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Abstract. We investigate the existence of positive solutions for the following class of
nonlinear elliptic problems

div(a(‖x‖)∇u(x)) + f (x, u(x))− (u(x))−α‖∇u(x)‖β + g(‖x‖)x · ∇u(x) = 0,

where x ∈ Rn and ‖x‖ > R, with the condition lim‖x‖→∞ u(x) = 0. We present the
approach based on the subsolution and supersolution method for bounded subdomains
and a certain convergence procedure. Our results cover both sublinear and superlinear
cases of f . The speed of decaying of solutions will be also characterized more precisely.
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supersolution method, exterior domain.
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1 Introduction

We consider the solvability of the following singular elliptic equation

div(a(‖x‖)∇u(x)) + f (x, u(x))− (u(x))−α‖∇u(x)‖β + g(‖x‖)x · ∇u(x) = 0, (1.1)

for x ∈ ΩR, in the case when we look for solutions satisfying the condition

lim
‖x‖→∞

u(x) = 0, (1.2)

where n > 2, R > 1, 0 < 2α ≤ β ≤ 2, for all x, y ∈ Rn, ‖x‖ :=
√

∑n
i=1 x2

i , and x · y := ∑n
i=1 xiyi,

ΩR = {x ∈ Rn, ‖x‖ > R}. Precisely, we ask about sufficient conditions which guarantee the
existence of function u of C2+α

loc class, which satisfies (1.1) at each point x from a certain neigh-
borhood of infinity and we require the solution vanishes when the Euclidian norm of argu-
ments tends to infinity. Our next aim is to describe more precisely how quickly solutions
decay.
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Similar problems without any singular part were widely discussed, among others in [4–6,
10–15]. On the other hand, there are many papers devoted to the singular elliptic problems
with Laplace operator, similar singularity at zero and subquadratic growth with respect to
the gradient. Here we have to mention paper [8] due to D. P. Covei, who looks for positive
solutions of C2+α

loc class for the following problem

−∆u + c(x)u−1‖∇u‖2 = a(x) for x ∈ RN , u > 0,

lim
‖x‖→∞

u(x) = 0. (1.3)

Such problems, by making suitable transformation, are associated with widely discussed
equation of the form

− ∆u = a(x)h(u) in Ω, u > 0 (1.4)

when we look for a solution which blows up in a neighborhood of ∂Ω, (see e.g. [8, Remarks 1
and 2]). Precisely, let us consider (1.4) with h(u) = eu. When we apply the transformation w =

e−u we get ∆u = 1
w2 ‖∇w‖2 − 1

w ∆w. Therefore problem (1.4) leads to the following equation

−∆w + w−1‖∇w‖2 = a(x)

which is a special case of (1.3) and of (1.1), where we consider the singularity
(u(x))−α‖∇u(x)‖β, with 0 < 2α ≤ β ≤ 2. It appears that this assumption plays the spe-
cial role. First of all, the inequality 2α ≤ β allows us to obtain the subsolution of our problem
on a bounded domain with the help of an eigenfunction of a certain linear problem. On the
other hand, the condition β ≤ 2 is necessary to apply the technical tools described in [9].
For the reader’s convenience we describe the paper [9], where the existence and nonexistence
results are discussed for PDE with singular nonlinearities on a bounded domain Ω ⊂ RN with
sufficiently smooth boundary. The author applied his general results, among others, to the
problem

∆u− a(x)u−q‖∇u‖2 + b(x)u2−p = 0 for x ∈ Ω, u > 0,

u = 0 on ∂Ω

which comes from stochastic process theory and leads (for q = 1, a ≡ 2, b ≡ 1), via substitu-
tion u = 1/v, to the problem

∆v− vp = 0, v > 0 in Ω

v(x)→ ∞ as x → ∂Ω.

