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Abstract

We consider the (n, p) boundary value problem in this paper. Some new
upper estimates to positive solutions for the problem are obtained. Existence
and nonexistence results for positive solutions of the problem are obtained by
using the Krasnosel’skii fixed point theorem. An example is included to illustrate
the results.
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1 Introduction

In this paper, we consider the (n, p) boundary value problem

u(n)(t) + g(t)f(u(t)) = 0, 0 ≤ t ≤ 1, (1)

u(i)(0) = u(p)(1) = 0, i = 0, 1, · · · , n − 2. (2)

Throughout this paper, we assume that

(H1) f : [0,∞) → [0,∞) and g : [0, 1] → [0,∞) are continuous functions, with g(t) 6≡ 0
on [0, 1];

(H2) n ≥ 2 and p are fixed integers such that 1 ≤ p ≤ n − 1.

The (n, p) problem has been considered by many authors. For example, in 1995, Eloe
and Henderson [5] studied a special case of the (n, p) problem in which p = n − 2. In
2000, Agarwal, O’Regan, and Lakshmikantham [1] considered the existence of positive
solutions for the singular (n, p) problem. In 2003, Baxley and Houmand [3] considered
the existence of multiple positive solutions for the (n, p) problem.

EJQTDE Spec. Ed. I, 2009 No. 31



2 B. Yang

Motivated by these works, we in this paper consider the existence and nonexistence
of positive solutions to the problem (1)-(2). By a positive solution, we mean a solution
u(t) such that u(t) > 0 on (0, 1). The purpose of this paper is twofold. First we shall
prove some new upper estimates for positive solutions of the problem (1)-(2). Then,
using these new upper estimates, we obtain some new existence and nonexistence results
for positive solutions of the problem (1)-(2).

The Green’s function G : [0, 1]× [0, 1] → [0,∞) for the problem (1)-(2) is given by
(see [1])

G(t, s) =
1

(n − 1)!

{

tn−1(1 − s)n−p−1 − (t − s)n−1, t ≥ s,

tn−1(1 − s)n−p−1, s ≥ t.

And the problem (1)-(2) is equivalent to the integral equation

u(t) =

∫ 1

0

G(t, s)g(s)f(u(s)) ds, 0 ≤ t ≤ 1. (3)

To prove some of our results, we will need the following fixed point theorem, which
is due to Krasnosel’skii [9].

Theorem 1.1 Let X be a Banach space over the reals, and let P ⊂ X be a cone in
X. Let H1 and H2 be real numbers such that H2 > H1 > 0, and let

Ωi = {v ∈ X | ‖v‖ < Hi}, i = 1, 2.

Suppose L : P ∩ (Ω2 − Ω1) → P is a completely continuous operator such that, either

(K1) ‖Lu‖ ≤ ‖u‖ if u ∈ P ∩ ∂Ω1, and ‖Lu‖ ≥ ‖u‖ if u ∈ P ∩ ∂Ω2; or

(K2) ‖Lu‖ ≥ ‖u‖ if u ∈ P ∩ ∂Ω1, and ‖Lu‖ ≤ ‖u‖ if u ∈ P ∩ ∂Ω2.

Then L has a fixed point in P ∩ ( Ω2 − Ω1).

Throughout the paper, we let X = C[0, 1] be equipped with norm

‖v‖ = max
t∈[0,1]

|v(t)|, v ∈ X.

Obviously X is a Banach space. Also we define

F0 = lim sup
x→0+

f(x)

x
, f0 = lim inf

x→0+

f(x)

x
,

F∞ = lim sup
x→+∞

f(x)

x
, f∞ = lim inf

x→+∞

f(x)

x
.

These constants will be used later in the statements of the existence and nonexistence
theorems.

