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Abstract

We consider the system of Volterra integral equations

ui(t) =

∫ t

0
gi(t, s)[Pi(s, u1(s), u2(s), · · · , un(s))

+ Qi(s, u1(s), u2(s), · · · , un(s))]ds, t ∈ [0, T ], 1 ≤ i ≤ n

where T > 0 is fixed and the nonlinearities Pi(t, u1, u2, · · · , un) can be singular at
t = 0 and uj = 0 where j ∈ {1, 2, · · · , n}. Criteria are offered for the existence of
fixed-sign solutions (u∗

1, u
∗
2, · · · , u

∗
n) to the system of Volterra integral equations,

i.e., θiu
∗
i (t) ≥ 0 for t ∈ [0, 1] and 1 ≤ i ≤ n, where θi ∈ {1,−1} is fixed. We also

include an example to illustrate the usefulness of the results obtained.

Key words and phrases: Fixed-sign solutions, singularities, Volterra integral equa-
tions.
AMS (MOS) Subject Classifications: 45B05

1 Introduction

In this paper we shall consider the system of Volterra integral equations

ui(t) =

∫ t

0

gi(t, s)[Pi(s, u1(s), u2(s), · · · , un(s)) + Qi(s, u1(s), u2(s), · · · , un(s))]ds,

t ∈ [0, T ], 1 ≤ i ≤ n

(1.1)
where T > 0 is fixed. The nonlinearities Pi(t, u1, u2, · · · , un) can be singular at t = 0
and uj = 0 where j ∈ {1, 2, · · · , n}.

Throughout, let u = (u1, u2, · · · , un). We are interested in establishing the existence
of solutions u of the system (1.1) in (C[0, T ])n = C[0, T ] × C[0, T ] × · · · × C[0, T ] (n
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times). Moreover, we are concerned with fixed-sign solutions u, by which we mean
θiui(t) ≥ 0 for all t ∈ [0, T ] and 1 ≤ i ≤ n, where θi ∈ {1,−1} is fixed. Note that
positive solution is a special case of fixed-sign solution when θi = 1 for 1 ≤ i ≤ n.

The system (1.1) when Pi = 0, 1 ≤ i ≤ n reduces to

ui(t) =

∫ t

0

gi(t, s)Qi(s, u1(s), u2(s), · · · , un(s))ds, t ∈ [0, T ], 1 ≤ i ≤ n. (1.2)

This equation when n = 1 has received a lot of attention in the literature [12, 13,
14, 16, 17, 18, 19], since it arises in real-world problems. For example, astrophysical
problems (e.g., the study of the density of stars) give rise to the Emden differential
equation

{

y′′ − tpyq = 0, t ∈ [0, T ]

y(0) = y′(0) = 0, p ≥ 0, 0 < q < 1

which reduces to (1.2)|n=1 when g1(t, s) = (t− s)sp and Q1(t, y) = yq. Other examples
occur in nonlinear diffusion and percolation problems (see [13, 14] and the references
cited therein), and here we get (1.2) where gi is a convolution kernel, i.e.,

ui(t) =

∫ t

0

gi(t − s)Qi(s, u1(s), u2(s), · · · , un(s))ds, t ∈ [0, T ], 1 ≤ i ≤ n.

In particular, Bushell and Okrasiński [13] investigated a special case of the above
system given by

y(t) =

∫ t

0

(t − s)γ−1Q(y(s))ds, t ∈ [0, T ]

where γ > 1.
In the literature, the conditions placed on the kernels gi are not natural. A new

approach is thus employed in this paper to present new results for (1.1). In particular,
new “lower type inequalities” on the solutions are presented. Our results extend,
improve and complement the existing theory in the literature [1, 2, 3, 4, 11, 15, 20, 21,
22]. We have generalized the problems to (i) systems, (ii) general form of nonlinearities
Pi, 1 ≤ i ≤ n that can be singular in both independent and dependent variables, (iii)
existence of fixed-sign solutions, which include positive solutions as special case. Other
related work on systems of integral equations can be found in [5, 6, 7, 8, 9, 10, 23].
Note that the technique employed in singular integral equations [10] is entirely different
from the present work.

2 Main Results

Let the real Banach space B = (C[0, T ])n be equipped with the norm

‖u‖ = max
1≤i≤n

sup
t∈[0,T ]

|ui(t)|.
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Our main tool is the following theorem.