There are also many results concerning weak solutions. Here it is worth mentioning the paper
[20] written by Wen-Shu Zhou who considers the existence and multiplicity of positive weak
solutions for the following singular PDE

−∆u + λu−m‖∇u‖2 = f (x) for x ∈ Ω, u = 0 on ∂Ω,

where Ω ⊂ RN is bounded, N ≥ 2, m > 1 and λ 6= 0 and f is a nonnegative measur-
able function. The results are also based on the subsolution and supersolution method. We
can meet such problems in fluid mechanics (see e.g. [17] and references therein). Further,
D. Arcoya, S. Barile, P. J. Martínez-Aparicio (in [2]) investigate the problem of the form

− ∆u + g(x, u)‖∇u‖2 = a(x) for x ∈ Ω, u ∈ H1
0 . (1.5)
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where Ω ⊂ RN is a bounded domain, with N ≥ 3, a ∈ Lq, with q > N/2 and g is a
Carathéodory function in Ω × (0,+∞) which can have a singularity at zero. The authors
consider a sequence of approximated problems to (1.5) and show the existence of a sequence
(wn) of their solutions which tends to a positive solution of (1.5) in H1

loc(Ω).
In the end we recall the results presented by D. Arcoya et al. in [3], where we can find the

more general problem

− div(M(x, u)∇u) + g(x, u)‖∇u‖2 = f (x) for x ∈ Ω ⊂ RN , u = 0 on ∂Ω (1.6)

with f being strictly positive on every compact subset of Ω and a Carathéodory function
g : Ω× (0,+∞)→ R, which can be singular at 0. The authors also prove that for the following
special case of (1.6)

− ∆u + u−γ‖∇u‖2 = f (x) for x ∈ Ω, u = 0 on ∂Ω (1.7)

with γ > 0, the condition γ < 2 is necessary and sufficient for the existence of distributional
solution of (1.7).

We also want to join in this discussion and deal with positive solutions for (1.1)–(1.2) and
their asymptotic behavior. We start with the definitions of solution of our problem. We have
to emphasize that we use standard definitions based on the ideas from the seventies and the
eighties (described e.g. by Amann or Noussair and Swanson in [1] and [18]) which are met
also in papers mentioned above.

Definition 1.1. As a solution of our problem we understand a function u ∈ C2+α
loc (ΩR) which

satisfies (1.1) at every point x ∈ ΩR and condition (1.2).

Our results are based on the following assumptions

(A_a) a : [1,+∞) → (0,+∞) belongs to C1+α([1,+∞)),
∫ ∞

1
l1−n

a(l) dl < +∞ and liml→+∞ a(l) ∈
(0,+∞);

(A_f) f : Ω1 ×R→ R, Ω1 = {x ∈ Rn, ‖x‖ > 1} , is locally Hölder continuous, there exist d > 0
and continuous function M : [1,+∞) → (0,+∞) such that sup‖x‖=r supu∈[0,d] | f (x, u)| ≤
M(r) in [1,+∞) and ∫ ∞

1
rn−1M(r)dr < (n− 2)

d
c

, (1.8)

where c := (n− 2)
∫ ∞

1
l1−n

a(l) dl and for each bounded domain Ω̃ ⊂ Ω1, f (x, u) ≥ fmin > 0, for

all x ∈ Ω̃ and u ∈ [0, d] ;

(A_g) g : [1,+∞)→ R is continuously differentiable and there exists r0 ≥ 1 such that g(r) ≥ 0 for
all r ≥ r0.

2 Supersolution on exterior domain

Our task is now to obtain the existence of function v of the class C2 (ΩR) , such that

div(a(‖x‖)∇v(x)) + f (x, v(x))− (v(x))−α‖∇v(x)‖β + g(‖x‖)x · ∇v(x)) ≤ 0,

for x ∈ ΩR, and lim‖x‖→∞ v(x) = 0. In the sequel we call such function v a supersolution
of (1.1)–(1.2). To this effect we use the ideas presented in the paper [19] and consider the
auxiliary linear elliptic problem
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
−div(a(‖x‖)∇v(x)) = M(‖x‖) on Ω1

v(x) = 0, for ‖x‖ = 1,
lim
‖x‖→∞

v(x) = 0.

 (2.1)

for function M given in (A_f). We show that there exists a radial positive solution of (2.1)
which is a supersolution of (1.1)–(1.2) in a certain neighborhood ΩR of infinity. To prove
its existence we employ the standard reasoning applying suitable transformation. Then the
problem of the existence of radial solutions for (2.1) leads to the existence of positive solutions
of the following singular Dirichlet problem{

−(ã(t)z′(t))′ = h(t) in (0, 1),

z(0) = z(1) = 0,
(2.2)

where
h(t) =

1

(n− 2)2 (1− t)
2n−2
2−n M

(
(1− t)

1
2−n

)
and ã(t) = a

(
(1− t)

1
2−n

)
.