This paper is organized as follows. In Section 2, we obtain some new upper estimates
to positive solutions to the (n, p) problem. In Sections 3 and 4, we establish some new
existence and nonexistence results for positive solutions of the problem. An example
is given at the end of the paper to illustrate the main results of the paper.
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The (n, p) Boundary Value Problem 3

2 Estimates for Positive Solutions

We begin with some definitions. Throughout the paper, we define the functions a :
[0, 1] → [0, 1], b : [0, 1] → [0, 1], and c : [0, 1] → [0, 1] by

a(t) = tn−1,

b(t) =
1

p
((n − 1)tn−2 − (n − 1 − p)tn−1),

c(t) =
1

p
(ntn−1 − (n − p)tn).

The functions a(t), b(t), and c(t) will be used to estimate positive solutions of the
problem (1)-(2). It is easy to verify the following facts

(1) a(0) = b(0) = c(0) = 0;

(2) a(1) = b(1) = c(1) = 1;

(3) a(t), b(t), and c(t) are increasing nonnegative functions;

(4) a(t) ≤ c(t) ≤ b(t) for 0 ≤ t ≤ 1.

For example, we have

c(t) =
tn−1

p
(n(1 − t) + pt) ≥ 0 on [0, 1],

and

c(t) − a(t) =
n − p

p
tn−1(1 − t) ≥ 0, 0 ≤ t ≤ 1.

We leave the other details to the reader.
The next lemma was proved by Agarwal, O’Regan, and Lakshmikantham in [1].

For details of the proof, see Theorem 1.3 of [1].

Lemma 2.1 If u ∈ Cn[0, 1] satisfies (2), and

u(n)(t) ≤ 0, 0 ≤ t ≤ 1, (4)

then u′(t) ≥ 0 for 0 ≤ t ≤ 1, and

a(t)u(1) ≤ u(t) for 0 ≤ t ≤ 1.

As a direct consequence of Lemma 2.1, we have

Lemma 2.2 If u ∈ Cn[0, 1] satisfies (2) and (4), then

(1) u(1) = ‖u‖;
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(2) If u(1) = 0, then u(t) ≡ 0 on [0, 1];

(3) If u(1) > 0, then u(t) > 0 for 0 < t ≤ 1.

One implication of the above lemmas is that if u(t) is a positive solution to the
problem (1)-(2), then u(t) ≥ a(t)‖u‖. This provides a nice lower estimate to positive
solutions for the (n, p) problem. To our knowledge, no satisfactory upper estimates for
positive solutions for the (n, p) problem have been given in the literature.

Lemma 2.3 If u ∈ Cn[0, 1] satisfies (2) and (4), then u(t) ≤ b(t)u(1) for 0 ≤ t ≤ 1.

Proof. Suppose that u ∈ Cn[0, 1] satisfies (2) and (4). If we define

h(t) = u(1)b(t) − u(t), 0 ≤ t ≤ 1, (5)

then
h(n)(t) = −u(n)(t) ≥ 0 on (0, 1). (6)

To prove the lemma, it suffices to show that h(t) ≥ 0 for 0 ≤ t ≤ 1. Assume
the contrary that h(t0) < 0 for some t0 ∈ (0, 1). If we can show that this leads to a
contradiction, then we are done.

It is easy to see from (5) that

h(i)(0) = 0, i = 0, 1, 2, · · · , n − 3.

By the mean value theorem, because h(0) = 0 > h(t0), there exists t1 ∈ (0, t0) such
that h′(t1) < 0. Because 0 = h′(0) > h′(t1), there exists t2 ∈ (0, t1) ⊂ (0, t0) such that
h′′(t2) < 0. Because 0 = h′′(0) > h′′(t2), there exists t3 ∈ (0, t2) ⊂ (0, t1) such that
h′′′(t3) < 0. Continuing this procedure, we find a sequence of numbers

t0 > t1 > t2 > · · · > tn−2 > 0

such that
h(i)(ti) < 0, 0 ≤ i ≤ n − 2.