Theorem 2.1 Consider the system

ui(t) = ci(t) +

∫ t

0

gi(t, s)fi(s, u(s))ds, t ∈ [0, T ], 1 ≤ i ≤ n (2.1)

where T > 0 is fixed. Let 1 ≤ p ≤ ∞ be an integer and q be such that 1
p

+ 1
q

= 1.
Assume the following conditions hold for each 1 ≤ i ≤ n:

(C1) ci ∈ C[0, T ];

(C2) fi : [0, T ]×R
n → R is a Lq-Carathéodory function, i.e., (i) the map u 7→ fi(t, u)

is continuous for almost all t ∈ [0, T ], (ii) the map t 7→ fi(t, u) is measurable for
all u ∈ R

n, (iii) for any r > 0, there exists µr,i ∈ Lq[0, T ] such that ‖u‖ ≤ r (‖u‖
denotes the norm in R

n) implies |fi(t, u)| ≤ µr,i(t) for almost all t ∈ [0, T ];

(C3) gi(t, s) : ∆ → R, where ∆ = {(t, s) ∈ R
2 : 0 ≤ s ≤ t ≤ T}, gt

i(s) = gi(t, s) ∈
Lp[0, t] for each t ∈ [0, T ], and

sup
t∈[0,T ]

∫ t

0

|gt
i(s)|

p ds < ∞, 1 ≤ p < ∞

sup
t∈[0,T ]

ess sup
s∈[0,t]

|gt
i(s)| < ∞, p = ∞;

and

(C4) for any t, t′ ∈ [0, T ] with t∗ = min{t, t′}, we have

∫ t∗

0

|gt
i(s) − gt′

i (s)|p ds → 0 as t → t′, 1 ≤ p < ∞

ess sup
s∈[0,t∗]

|gt
i(s) − gt′

i (s)|p → 0 as t → t′, p = ∞.

In addition, suppose there is a constant M > 0, independent of λ, with ‖u‖ 6= M for
any solution u ∈ (C[0, T ])n to

ui(t) = ci(t) + λ

∫ t

0

gi(t, s)fi(s, u(s))ds, t ∈ [0, T ], 1 ≤ i ≤ n (2.2)λ

for each λ ∈ (0, 1). Then, (2.1) has at least one solution in (C[0, T ])n.

Proof. For each 1 ≤ i ≤ n, define

g∗
i (t, s) =

{

gi(t, s), 0 ≤ s ≤ t ≤ T

0, 0 ≤ t ≤ s ≤ T.
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Then, (2.1) is equivalent to

ui(t) = ci(t) +

∫ T

0

g∗
i (t, s)fi(s, u(s))ds, t ∈ [0, T ], 1 ≤ i ≤ n. (2.3)

Now, the system (2.3) (or equivalently (2.1)) has at least one solution in (C[0, T ])n by
Theorem 2.1 in [23], which is stated as follows: Consider the system below

ui(t) = ci(t) +

∫ T

0

gi(t, s)fi(s, u(s))ds, t ∈ [0, T ], 1 ≤ i ≤ n (∗)

where the following conditions hold for each 1 ≤ i ≤ n and for some integers p, q such
that 1 ≤ p ≤ ∞ and 1

p
+ 1

q
= 1: (C1), (C2), gi(t, s) ∈ [0, T ]2 → R, and gt

i(s) = gi(t, s) ∈

Lp[0, T ] for each t ∈ [0, T ]. Further, suppose there is a constant M > 0, independent
of λ, with ‖u‖ 6= M for any solution u ∈ (C[0, T ])n to

ui(t) = ci(t) + λ

∫ T

0

gi(t, s)fi(s, u(s))ds, t ∈ [0, T ], 1 ≤ i ≤ n

for each λ ∈ (0, 1). Then, (∗) has at least one solution in (C[0, T ])n. �

Remark 2.1 If (C4) is changed to

(C4)
′ for any t, t′ ∈ [0, T ] with t∗ = min{t, t′} and t∗∗ = max{t, t′}, we have for 1 ≤

p < ∞,
∫ t∗

0

|gi(t, s) − gi(t
′, s)|p ds +

∫ t∗∗

t∗
|gi(t

∗∗, s)|p ds → 0

as t → t′, and for p = ∞,

ess sup
s∈[0,t∗]

|gi(t, s) − gi(t
′, s)| + ess sup

s∈[t∗,t∗∗]

|gi(t
∗∗, s)| → 0

as t → t′,

then automatically we have the inequalities in (C3).