Precisely, we use the transformation ‖x‖ = (1− t)
1

2−n and the well-known fact that if z is
a solution of (2.2) then v(x) = z(1− ‖x‖2−n) is a radial solution of (2.1), and conversely, if we
have a radial solution v(x) = z̃(‖x‖) of (2.1), with z̃ : [1,+∞) → R, then z(t) = z̃

(
(1− t)

1
2−n
)

satisfies (2.2).
Taking into account the properties of functions M and a, one can infer that h and ã satisfy

conditions:

(A_ã) ã ∈ C1([0, 1)) is positive, limt→1− ã(t) := ã1 ∈ (0,+∞), c =
∫ 1

0
1

ã(s)ds.

(A_h) h : (0, 1)→ (0,+∞) is continuous and for all t ∈ (0, 1) and∫ 1

0
h(s)ds ≤ 4dcã2

min, (2.3)

where ãmin := inft∈(0,1) ã(t).

Applying the approach described in [12] and [19] we prove existence of a positive radial
solution v of (2.1) having the special properties, which allow us to show that v is a supersolu-
tion of our problem on each bounded domain Ω ⊂ ΩR. We start with the singular ODE.

Lemma 2.1. If conditions (A_h) and (A_ã) are satisfied then we state the existence of at least one
positive classical solution z of (2.2) such that

1. there exists t0 ∈ (0, 1) for which z′(t) ≤ 0 for all t ∈ (t0, 1),

2. for all t ∈ (0, 1) ,
z(t) ≤ d, (2.4)

3.
z(t) = O(1− t) for t→ 1−, (2.5)

4.
z(t) = o(φ(t)) for t→ 1−, (2.6)

where φ is any function φ ∈ C1(0, 1) such that limt→1− φ(t) = 0 and limt→1− φ′(t) = +∞.
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Proof. Firstly, we note that the function z given by the formula

z(t) =
∫ 1

0
G(s, t)h(s)ds, (2.7)

is a solution of (2.2), when G is the Green’s function

G(s, t) :=
1
c


∫ s

0

1
ã(r)

dr
∫ 1

t

1
ã(r)

dr for 0 ≤ s ≤ t∫ t

0

1
ã(r)

dr
∫ 1

s

1
ã(r)

dr for t < s ≤ 1.

It is clear that z ∈ C([0, 1]) ∩ C2(0, 1), z(0) = z(1) = 0, z satisfies (2.2) and

0 ≤ z(t) ≤ 1
c

1
4ã2

min

∫ 1

0
h(s)ds ≤ d.

Our task is now to show the existence of t0 such that z′(t) ≤ 0 for all t ∈ (t0, 1) and the
positivity of z in (0, 1). To show the first assertion we state the existence of t0 ∈ (0, 1) such that
z′(t0) = 0 what is a simply consequence of Rolle’s theorem. It is clear that k(t) := ã(t)z′(t),
for all t ∈ (0, 1) , is nonincreasing in (0, 1) , and consequently k(t) ≤ k(t0) = 0 for all t ∈ (t0, 1)
which gives z′(t) ≤ 0 for all t ∈ (t0, 1).

Now we prove that z > 0 in (0, 1). By (2.7), we know that z is nonnegative. Suppose
that there exists at least one argument t̃ ∈ (0, 1) at which z(t̃) = 0. Here we can use Rolle’s
theorem again which leads to the existence of numbers t1 ∈ (0, t̃) and t1 ∈ (t̃, 1) such that
z′(t1) = z′(t1) = 0, which implies, by the properties of k, that for all t ∈ [t1, t1], z′(t) = 0 in
[t1, t1], and further z(t) = z(t̃) = 0 in [t1, t1]. Now the iteration process gives us two sequences:
(tm)m∈N ⊂ (0, 1), which is decreasing, and

(
tm
)

m∈N ⊂ (0, 1), which is increasing, and such
that z ≡ 0 in [tm, tm]. The properties of both sequences lead to the existence of their limits.
Let t := limm→∞ tm and t := limm→∞ tm. Since z is continuous in [0, 1], z(t) = 0 in [t, t]. It is
easy to show that t = 0 and t = 1, which means that z ≡ 0 in [0, 1]. We get a contradiction to
(A_h). Thus z > 0 in (0, 1).