It is easy to see that u(1) = 0. By the mean value theorem, because h(t0) < 0 =
h(1), there exists s1 ∈ (t0, 1) ⊂ (t1, 1) such that h′(s1) > 0. Because h′(t1) < 0 < h′(s1),
there exists s2 ∈ (t1, s1) ⊂ (t2, s1) such that h′′(s2) > 0. Continuing this procedure, we
can find a sequence of numbers

s1 > s2 > s3 > · · · > sn−1

such that
h(i)(si) > 0, i = 1, 2, 3, · · · , n − 1.

It’s easy to verify that h(p)(1) = 0. By the mean value theorem, because h(p)(sp) >
0 = h(p)(1), there exists rp+1 ∈ (sp, 1) ⊂ (sp+1, 1) such that h(p+1)(rp+1) < 0. Because
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The (n, p) Boundary Value Problem 5

h(p+1)(sp+1) > 0 > h(p+1)(rp+1), there exists rp+2 ∈ (sp+1, rp+1) ⊂ (sp+2, rp+1) such that
h(p+2)(rp+2) < 0. Continuing this procedure, we can find a sequence of numbers

rp+1 > rp+2 > · · · > rn

such that
h(i)(ri) < 0, i = p + 1, p + 2, · · · , n.

In particular, we have that h(n)(rn) < 0, which contradicts (6). The proof of the
lemma is now complete.

Lemma 2.4 If u ∈ Cn[0, 1] satisfies (2) and (4), and u(n)(t) is non-increasing on
[0, 1], then u(t) ≤ c(t)u(1) for 0 ≤ t ≤ 1.

Proof. Though the proof of this lemma is somewhat similar to that of Lemma 2.3, we
write it out for the purpose of completeness.

If we define
h(t) = u(1)c(t) − u(t), 0 ≤ t ≤ 1,

then
h(n)(t) = −u(1)p−1(n − p)n! − u(n)(t) on (0, 1). (7)

Therefore, h(n)(t) is nondecreasing.
To prove the lemma, it suffices to show that h(t) ≥ 0 for t ∈ [0, 1]. Assume the

contrary that h(t0) < 0 for some t0 ∈ (0, 1).
It is easy to see that h(0) = h′(0) = h′′(0) = · · · = h(n−2)(0) = 0. By the mean

value theorem, because h(0) = 0 > h(t0), there exists t1 ∈ (0, t0) such that h′(t1) < 0.
Because 0 = h′(0) > h′(t1), there exists t2 ∈ (0, t1) ⊂ (0, t0) such that h′′(t2) < 0.
Continuing this procedure, we find a sequence of numbers

t0 > t1 > t2 > t3 > · · · > tn−1

such that
h(i)(ti) < 0, i = 1, 2, 3, · · · , n − 1.

It is easy to see that h(1) = 0. By the mean value theorem, because h(t0) < 0 =
h(1), there exists s1 ∈ (t0, 1) ⊂ (t1, 1) such that h′(s1) > 0. Because h′(t1) < 0 < h′(s1),
there exists s2 ∈ (t1, s1) ⊂ (t2, s1) such that h′′(s2) > 0. Continuing this procedure, we
can find a sequence of numbers

s1 > s2 > s3 > · · · > sn

such that
h(i)(si) > 0, i = 1, 2, 3, · · · , n.
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In particular, we have h(n)(sn) > 0.
It’s easy to verify that h(p)(1) = 0. By the mean value theorem, because h(p)(sp) >

0 = h(p)(1), there exists rp+1 ∈ (sp, 1) ⊂ (sp+1, 1) such that h(p+1)(rp+1) < 0. Because
h(p+1)(sp+1) > 0 > h(p+1)(rp+1), there exists rp+2 ∈ (sp+1, rp+1) ⊂ (sp+2, rp+1) such that
h(p+2)(rp+2) < 0. Continuing this procedure, we can find a sequence of numbers

rp+1 > rp+2 > · · · > rn

such that
ri > si−1 > si, i = p + 1, p + 2, · · · , n

and
h(i)(ri) < 0, i = p + 1, p + 2, · · · , n.