We shall now apply Theorem 2.1 to obtain an existence result for (1.1). Let θi ∈
{−1, 1}, 1 ≤ i ≤ n be fixed. For each 1 ≤ j ≤ n, we define

[0,∞)j =

{

[0,∞), θj = 1

(−∞, 0], θj = −1

and (0,∞)j is similarly defined.

Theorem 2.2 Let θi ∈ {−1, 1}, 1 ≤ i ≤ n be fixed and let the following conditions be
satisfied for each 1 ≤ i ≤ n:
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(I1) Pi : (0, T ] × (R\{0})n → R, θiPi(t, u) > 0 and is continuous for (t, u) ∈ (0, T ] ×
∏n

j=1(0,∞)j, Qi : [0, T ] × R
n → R, θiQi(t, u) ≥ 0 and is continuous for (t, u) ∈

[0, T ] ×
∏n

j=1[0,∞)j;

(I2) θiPi is ‘nonincreasing’ in u, i.e., if θjuj ≥ θjvj for some j ∈ {1, 2, · · · , n}, then

θiPi(t, u1, · · · , uj, · · · , un) ≤ θiPi(t, u1, · · · , vj, · · · , un), t ∈ (0, T ];

(I3) there exist nonnegative ri and γi such that ri ∈ C(0, T ], γi ∈ C(0,∞), γi > 0 is
nonincreasing, and

θiPi(t, u) ≥ ri(t)γi(|ui|), (t, u) ∈ (0, T ] ×
n

∏

j=1

(0,∞)j;

(I4) there exist nonnegative di and hij , 1 ≤ j ≤ n such that di ∈ C[0, T ], hij ∈
C(0,∞), hij is nondecreasing, and

Qi(t, u)

Pi(t, u)
≤ di(t)hi1(|u1|)hi2(|u2|) · · ·hin(|un|), (t, u) ∈ (0, T ] ×

n
∏

j=1

(0,∞)j;

(I5) gi(t, s) : ∆ → R, gt
i(s) = gi(t, s) ∈ L1[0, t] for each t ∈ [0, T ], and

sup
t∈[0,T ]

∫ t

0

|gt
i(s)|ds < ∞;

(I6) for any t, t′ ∈ [0, T ] with t∗ = min{t, t′}, we have
∫ t∗

0
|gt

i(s) − gt′

i (s)|ds → 0 as
t → t′;

(I7) for each t ∈ [0, T ], gi(t, s) ≥ 0 for a.e. s ∈ [0, t];

(I8) for any t1, t2 ∈ (0, T ] with t1 < t2, we have

gi(t1, s) ≤ gi(t2, s), a.e. s ∈ [0, t1];

(I9) for any kj ∈ {1, 2, ...}, 1 ≤ j ≤ n, we have

sup
t∈[0,T ]

∫ t

0

gi(t, s)θiPi

(

s,
θ1

k1

, · · · ,
θn

kn

)

ds < ∞,

sup
s∈[0,T ]

∫ s

0

gi(s, x)ri(x)dx < ∞,

∫ s

0

gi(s, x)ri(x)dx > 0, a.e. s ∈ [0, T ],
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sup
t∈[0,T ]

∫ t

0

gi(t, s)θiPi(s, θ1β1(s), · · · , θnβn(s))ds < ∞

where

βi(s) = G−1
i

(
∫ s

0

gi(s, x)ri(x)dx

)

for s ∈ [0, T ] and

Gi(z) =
z

γi(z)

for z > 0, with Gi(0) = 0 = G−1
i (0);

(I10) there exists ρi ∈ C[0, T ] such that for t, x ∈ [0, T ] with t < x, we have

∫ t

0

[gi(x, s) − gi(t, s)]θiPi(s, θ1β1(s), · · · , θnβn(s))ds ≤ |ρi(x) − ρi(t)|;

and

(I11) if z > 0 satisfies

z ≤ K + L

{

1 + max
1≤i≤n

[

sup
t∈[0,T ]

di(t)

] [

n
∏

j=1

hij(z)

]}

for some constants K, L ≥ 0, then there exists a constant M (which may depend
on K and L) such that z ≤ M.