We start the proof of parts 3 and 4 with the observation that using (2.7) and (A_ã) we get
for all t ∈ (0, 1) ,

z′(t) =
1
c

1
ã(t)

[
−
∫ 1

0

(∫ s

0

1
ã(r)

dr
)

h(s)ds + c
∫ 1

t
h(s)ds

]
and further

lim
t→1−

z′(t) = −1
c

1
ã1

∫ 1

0

∫ s

0

1
ã(r)

drh(s)ds.

We also have limt→1− z(t) = 0. Now, applying (as in [11] and [12]) L’Hospital’s rule and the
above equalities, we obtain

lim
t→1−

z(t)
(1− t)

= lim
t→1−

z′(t)
−1

=
1
c

1
ã1

∫ 1

0

∫ s

0

1
ã(r)

drh(s)ds ∈ (0,+∞) .

Therefore z(t) = O((1 − t)) for t → 1−. If we take any function φ ∈ C1(0, 1) satisfying
limt→1− φ(t) = 0 and limt→1− φ′(t) = +∞, we can apply again L’Hospital’s rule and get
limt→1−

z(t)
φ(t) = limt→1−

z′(t)
φ′(t) = 0. In consequence, we have z(t) = o(φ(t)) as t→ 1−.
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As a consequence of the above lemma we get the existence of supersolutions for (1.1)–(1.2).

Corollary 2.2. If we assume (A_f) and (A_a) then there exists a positive supersolution v of our singular
problem in ΩR, for a certain R > 1. Moreover the following estimates hold

v ≤ d in ΩR, (2.8)

v(x) = O
(

1
‖x‖n−2

)
as ‖x‖ → +∞, (2.9)

and

v(x) = o
(
φ̃(‖x‖)

)
as ‖x‖ → +∞ (2.10)

for any φ̃ ∈ C1(1,+∞) satisfying conditions limr→+∞ φ̃(r) = 0 and limr→+∞ φ̃′(r)rn−1 = +∞.

Proof. Applying Lemma 2.1 we state that there exists at least one positive radial solution
v(x) = z(1− ‖x‖2−n) > 0 for x ∈ Ω1, of (2.1), where z is a positive solution of (2.2). The
first part of Lemma 2.1 guarantees the existence of t0 ∈ (0, 1) such that z′(t) ≤ 0 for all
t ∈ (t0, 1). Let us put R0 := (1− t0)

1
2−n > 1. Then for all x ∈ Rn such that ‖x‖ ≥ R0, we have

the following estimate

x · ∇v(x) =
n

∑
j=1

xj
∂v(x)

∂xj

=
n

∑
j=1

[
xjz′(1− ‖x‖2−n)

(
−(2− n)‖x‖1−n xj

‖x‖

)]
= z′(1− ‖x‖2−n)(n− 2)‖x‖2−n ≤ 0.

Moreover for all ‖x‖ ≥ r0, g(‖x‖) ≥ 0. Finally, we have for all x ∈ Rn such that ‖x‖ ≥ R,
where R := max{r0, R0}

div(a(‖x‖)∇v(x)) + f (x, v(x))− (v(x))−α‖∇v(x)‖β + g(‖x‖)x · ∇v(x))

≤ div(a(‖x‖)∇v(x)) + M(‖x‖) = 0,

namely v is a supersolution of our singular problem in ΩR.
Applying assertions (2.5) and (2.6) and the definition of v we obtain (2.9) and (2.10).