In particular, we have h(n)(rn) < 0 and rn > sn.
Now we have h(n)(sn) > 0 > h(n)(rn) and sn < rn, which contradicts the fact that

h(n) is nondecreasing. The proof is now complete.

Theorem 2.1 Suppose that, in addition to (H1) and (H2), the following condition
holds.

(H3) Both f and g are non-decreasing functions.

If u ∈ Cn[0, 1] is a non-negative solution of the problem (1)-(2), then u(t) ≤ c(t)u(1)
for 0 ≤ t ≤ 1.

Proof. Suppose that u ∈ Cn[0, 1] is a non-negative solution of the problem (1)-(2).
Obviously u(t) satisfies (2) and (4). From Lemma 2.1 we see that u(t) is nondecreasing.
If (H3) holds, then

u(n)(t) = −g(t)f(u(t))

is nonincreasing on [0, 1]. Now it follows immediately from Lemma 2.4 that u(t) ≤
c(t)u(1) for 0 ≤ t ≤ 1. The proof is now complete.

Theorem 2.2 Suppose that (H1) and (H2) hold. If u ∈ Cn[0, 1] is a non-negative
solution of the problem (1)-(2), then u(t) ≤ b(t)u(1) for 0 ≤ t ≤ 1.

Theorem 2.2 follows directly from Lemma 2.3. Note that Theorems 2.1 and 2.2 pro-
vide some upper estimates for positive solutions for the (n, p) boundary value problem.
These upper estimates are new and have not been obtained before.
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The (n, p) Boundary Value Problem 7

Now we define

P = {v ∈ X | v(1) ≥ 0, a(t)v(1) ≤ v(t) ≤ b(t)v(1) on [0, 1]},

and

Q =

{

v ∈ X

∣

∣

∣

∣

v(1) ≥ 0, v(t) is non-decreasing, and
a(t)v(1) ≤ v(t) ≤ c(t)v(1) on [0, 1]

}

.

Then it is easily seen that both P and Q are positive cones of the Banach space X.
And we have

Lemma 2.5 If u ∈ P or u ∈ Q, then u(1) = ‖u‖.

Proof. If u ∈ Q, then u(0) = 0, and u is non-decreasing. Therefore, u(1) = ‖u‖.
If u ∈ P , then for each t ∈ (0, 1), we have

u(t) ≤ b(t)u(1) ≤ b(1)u(1) = u(1),

where the second inequality follows from the fact that b(t) is nondecreasing. Therefore,
u(1) = ‖u‖. The proof is complete.

With the definition of P and Q, we can restate Theorems 2.1 and 2.2 as follows.

Theorem 2.3 Suppose that (H1) and (H2) hold. If u(t) is a non-negative solution to
the problem (1)-(2), then u ∈ P .

Theorem 2.4 Suppose that (H1), (H2), and (H3) hold. If u(t) is a non-negative
solution to the problem (1)-(2), then u ∈ Q.

Define an operator T : P → X by

(Tu)(t) =

∫ 1

0

G(t, s)g(s)f(u(s))ds, 0 ≤ t ≤ 1.

Now the integral equation (3) is equivalent to the equality

Tu = u, u ∈ P.

It is well known that T : P → X is a completely continuous operator. In order to solve
the problem (1)-(2) we need only to find a fixed point of T .

By similar arguments to those of Theorems 2.1 and 2.2, we can prove the next two
theorems without any difficulty.

Theorem 2.5 If (H1) and (H2) hold, then T (P ) ⊂ P .

Theorem 2.6 If (H1), (H2), and (H3) hold, then T (Q) ⊂ Q.
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3 Existence Results

Throughout we define

A =

∫ 1

0

G(1, s)g(s)a(s) ds, B =

∫ 1

0

G(1, s)g(s)b(s) ds,

and

C =

∫ 1

0

G(1, s)g(s)c(s) ds.