Then, (1.1) has a fixed-sign solution u ∈ (C[0, T ])n with

θiui(t) ≥ βi(t)

for t ∈ [0, T ] and 1 ≤ i ≤ n (βi is defined in (I9)).

Proof. Let N = {1, 2, · · ·} and k = (k1, k2, · · · , kn) ∈ Nn. First, we shall show that
the nonsingular system

ui(t) =
θi

ki

+

∫ t

0

gi(t, s) [P ∗
i (s, u(s)) + Q∗

i (s, u(s))] ds, t ∈ [0, T ], 1 ≤ i ≤ n (2.4)k

has a solution for each k ∈ Nn, where

P ∗
i (t, u1, · · · , un) =

{

Pi(t, v1, · · · , vn), t ∈ (0, T ]
0, t = 0

with

vj =















uj, θjuj ≥
1

kj

θj

kj

, θjuj ≤
1

kj
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and
Q∗

i (t, u1, · · · , un) = Qi(t, w1, · · · , wn), t ∈ [0, T ]

with

wj =

{

uj, θjuj ≥ 0

0, θjuj ≤ 0.

Let k ∈ Nn be fixed. We shall use Theorem 2.1 to show that (2.4)k has a solution.
Note that conditions (C1)–(C4) are satisfied with p = 1 and q = ∞. We need to consider
the family of problems

ui(t) =
θi

ki

+ λ

∫ t

0

gi(t, s) [P ∗
i (s, u(s)) + Q∗

i (s, u(s))] ds, t ∈ [0, T ], 1 ≤ i ≤ n (2.5)k
λ

where λ ∈ (0, 1). Let u ∈ (C[0, T ])n be any solution of (2.5)k
λ. Clearly, for each

1 ≤ i ≤ n,

θiui(t) ≥
1

ki

> 0, t ∈ [0, T ]

and so P ∗
i (t, u(t)) = Pi(t, u(t)) for t ∈ (0, T ] and Q∗

i (t, u(t)) = Qi(t, u(t)) for t ∈ [0, T ].
Applying (I2) and (I4), we find for t ∈ [0, T ] and 1 ≤ i ≤ n,

|ui(t)| = θiui(t)

=
1

ki

+ λ

∫ t

0

gi(t, s) [θiP
∗
i (s, u(s)) + θiQ

∗
i (s, u(s))]ds

=
1

ki

+ λ

∫ t

0

gi(t, s)θiPi(s, u(s))

[

1 +
Qi(s, u(s))

Pi(s, u(s))

]

ds

≤ 1 +

∫ t

0

gi(t, s)θiPi

(

s,
θ1

k1
, · · · ,

θn

kn

)

[

1 + di(s)

n
∏

j=1

hij(|uj(s)|)

]

ds

≤ 1 + Ci(1 + Di)

where

Ci = sup
t∈[0,T ]

∫ t

0

gi(t, s)θiPi

(

s,
θ1

k1
, · · · ,

θn

kn

)

ds

and

Di =

[

sup
s∈[0,T ]

di(s)

]

n
∏

j=1

hij(‖u‖).

Thus,

‖u‖ ≤ 1 +

(

max
1≤i≤n

Ci

) (

1 + max
1≤i≤n

Di

)

and so by (I11) there exists a constant Mk with ‖u‖ ≤ Mk. Theorem 2.1 now guarantees
that (2.4)k has a solution uk ∈ (C[0, T ])n with θiu

k
i (t) ≥

1
ki

for t ∈ [0, T ] and 1 ≤ i ≤ n.
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Consequently, P ∗
i (t, uk(t)) = Pi(t, u

k(t)), Q∗
i (t, u

k(t)) = Qi(t, u
k(t)) and uk is a solution

of the system

ui(t) =
θi

ki

+

∫ t

0

gi(t, s)[Pi(s, u(s)) + Qi(s, u(s))]ds, t ∈ [0, T ], 1 ≤ i ≤ n. (2.6)

Moreover, θiu
k
i is nondecreasing on (0, T ), since for t, x ∈ (0, T ) with t < x,

θiu
k
i (x) − θiu

k
i (t)