3 Solutions on bounded domain

Let Ω ⊂ Rn be a bounded domain with C2+α boundary such that Ω ⊂ ΩR. Our task is now
to prove the existence of a positive solution of the elliptic singular PDE (1.1) in Ω. To this
end we use the ideas presented by S. Cui in [9] and formulate the lemma which gives us
the solvability of our problem in Ω. For the reader’s convenient we recall subsolution and
supersolution results from [9]. We start with the following operator

Lu ≡
n

∑
i,j=1

ai,j(x)
∂2

∂xi∂xj
u +

n

∑
i=1

bi(x)
∂

∂xi
u,

where ai,j, bi ∈ Cα
(
Ω
)

, for some α ∈ (0, 1) , ai,j(x) = ai,j(x) in Ω, and there exists a constant
λ0 > 0 such that for all x ∈ Ω and ζ ∈ Rn, ∑n

i,j=1ai,j(x)ζiζ j ≥ λ0|ζ|2. Let us consider the
function F satisfying the following assumptions
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(D1) F is locally Hölder continuous in Ω× (0,+∞)× Rn and continuously differentiable with
respect to the variables u and ξ;

(D2) for bounded domain Q ⊂⊂ Ω and any a, b ∈ (0,+∞) , a < b, there exists a correspond-
ing constant C = C(Q, a, b) > 0 such that for all x ∈ Q, u ∈ [a, b] , ξ ∈ Rn,

|F(x, u, ξ)| ≤ C(1 + |ξ|2).

By a solution of the problem

Lu + F(x, u,∇u) = 0, u > 0 in Ω (3.1)

and

u = ψ on ∂Ω, (3.2)

S. Cui understands function u ∈ C2+α(Ω) ∩ C(Ω) which satisfies (3.1) at every point x ∈ Ω
and (3.2). Subsolutions of (3.1)–(3.2), i.e. functions w satisfying Lw+ F(x, w,∇w) ≥ 0 and (3.2),
and supersolutions, i.e. functions v satisfying Lv + F(x, v,∇v) ≤ 0 and (3.2), are described
analogously.

We base ourselves on the below results proved by Cui (see [9, Lemma 3]).

Lemma 3.1. Suppose that the function F satisfies conditions (D1) and (D2). Suppose furthermore
that problem (3.1)–(3.2) has a pair of subsolution u and supersolutions u satisfying the conditions

(1) u, u ∈ C2(Ω) ∩ C(Ω);

(2) 0 < u(x) ≤ u(x) for all x ∈ Ω;

(3) u(x) = u(x) = ψ(x); for all x ∈ ∂Ω.

Then problem (3.1)–(3.2) has a solution u ∈ C2+α(Ω) ∩ C(Ω) satisfying u(x) ≤ u(x) ≤ u(x) for all
x ∈ Ω.

In spite of the fact that in our case assumptions (D1) and (D2) are satisfied, we have to
emphasize that we cannot apply directly the above result. As we see in the next lemma we
will construct a subsolution which is equal to zero on the boundary of Ω. On the other hand
the supersolution v of our problem will be positive on ∂Ω. Thus condition (3) in Lemma 3.1
does not hold. But it appears that a small modification of the proof of Lemma 3.1 gives us the
required assertion.

It is clear that (1.1) is a particular case of (3.1) with F(x, u, z) = f (x, u) − (u)−α‖z‖β −
∇(a(‖x‖))z− g(‖x‖)x · z. Now we consider the equation

div(a(‖x‖)∇u(x)) + f (x, u(x))− (u(x))−α‖∇u(x)‖β

+ g(‖x‖)x · ∇u(x)) = 0 for all x ∈ Ω, (3.3)

where Ω is a bounded domain. We say that w ∈ C2(Ω) ∩ C(Ω) is a subsolution of (3.3) in Ω
if, at each point of Ω, w satisfies

div(a(‖x‖)∇w(x)) + f (x, w(x))− (w(x))−α‖∇w(x)‖β + g(‖x‖)x · ∇w(x)) ≥ 0.

Analogously, we say that v ∈ C2(Ω)∩ C(Ω) is a supersolution of (3.3) in Ω if, at each point of
Ω, v satisfies

div(a(‖x‖)∇v(x)) + f (x, v(x))− (v(x))−α‖∇v(x)‖β + g(‖x‖)x · ∇v(x)) ≤ 0.

Applying the steps of the reasoning described in the proof of the Lemma 3.1 (see [9, Lemma 3])
we can prove the below result.
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Lemma 3.2. Assume that equation (3.3) has a pair of subsolution and supersolutions u and u such
that u, u ∈ C2(Ω) ∩ C(Ω), 0 < u(x) ≤ u(x) for all x ∈ Ω and u(x) ≤ u(x) for all x ∈ ∂Ω. Then
the equation (3.3) has a solution u0 belonging to C2+α(Ω) and satisfying u(x) ≤ u0(x) ≤ u(x) for all
x ∈ Ω.