The next theorem is our first existence result.

Theorem 3.1 Suppose that (H1) and (H2) hold. If BF0 < 1 < Af∞, then the problem
(1)-(2) has at least one positive solution.

Proof. Choose ε > 0 such that (F0 + ε)B < 1. There exists H1 > 0 such that

f(x) ≤ (F0 + ε)x for 0 < x ≤ H1.

For each u ∈ P with ‖u‖ = H1, we have

(Tu)(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

≤

∫ 1

0

G(1, s)g(s)(F0 + ε)u(s) ds

≤ (F0 + ε)‖u‖

∫ 1

0

G(1, s)g(s)b(s)ds

= (F0 + ε)‖u‖B

≤ ‖u‖,

which means ‖Tu‖ ≤ ‖u‖. So, if we let Ω1 = {u ∈ X| ‖u‖ < H1}, then

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1.

To construct Ω2, we choose β ∈ (0, 1/4) and δ > 0 such that

(f∞ − δ)

∫ 1

β

G(1, s)g(s)a(s) ds > 1.

There exists H3 > 0 such that

f(x) ≥ (f∞ − δ)x for x ≥ H3.

Let H2 = max{H3β
1−n, 2H1}. If u ∈ P with ‖u‖ = H2, then

u(t) ≥ a(t)H2 = tn−1H2 ≥ βn−1H2 ≥ H3 for β ≤ t ≤ 1.
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The (n, p) Boundary Value Problem 9

Therefore, if u ∈ P with ‖u‖ = H2, then

(Tu)(1) ≥

∫ 1

β

G(1, s)g(s)f(u(s))ds

≥

∫ 1

β

G(1, s)g(s)(f∞ − δ)u(s) ds

≥

∫ 1

β

G(1, s)g(s)a(s) ds · (f∞ − δ)‖u‖

≥ ‖u‖,

which means ‖Tu‖ ≥ ‖u‖. So, if we let Ω2 = {u ∈ X| ‖u‖ < H2}, then Ω1 ⊂ Ω2 and
then

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2.

Then the condition (K1) of Theorem 1.1 is satisfied. So there exists a fixed point of T
in P . The proof is complete.

Theorem 3.2 Suppose that (H1) and (H2) hold. If BF∞ < 1 < Af0, then the problem
(1)-(2) has at least one positive solution.

Proof. Choose ε > 0 such that (f0 − ε)A ≥ 1. There exists H1 > 0 such that

f(x) ≥ (f0 − ε)x for 0 < x ≤ H1.

So, for u ∈ P with ‖u‖ = H1 we have

(Tu)(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

≥

∫ 1

0

G(1, s)g(s)u(s) ds · (f0 − ε)

≥

∫ 1

0

G(1, s)g(s)a(s) ds · (f0 − ε)‖u‖

= A(f0 − ε)‖u‖

≥ ‖u‖,

which means ‖Tu‖ ≥ ‖u‖. So, if we let Ω1 = {u ∈ X | ‖u‖ < H1}, then

‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2.

To construct Ω2, we choose δ ∈ (0, 1) such that ((F∞ + δ)B + δ) ≤ 1. There exists
an H3 > 0 such that

f(x) ≤ (F∞ + δ)x for x ≥ H3.
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Let M = max0≤x≤H3
f(x). Then

f(x) ≤ M + (F∞ + δ)x for x ≥ 0.

Let

K = M

∫ 1

0

G(1, s)g(s)ds,

and let

H2 = max{2H1, K(1 − (F∞ + δ)B)−1}.

If u ∈ P with ‖u‖ = H2, then we have

(Tu)(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

≤

∫ 1

0

G(1, s)g(s)(M + (F∞ + δ)u(s)) ds

≤ K + (F∞ + δ)

∫ 1

0

G(1, s)g(s)u(s) ds

≤ K + (F∞ + δ)H2

∫ 1

0

G(1, s)g(s)b(s) ds

= K + (F∞ + δ)BH2

≤ H2,

which means ‖Tu‖ ≤ ‖u‖. So, if we let Ω2 = {u ∈ X | ‖u‖ < H2}, then

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω2.