=

∫ t

0

[gi(x, s) − gi(t, s)]
[

θiPi(s, u
k(s)) + θiQi(s, u

k(s))
]

ds

+

∫ x

t

gi(x, s)
[

θiPi(s, u
k(s)) + θiQi(s, u

k(s))
]

ds

≥ 0

where we have made use of (I1), (I7) and (I8).
Next, we shall obtain a solution to (1.1) by means of the Arzéla-Ascoli theorem, as

a limit of solutions of (2.4)k (as ki → ∞, 1 ≤ i ≤ n). For this we shall show that

{uk}k∈Nn is a bounded and equicontinuous family on [0, T ]. (2.7)

To proceed we need to obtain a lower bound for θiu
k
i (t), t ∈ [0, T ], 1 ≤ i ≤ n. Using

(I3) and the fact that θiu
k
i = |uk

i | is nondecreasing on (0, T ), we get

|uk
i (t)| = θiu

k
i (t)

=
1

ki

+

∫ t

0

gi(t, s)[θiPi(s, u
k(s)) + θiQi(s, u

k(s))]ds

≥

∫ t

0

gi(t, s)θiPi(s, u
k(s))ds

≥

∫ t

0

gi(t, s)ri(s)γi(|u
k
i (s)|)ds

≥ γi(|u
k
i (t)|)

∫ t

0

gi(t, s)ri(s)ds

or equivalently

Gi(|u
k
i (t)|) =

|uk
i (t)|

γi(|uk
i (t)|)

≥

∫ t

0

gi(t, s)ri(s)ds.

Noting that Gi is an increasing function (since γi is nonincreasing), we have

θiu
k
i (t) = |uk

i (t)| ≥ G−1
i

(
∫ t

0

gi(t, s)ri(s)ds

)

= βi(t), t ∈ [0, T ], 1 ≤ i ≤ n (2.8)
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for each k ∈ Nn.
We shall now show that {uk}k∈Nn is a bounded family on [0, T ]. Fix k ∈ Nn. Using

(I2), (2.8) and (I4), we obtain for t ∈ [0, T ] and 1 ≤ i ≤ n,

|uk
i (t)| = θiu

k
i (t)

=
1

ki

+

∫ t

0

gi(t, s)θiPi(s, u
k(s))

[

1 +
Qi(s, u

k(s))

Pi(s, uk(s))

]

ds

≤ 1 +

∫ t

0

gi(t, s)θiPi (s, θ1β1(s), · · · , θnβn(s))

[

1 + di(s)
n

∏

j=1

hij(|u
k
j (s)|)

]

ds

≤ 1 + Ei(1 + Di)

where

Ei = sup
t∈[0,T ]

∫ t

0

gi(t, s)θiPi (s, θ1β1(s), · · · , θnβn(s)) ds.

It follows that

‖uk‖ ≤ 1 +

(

max
1≤i≤n

Ei

) (

1 + max
1≤i≤n

Di

)

and by (I11) there exists a constant M (independent of k) with ‖uk‖ ≤ M . Thus,
{uk}k∈Nn is bounded.

Next, we shall show that {uk}k∈Nn is equicontinuous. Let k ∈ Nn be fixed. For
t, x ∈ [0, T ] with t < x, using the fact that θiu

k
i is nondecreasing and an earlier

technique, we obtain for each 1 ≤ i ≤ n,

|uk
i (x) − uk

i (t)| = θiu
k
i (x) − θiu

k
i (t)

=

∫ t

0

[gi(x, s) − gi(t, s)]θiPi(s, u
k(s))

[

1 +
Qi(s, u

k(s))

Pi(s, uk(s))

]

ds

+

∫ x

t

gi(x, s)θiPi(s, u
k(s))

[

1 +
Qi(s, u

k(s))

Pi(s, uk(s))

]

ds

≤

{
∫ t

0

[gi(x, s) − gi(t, s)]θiPi (s, θ1β1(s), · · · , θnβn(s)) ds

+

∫ x

t

gi(x, s)θiPi (s, θ1β1(s), · · · , θnβn(s)) ds

}

×

{

1 +

[

sup
s∈[0,T ]

di(s)

]

n
∏

j=1

hij(M)

}

≤

[

|ρi(x) − ρi(t)| +

∫ x

t

gi(T, s)θiPi (s, θ1β1(s), · · · , θnβn(s)) ds

]

×

{

1 +

[

sup
s∈[0,T ]

di(s)

]

n
∏

j=1

hij(M)

}
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where we have used (I10) and (I8) in the last inequality. This shows that {uk}k∈Nn is
an equicontinuous family on [0, T ].