Corollary 2.2 gives the existence of the supersolution v of (3.3) on Ω. We have to emphasize
that v is independent of the set Ω, namely for each bounded domain Ω ⊂ ΩR, v is the
supersolution of (3.3). Our task is now to find a positive subsolution for (3.3) in Ω.

Lemma 3.3. There exists a positive subsolution wΩ of the problem (3.3) on Ω, such that wΩ ≤ v in Ω.

Proof. To this effect we consider ϕ being the eigenfunction corresponding to the real eigen-
value λ1 > 0 of the following operator L̃u := −div(a(‖x‖)∇u(x))− g(‖x‖)x · ∇u(x), namely{

−div(a(‖x‖)∇ϕ(x))− g(‖x‖)x · ∇ϕ(x) = λ1ϕ(x) on Ω

ϕ(x) = 0 on ∂Ω.

We know that ϕ ∈ C2+α (Ω) ∩ C1 (Ω) is positive in Ω. We show that function wΩ = sϕ2 with
s satisfying

0 < s ≤ min

1,

(
fmin

2λ1ϕ2
max + 2β ϕ

β−2α
max ‖∇ϕmax‖β)

) 1
α

 .

is a subsolution of (3.3). We start with the proof that wΩ(x) < v(x) < d for all x ∈ Ω, which
allows us to use properties of f in Ω × [0, d] and, in consequence, we will be able to show
that wΩ is the subsolution of (3.3) in Ω. To this effect we note that the following chain of
inequalities holds

− div(a(‖x‖)∇ (v(x)− wΩ(x)))− g(‖x‖)x · ∇ (v(x)− wΩ(x))

≥ −div(a(‖x‖)∇v(x)) + div(a(‖x‖)∇wΩ(x)) + g(‖x‖)x · ∇wΩ(x)

= M(‖x‖) + div(a(‖x‖)∇wΩ(x)) + g(‖x‖)x · ∇wΩ(x)

> fmin + 2sϕ(x)[div(a(‖x‖)∇ϕ(x)) + g(‖x‖)x∇ϕ(x)] + 2sa(‖x‖)‖∇ϕ(x)‖2

= fmin − 2sλ1ϕ2(x) + 2sa(‖x‖)‖∇ϕ(x)‖2

≥ fmin − 2sλ1ϕ2(x) ≥ 0.

for all x ∈ Ω. By the maximum principle we get v(x) ≥ wΩ(x) on Ω.
Now we have for all x ∈ Ω,

div(a(‖x‖)∇wΩ(x)) + f (x, wΩ(x))− (wΩ(x))−α‖∇wΩ(x)‖β + g(‖x‖)x · ∇wΩ(x))

= 2sϕ(x)[div(a(‖x‖)∇ϕ(x)) + g(‖x‖)x∇ϕ(x)] + 2sa(‖x‖)‖∇ϕ(x)‖2 + f (x, sϕ2(x))

− 4sβ ϕβ(x)‖∇ϕ(x)‖β

sα ϕ2α(x)

= − 2sλ1ϕ2(x) + 2sa(‖x‖)‖∇ϕ(x)‖2 + f (x, sϕ2(x))− 2βsβ−α ϕβ−2α(x)‖∇ϕ(x)‖β

≥ − 2sλ1ϕ2
max + fmin − 2βsβ−α ϕ

β−2α
max ‖∇ϕmax‖β

≥ − 2sαλ1ϕ2
max + fmin − 2βsα ϕ

β−2α
max ‖∇ϕmax‖β ≥ 0.

Finally we have the positive function wΩ = sϕ2, such that wΩ is a subsolution of (3.3)
on Ω.
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Summarizing, we proved the existence the subsolution wΩ (Lemma 3.3) and the supersolu-
tion v (Corollary 2.2) of (3.3) on Ω such that wΩ ≤ v in Ω. Thus as consequence of Lemma 3.2
we get the below result.

