b

0
T(b− τ) f∗(τ) dτ

+
∫ b

0
T(b− s)σ(s, x∗(s) dw(s)

)
ds. (4.5)

Note that ϕn → ϕ∗ in C(J, L2(Γ, H)) and fn ∈ N (xn). From Lemma 3.3 and (4.5), we
obtain f∗ ∈ N (x∗). Hence, we have proved that ϕ∗ ∈ Fu(x∗), which implies that Fu has a
closed graph. It follows from Proposition 3.3.12 (2) of [23] that Fu is u.s.c.
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Step 6: A priori estimate.
From Steps 1–5, Fu is compact convex valued and u.s.c., and Fu(Bζ) is a relatively compact

set. According to Theorem 2.7, it remains to prove that the set

Ω = {x ∈ C(J, L2(Γ, H)) : λx ∈ Fu(x), λ > 1} is bounded.

Let x ∈ Ω and assume that there exists f ∈ N (x) such that

x(t) = λ−1T(t)x0 + λ−1T(t)g(x) + λ−1
∫ t

0
T(t− s) f (s) ds

+ λ−1
∫ t

0
T(t− s)σ(s, x(s)) dw(s) + λ−1

∫ t

0
T(t− s)BW−1

(
x1 − T(b)x0

− T(b)g(x)−
∫ b

0
T(b− τ) f (τ) dτ −

∫ b

0
T(b− τ)σ(τ, x(τ)) dw(τ)

)
ds.

Then by the assumptions (H1)–(H5), we obtain

E‖x(t)‖2 ≤ 5M2
[

E‖x0‖2 + e(1 + ‖x‖2) + b(‖a‖L1(J,R+) + bc‖x‖2) +
√

b‖η‖L2(J,R+)

+ bd‖x‖2 + 5bM2
1 M2

2

(
E‖x1‖2 + M2

[
E‖x0‖2 + e(1 + ‖x‖2)

+ b(‖a‖L1(J,R+) + bc‖x‖2) +
√

b‖η‖L2(J,R+) + bd‖x‖2
])]

≤ $ + K1‖x‖2, (4.6)

where

$ = 5M2
[

E‖x0‖2 + e + b‖a‖L1(J,R+) +
√

b‖η‖L2(J,R+)

+ 5bM2
1 M2

2

(
E‖x1‖2 + M2[E‖x0‖2 + e + b‖a‖L1(J,R+) +

√
b‖η‖L2(J,R+)

])]
.

and
K1 = 5M2(1 + 5bM2

1 M2
2 M2)[e + b(bc + d)].

Therefore, by the hypothesis K1 < 1 and the formula (4.6), it is easy to see that

‖x‖2 = sup
t∈J

E‖x(t)‖2 ≤ $ + K1‖x‖2, thus ‖x‖2 ≤ $

1− K1
=: ω̂.

Hence, the set Ω is bounded. By Theorem 2.7, we obtain that Fu has a fixed point which
completes the proof.

Remark 4.3. We refer the readers to [30] where a linear stochastic control system is given to
illustrate the compactness assumption on semigroup T(t) is not necessary. For more results
on complete controllability without the compactness assumption on semigroup of infinite-
dimensional control linear systems, see [21]. Therefore, there are sufficient but not necessary
conditions for complete controllability in Theorem 4.2.
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5 An example

As an application of the main result, we consider the following control system described by
evolution inclusions of Clarke subdifferential:

dx(t, z) ∈ [xzz(t, z) + Bu(t, z)] dt + ∂F(t, z, x(t, z)) dt + σ(t, z, x(t, z)) dw(t),

0 < t < b, 0 < z < π,

x(t, 0) = x(t, π) = 0, t ∈ (0, b),

x(0, z) = x0(z), z ∈ (0, π),

(5.1)

where x(t, z) represents the temperature at the point z ∈ (0, π) and time t ∈ (0, b), w(t) is a
two sided and standard one dimensional Brownian motion defined on the filtered probability
space (Ω, Γ, P). Here F = F(t, z, ν) is a locally Lipschitz energy function which is generally
nonsmooth and nonconvex. ∂F denotes the generalized Clarke’s gradient in the third variable
ν (cf. [2]). A simple example of the function F which satisfies hypotheses (H2) is F(ν) =

min{h1(ν), h2(ν)}, where hi : R→ R(i = 1, 2) are convex quadratic functions (cf. [23]).
Next, to write the above system (5.1) into the abstract form of (1.1), let H = U = L2[0, π].

Define an operator A : L2[0, b]→ L2[0, b] by Ax = x′′ with domain

D(A) =
{

x ∈ H : x, x′ are absolutely continuous, x′′ ∈ H, x(0) = x(π) = 0
}

.

Ax =
∞

∑
n=1

n2〈x, en〉en, x ∈ D(A),

where en(y) =
√

2 sin(ny) (n = 1, 2, . . . ) is an orthonormal set of eigenvectors in A. It is well
known that A generates a compact, analytic semigroup {T(t), t ≥ 0} in H and

T(t)x =
∞

∑
n=1

e−n2t〈x, en〉en, x ∈ H and ‖T(t)‖ ≤ e−t for all t ≥ 0.

Define x(t)(z) = x(t, z) and σ(t, x(t))(z) = σ(t, x(t, z)) which satisfy assumption (H3).
Assume that the infinite dimensional space U defined by

U =

{
u : u =

∞

∑
n=2

unen with
∞

∑
n=2

u2
n < ∞

}
,

with the norm defined by ‖u‖U = (∑∞
n=2 u2

n)
1/2. Define a mapping B ∈ L(U, H) as follows:

Bu = 2u2e1 +
∞

∑
n=2

unen for u =
∞

∑
n=2

unen ∈ U.

Under the above assumptions, we know that the system (5.1) can be written in the abstract
form (1.1) and all the conditions of Theorem 4.2 are satisfied. Therefore, by Theorem 4.2,
stochastic control system (5.1) is completely controllable on J = [0, b].
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