Now, the Arzéla-Ascoli theorem guarantees the existence of a subsequence N∗ of
N, and a function u∗ ∈ (C[0, T ])n with uk converging uniformly on [0, T ] to u∗ as
ki → ∞, 1 ≤ i ≤ n through N∗. Further,

βi(t) ≤ θiu
∗
i (t) ≤ M, t ∈ [0, T ], 1 ≤ i ≤ n. (2.9)

It remains to show that u∗ is indeed a solution of (1.1). Fix t ∈ [0, T ]. Then, from
(2.6) we have for each 1 ≤ i ≤ n,

uk
i (t) =

θi

ki

+

∫ t

0

gi(t, s)[Pi(s, u
k(s)) + Qi(s, u

k(s))]ds.

Let ki → ∞ through N∗, and use the Lebesgue dominated convergence theorem with
(I9), to obtain for each 1 ≤ i ≤ n,

u∗
i (t) =

∫ t

0

gi(t, s)[Pi(s, u
∗(s)) + Qi(s, u

∗(s))]ds.

This argument holds for each t ∈ [0, T ], hence u∗ is indeed a solution of (1.1). �

Remark 2.2 If (I6) is changed to

(I6)
′ for any t, t′ ∈ [0, T ] with t∗ = min{t, t′} and t∗∗ = max{t, t′}, we have

∫ t∗

0

|gi(t, s) − gi(t
′, s)|ds +

∫ t∗∗

t∗
|gi(t

∗∗, s)|ds → 0

as t → t′,

then automatically we have supt∈[0,T ]

∫ t

0
|gt

i(s)|ds < ∞ which appears in (I5).

Remark 2.3 If Qi ≡ 0, then we can pick di = 0 in (I4), and trivially (I11) is satisfied
with M = K + L.

Remark 2.4 Let p and q be as in Theorem 2.1. Suppose (C4) and

(C5)

∫ T

0

[θiPi (s, θ1β1(s), · · · , θnβn(s))]q ds < ∞

are satisfied. Then, (I10) is not required in Theorem 2.2. In fact, (I10) is only needed
to show that {uk}k∈Nn is equicontinuous. Let k ∈ Nn be fixed. For t, x ∈ [0, T ] with
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t < x, from the proof of Theorem 2.2 we have for each 1 ≤ i ≤ n,

|uk
i (x) − uk

i (t)| = θiu
k
i (x) − θiu

k
i (t)

≤

{
∫ t

0

[gi(x, s) − gi(t, s)]θiPi (s, θ1β1(s), · · · , θnβn(s)) ds

+

∫ x

t

gi(x, s)θiPi (s, θ1β1(s), · · · , θnβn(s)) ds

}

×

{

1 +

[

sup
s∈[0,T ]

di(s)

]

n
∏

j=1

hij(M)

}

≤

{(
∫ t

0

[gi(x, s) − gi(t, s)]
p ds

)

1

p
(

∫ T

0

[θiPi (s, θ1β1(s), · · · , θnβn(s))]q ds

)

1

q

+

∫ x

t

gi(T, s)θiPi (s, θ1β1(s), · · · , θnβn(s)) ds

}

×

{

1 +

[

sup
s∈[0,T ]

di(s)

]

n
∏

j=1

hij(M)

}

.

Hence, in view of (C4) and (C5), we see that {uk}k∈Nn is an equicontinuous family on
[0, T ].

3 Example

Consider the system of singular Volterra integral equations



















u1(t) =

∫ t

0

(t − s)
{

[u1(s)]
−a1 + [u2(s)]

−a2 + [u1(s)]
a3 [u2(s)]

a4
}

ds, t ∈ [0, T ]

u2(t) =

∫ t

0

(t − s)
{

[u1(s)]
−b1 + [u2(s)]

−b2 + [u1(s)]
b3 [u2(s)]

b4
}

ds, t ∈ [0, T ]

(3.1)
where ai, bi > 0, i = 1, 2, 3, 4 and T > 0 are fixed with

a1 < 1, b2 < 1, 2a2 < b2 + 1,

2b1 < a1 + 1, a1 + a3 + a4 = b1 + b3 + b4 =
1

3
.