Theorem 3.4. Let Ω ⊂ Rn be a bounded domain with C2+α boundary such that Ω ⊂ ΩR. If we
assume (A_f) and (A_a), then there exists a solution uΩ ∈ C2+α(Ω) of (3.3) such that wΩ ≤ uΩ ≤ v
in Ω.

4 Solutions on exterior domain

Theorem 4.1. If we assume (A_f) and (A_a), then there exists a positive solution u ∈ C2+α(ΩR) of
the problem (1.1)–(1.2) such that

0 < u(x) ≤ v(x) ≤ d for all x ∈ ΩR, (4.1)

u(x) = O
(

1
‖x‖n−2

)
as ‖x‖ → +∞, (4.2)

and
u(x) = o

(
φ̃(‖x‖)

)
as ‖x‖ → +∞, (4.3)

where φ̃ is any function φ̃ ∈ C1(1,+∞) such that limr→+∞ φ̃(r) = 0 and limr→+∞ φ̃′(r)rn−1 = +∞.

Proof. Let us take any bounded domain Ω
′ ⊂⊂ ΩR with C2+α-smooth boundary and sets Ω1,

Ω2, Ω3 also with C2+α-smooth boundary such that Ω′ ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂⊂ Bm0 ∩ΩR,
for Bm := {x ∈ Rn, ‖x‖ < m} and m0 sufficiently large. For each m ∈ N, Theorem 3.4 implies
the existence of solution um ∈ C2+α(Bm ∩ΩR) of (3.3) such that for all m ≥ m0,

0 < wm0(x) ≤ um(x) ≤ v(x) for all x ∈ Bm0 ∩ΩR,

where wm and v are given in Lemma 3.3 and Corollary 2.2, respectively. Let us consider the
function

hm(x) := f (x, um(x))− (um(x))−α‖∇um(x)‖β −∇(a(‖x‖))∇um(x)− g(‖x‖)x · ∇um(x))

for x ∈ Ω3. Since um satisfies

a(‖x‖)∆u(x) = hm(x), x ∈ Ω3

we state, by the interior gradient estimate theorem of Ladyzenskaya and Ural’tseva [16], that
there exists a positive constant C1 independent of m such that

max
x∈Ω2

‖∇um(x)‖ ≤ C1max
x∈Ω3

um(x) ≤ C1max
x∈Ω3

v(x).

Therefore (∇um)∞
m=m0

is uniformly bounded on Ω2, and further, (hm)∞
m=m0

is uniformly
bounded on Ω2 which implies the boundedness of (hm)∞

m=m0
in Lp(Ω2) for any p > 1. Thus

(see e.g. [7, Lemma 2.3]) there exists C2 > 0 independent of m, such that

‖um‖W2,p(Ω1)
≤ C2

(
‖hm‖Lp(Ω2) + ‖um‖Lp(Ω2)

)
, for all m ≥ m0,

and consequently, (um)∞
m=m0

is bounded in W2,p(Ω1). Let us choose p > n
1−α . Then Sobolev’s

imbedding theorem gives the existence of C3 > 0 such that ‖um‖C1+α(Ω1)
< C3 for all m ≥ m0
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(see e.g. [7, Lemma 2.1]). Moreover, we get hm ∈ Cα(Ω1) and there exists C4 > 0 such that
‖hm‖Cα(Ω1)

< C4 for all m ≥ m0. Applying the Schauder estimates for solutions of elliptic
equations (see e.g. [7, Lemma 2.2]) we have the existence of C5 > 0 independent of m and
such that for all m ≥ m0

‖um‖C2+α(Ω
′
)
≤ C5

(
‖hm‖Cα(Ω1)

+ sup
x∈Ω1

um(x)

)
≤ C5

(
C4 + sup

x∈Ω1

v(x)

)
=: C6.