Now from Theorem 1.1 we see that problem (1)-(2) has at least one positive solution.
The proof is complete.

Theorem 3.3 Suppose that (H1), (H2), and (H3) hold. If CF0 < 1 < Af∞, then the
problem (1)-(2) has at least one positive solution.

Theorem 3.4 Suppose that (H1), (H2), and (H3) hold. If CF∞ < 1 < Af0, then the
problem (1)-(2) has at least one positive solution.

The proofs of Theorems 3.3 and 3.4 are very similar to those of Theorems 3.1 and
3.2. The only difference is that we use the positive cone Q, instead of P , in the proofs
of Theorems 3.3 and 3.4.
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4 Nonexistence Results

In this section, we give some nonexistence results for positive solutions to the (n, p)
problem.

Theorem 4.1 Suppose that (H1) and (H2) hold. If Bf(x) < x for all x > 0, then the
problem (1)-(2) has no positive solutions.

Proof. Assume to the contrary that u(t) is a positive solution of the problem (1)-(2).
Then u ∈ P , u(t) > 0 on (0, 1], and

u(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

< B−1

∫ 1

0

G(1, s)g(s)u(s) ds

≤ B−1

∫ 1

0

G(1, s)g(s)b(s) ds · u(1)

= u(1),

which is a contradiction. The proof is now complete.

Theorem 4.2 Suppose that (H1) and (H2) hold. If Af(x) > x for all x > 0, then the
problem (1)-(2) has no positive solutions.

Theorem 4.3 Suppose that (H1), (H2), and (H3) hold. If Cf(x) < x for all x > 0,
then the problem (1)-(2) has no positive solutions.

The proofs of Theorems 4.2 and 4.3 are quite similar to that of Theorem 4.1 and
are therefore omitted.

Example 4.1 Consider the boundary value problem

u′′′′(t) + g(t)f(u(t)) = 0, 0 < t < 1, (8)

u(0) = u′(0) = u′′(0) = u′′(1) = 0, (9)

where

g(t) = 1 + 2t, 0 ≤ t ≤ 1,

f(x) =
λx(1 + 3x)

1 + x
, x ≥ 0.
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12 B. Yang

Here λ > 0 is a parameter. The problem (8)-(9) is a special case of the problem (1)-(2),
in which n = 4 and p = 2. It is easy to see that, for the problem (8)-(9), we have
f0 = F0 = λ and f∞ = F∞ = 3λ. Also we have

a(t) = t3, b(t) =
1

2
(3t2 − t3), c(t) = 2t3 − t4,

and

G(1, s) =
1

6
s(s − 1)(s − 2).

It is easy to see that λx < f(x) < 3λx for x > 0. Using Maple or Mathematica, we
can easily compute the constants:

A =
43

2520
, B =

147

5040
, C =

331

15120
.

From Theorem 3.1 we see that if

19.53 ≈
2520

129
< λ <

5040

147
≈ 34.286,

then the problem (8)-(9) has at least one positive solution. From Theorems 4.1 and
4.2 we see that if

either λ ≤
5040

441
≈ 11.43 or λ ≥

2520

43
≈ 58.60,

then the problem (8)-(9) has no positive solutions.

Note that the function g(t) is increasing in t, and f(x) is increasing in x for each
fixed λ > 0, therefore Theorems 3.3 and 4.3 apply. From Theorem 3.3 we see that if

19.53 ≈
2520

129
< λ <

15120

331
≈ 45.68,

then the problem (8)-(9) has at least one positive solution. From Theorem 4.3 we see
that if

λ ≤
5040

331
≈ 15.277,

then the problem (8)-(9) has no positive solutions.
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