(3.2)

(Many ai and bi, i = 1, 2, 3, 4 fulfill (3.2), for instance a1 = 1
6
, a2 < 7

12
, a3 = 1

8
, a4 = 1

24
,

b1 = 1
24

, b2 = b3 = 1
6
, b4 = 1

8
.)
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Here, (3.1) is of the from (1.1) with

g1(t, s) = g2(t, s) = t − s,

P1(t, u1, u2) = u−a1

1 + u−a2

2 , Q1(t, u1, u2) = ua3

1 ua4

2 ,

P2(t, u1, u2) = u−b1
1 + u−b2

2 , Q2(t, u1, u2) = ub3
1 ub4

2 .

It is clear that gi, i = 1, 2 fulfill (I5)–(I8). Suppose we are interested in positive
solutions of (3.1), i.e., when θ1 = θ2 = 1. Clearly, (I1) and (I2) are satisfied. Further,
(I3) and (I4) are fulfilled if we choose

r1 = r2 = d1 = d2 = 1,

γ1(z) = z−a1 , γ2(z) = z−b2 ,

h11(z) = za1+a3 , h12(z) = za4 ,

h21(z) = zb1+b3 , h22(z) = zb4 .

Hence, we have

G1(z) =
z

γ1(z)
= za1+1, G2(z) =

z

γ2(z)
= zb2+1,

G−1
1 (z) = z

1

a1+1 , G−1
2 (z) = z

1

b2+1

and subsequently

β1(t) = G−1
1

(
∫ t

0

g1(t, x)r1(x)dx

)

=

(
∫ t

0

(t − x)dx

)

1

a1+1

=

(

t2

2

)
1

a1+1

,

β2(t) = G−1
2

(
∫ t

0

g2(t, x)r2(x)dx

)

=

(
∫ t

0

(t − x)dx

)

1

b2+1

=

(

t2

2

)
1

b2+1

.

(3.3)

Now, noting (3.2) we see that

∫ T

0

P1(s, β1(s), β2(s))ds

=

∫ T

0

[

(

s2

2

)

−a1
a1+1

+

(

s2

2

)

−a2
b2+1

]

ds < ∞

(3.4)
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and
∫ T

0

P2(s, β1(s), β2(s))ds

=

∫ T

0

[

(

s2

2

)

−b1
a1+1

+

(

s2

2

)

−b2
b2+1

]

ds < ∞.

(3.5)

Applying (3.4) and (3.5), we find for i = 1, 2,

sup
t∈[0,T ]

∫ t

0

gi(t, s)Pi(s, β1(s), β2(s))ds

≤ T

∫ T

0

Pi(s, β1(s), β2(s))ds < ∞.

Thus, the condition (I9) is satisfied.
Next, to check condition (I10), we note that for t, x ∈ [0, T ] with t < x, on using

(3.4) and (3.5) we have

∫ t

0

[g1(x, s) − g1(t, s)]P1(s, β1(s), β2(s))ds

≤ (x − t)

∫ T

0

P1(s, β1(s), β2(s))ds ≤ (x − t)K1

and
∫ t

0

[g2(x, s) − g2(t, s)]P2(s, β1(s), β2(s))ds

≤ (x − t)

∫ T

0

P2(s, β1(s), β2(s))ds ≤ (x − t)K2

where K1 and K2 are some finite constants. Hence, condition (I10) is satisfied.
Finally, the condition (I11) is equivalent to



























if z > 0 satisfies z ≤ K + L
(

1 + z
1

3

)

for some constants K, L ≥ 0, then there exists

a constant M(which may depend on K and L)

such that z ≤ M,

(3.6)

which is true since if z is unbounded, then obviously z > K + L
(

1 + z
1

3

)

for any

K, L ≥ 0. As an illustration, pick K = L = 1, then the inequality in (3.6) becomes

z ≤ 1 +
(

1 + z
1

3

)
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14 P. J. Y. Wong

which can be solved to obtain

0 < z ≤ 3.5213 = M.

It now follows from Theorem 2.2 that the system (3.1), (3.2) has a positive solution
u ∈ (C[0, T ])2 with ui(t) ≥ βi(t) for t ∈ [0, T ] and i = 1, 2, where βi(t) is given by
(3.3).
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