Thus, using the Ascoli–Arzelà theorem we infer the existence of a subsequence (still denoted
by um) such that (um)∞

m=m0
tends to u in C2(Ω

′
). It is clear that u ∈ C2(Ω

′
), 0 < wm0(x) ≤

u(x) ≤ v(x) on Ω
′

and u satisfies

div(a(‖x‖)∇u(x)) + f (x, u(x))− (u(x))−α‖∇u(x)‖β + g(‖x‖)x · ∇u(x)) = 0

on Ω
′
. Applying the Schauder estimates for solutions of elliptic equations we have u ∈

C2+α(Ω
′
). Since Ω′ was arbitrary bounded subset of ΩR, we state that u ∈ C2+α

loc (ΩR),
0 < u ≤ v in ΩR and

div(a(‖x‖)∇u(x)) + f (x, u(x))− (u(x))−α‖∇u(x)‖β + g(‖x‖)x · ∇u(x)) = 0

at each point in ΩR. Since v satisfies (2.8), (2.9), (2.10) and u ≤ v in ΩR, we state that (4.1),
(4.2), (4.3) also hold.

Now we give an explicit example of (1.1) to illustrate the application of Theorem 4.1.

Example 4.2. The following problem
div

((
‖x‖4

‖x‖4+1

)
∇u(x)

)
+ (x1+x2)

2(u(x)−5)(u(x)−6)(u(x)+1)u(x)
80‖x‖8 + (x2+x3)

2

24‖x‖6 eu(x)

−(u(x))−α‖∇u(x)‖β + (‖x‖6 − 1)x · ∇u(x) = 0, for x ∈ ΩR

lim‖x‖→∞ u(x) = 0,

where ΩR := {x ∈ R3, ‖x‖ > R}, R > 1, possesses at least one positive solution u ∈ Cα+2
loc (ΩR).

Moreover,
0 < u(x) ≤ 1 for all x ∈ ΩR, (4.4)

u(x) = O
(

1
‖x‖n−2

)
as ‖x‖ → +∞, (4.5)

and

u(x) = o
(
φ̃(‖x‖)

)
as ‖x‖ → +∞, (4.6)

where φ̃ is any function φ̃ ∈ C1(1,+∞) such that limr→+∞ φ̃(r) = 0 and limr→+∞ φ̃′(r)rn−1 =

+∞.

Proof. We start with the observation that in our case we have functions

a(l) =
l4

l4 + 1
, g(r) = r6 − 1

and

f (x, u) =
(x1 + x2)2 (u− 5) (u− 6) (u + 1)u

80‖x‖8 +
(x2 + x3)2

24‖x‖6 eu
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which are sufficiently smooth. Moreover, we get liml→+∞ a(l) = 1 and
∫ ∞

1
l1−n

a(l) dl = 6
5 . Thus a

satisfies (A_a). It is also clear that g(r) = r6 − 1 is positive for all r > 1, thus (A_g) holds.
Our task is now to show that f satisfies (A_f). To this effect we estimate f on the product
Ω1 × [0, d] with d = 1,

0 ≤ f (x, u) =
(x1 + x2)2 (u− 5) (u− 6) (u + 1)u

80‖x‖8 +
(x2 + x3)2

24‖x‖6 eu

≤ (x2
1 + x2

2)

‖x‖8 +
e(x2

2 + x2
3)

12‖x‖6 ≤ 1
‖x‖6 +

1
4‖x‖4 =: M(‖x‖).

For the continuous function M(r) := 1
r6 +

1
4r4 with r > 1, we have

∫ ∞

1
rn−1M(r)dr =

∫ ∞

1
r2
(

1
r6 +

1
4r4

)
dr =

7
12

.

Since n = 3, c := (n− 2)
∫ ∞

1
l1−n

a(l) dl = 6
5 and d = 1, we get (1.8).

Finally, all our assumptions are satisfied. Therefore Theorem 4.1 gives the existence of
positive solution u ∈ Cα+2

loc (ΩR) for which estimates (4.4), (4.5), (4.6) hold.

Final remark. The natural question is whether the term (u(x))−α‖∇u(x)‖β can be replaced
by more general singularity. We answer immediately that it is possible to consider the term
b(x)(u(x))−α‖∇u(x)‖β, where b is a sufficiently smooth, bounded and positive function. On
the other hand, it is obvious that the approach presented in this paper can be applied only
for the singular function satisfying the assumption described by Cui in [9]. His results allow
us to obtain the existence of a smooth solution. It seems that more general singularities could
imply less regularity of solution, e.g. in [1] we have a Carathéodory function g(x, u) instead of
the term u−α, where g may have a singularity at 0. In this case the authors obtain the existence
of weak solutions for the similar problem.
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