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1 Introduction and main results

Let us consider the following nonlinear elliptic problem:

−4p(x)u + V(x)|u|p(x)−2u = f (x, u), in RN , (P)

where p : RN → R is Lipschitz continuous and 1 < p− := infRN p(x) ≤ supRN p(x) := p+ <

N, V is the new potential function, and the nonlinear term f is sublinear with some precise
assumptions that we state below.

We emphasize that the operator−∆p(x)u = div(|∇u|p(x)−2∇u) is said to be p(x)-Laplacian,
which becomes p-Laplacian when p(x) ≡ p (a constant). The p(x)-Laplacian possesses more
complicated nonlinearities than the p-Laplacian, for example, it is inhomogeneous and in
general, it does not have the first eigenvalue. The study of various mathematical problems
with variable exponent growth condition has received considerable attention in recent years.
These problems appear in a lot of applications, such as image processing models (see e.g.
[6, 21]), stationary thermorheological viscous flows (see [2]) and the mathematical description
of the processes filtration of an ideal barotropic gas through a porous medium (see [3]). We
refer to [4, 14–18, 23–25] for the study of the p(x)-Laplacian equations and the corresponding
variational problems.
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It is well known, the main difficulty in treating problem (P) in RN arises from the lack of
compactness of the Sobolev embeddings, which prevents from checking directly that the en-
ergy functional associated with (P) satisfies the C-condition. To overcome the difficulty of the
noncompact embedding, Dai in [7,8] proves that the subspace of radially symmetric functions
of W1,p(x)(RN), denoted further by W1,p(x)

r (RN), can be embedded compactly into L∞(RN)

whenever 2 ≤ N < p− ≤ p+ < +∞. Later, Alves–Liu [1] (who use the conditions (V1) and
(V2)), Ge–Zhou–Xue [19, 20] (who assume that conditions (V1) and (V3) hold) also establish
new compact embedding theorems for the subspace of W1,p(x)(RN) when 1 < p− ≤ p+ < N.
Furthermore, the authors make the following assumptions on the potential function V.

(V1) V ∈ C(RN) and inf V > 0.

(V2) For any M > 0, {x ∈ RN : V(x) ≤ M} is a bounded set.

(V3) There exists r > 0 such that for any b > 0

lim
|y|→∞

µ
(
{x ∈ RN : V(x) ≤ b} ∩ Br(y))

)
= 0,

where µ is the Lebesgue measure on RN .

We emphasize that in our approach, no coerciveness hypothesis (V2) and not necessarily
radial symmetry will be required on the potential V. To the best of our knowledge, there
are only a few works concerning on this case up to now. Inspired by the above facts and the
aforementioned papers, the main purpose of this paper is to study the existence of infinitely
many solutions for problem (P) when F(x, u) is sublinear in u at infinity. Our tool used here
is a variational method combined with the theory of variable exponent Sobolev spaces.

We are now in the position to state our main results.

Theorem 1.1. Suppose that (V1) and the following condition H( f ) holds,

H( f ) f (x, u) = b(x)
q(x) |u|

q(x)−2u, b : RN → R+ is a positive continuous function such that

b ∈ L
s(x)

s(x)−q(x) (RN) and 1 < q− ≤ q+ < p−, where p(x) ≤ s(x)� p∗(x), p∗(x) = Np(x)
N−p(x) ,

and s(x)� p∗(x) means that x∈RN (p∗(x)− s(x)) > 0.

Then problem (P) possesses infinitely many solutions {uk} satisfying∫
RN

1
p(x)

(
|∇uk|p(x) + V(x)|uk|p(x)

)
dx−

∫
RN

F(x, uk)dx → 0−, as k→ ∞,

where F(x, uk) =
∫ uk

0 f (x, t)dt.

The rest of this paper is organized as follows. In Section 2, we present some necessary
preliminary knowledge on variable exponent Sobolev spaces and the nonsmooth critical point
theory of the locally Lipschitz functionals. In Section 3, the proof of the main results is given.

2 Preliminaries

In order to discuss problem (P), we need some facts on space W1,p(x)(RN) which are called
variable exponent Sobolev spaces. For a deeper treatment on these spaces, we refer to [10–12,
22]. Write

C+(R
N) =

{
p ∈ C(RN) : p(x) > 1 for any x ∈ RN

}
,
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p− = inf
x∈RN

p(x), p+ = sup
x∈RN

p(x) for any p ∈ C+(R
N).

Denote by S(RN) the set of all measurable real-valued functions defined on RN . Note that
two measurable functions in S(RN) are considered as the same element of S(RN) when they
are equal almost everywhere.

Let p ∈ C+(RN). The variable exponent Lebesgue space Lp(x)(RN) is defined by

Lp(x)(RN) =

{
u ∈ S(RN) :

∫
RN
|u|p(x)dx < +∞

}
,

endowed with the norm

|u|Lp(x)(RN) = |u|p(x) = inf

{
λ > 0 :

∫
RN

∣∣∣∣u(x)
λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Then we define the variable exponent Sobolev space

W1,p(x)(RN) =
{

u ∈ Lp(x)(RN) : |∇u| ∈ Lp(x)(RN)
}

with the norm
‖u‖ = ‖u‖W1,p(x)(RN) = |u|p(x) + |∇u|p(x).

With these norms, the spaces Lp(x)(RN) and W1,p(x)(RN) are separable reflexive Banach
spaces; see [12] for the details.

Proposition 2.1 ([13]). Set ρ(u) =
∫

RN |u|p(x)dx. For u ∈ Lp(x)(RN), we have

(i) for u 6= 0, | u |p(x)= λ⇔ ρ( u
λ ) = 1;

(ii) |u|p(x) < 1(= 1;> 1)⇔ ρ(u) < 1(= 1;> 1);

(iii) if |u|p(x) ≥ 1, then |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x);

(iv) if |u|p(x) ≤ 1, then |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x).

Next, we consider the case that V satisfies (V1). On the linear subspace

E =

{
u ∈W1,p(x)(RN) :

∫
RN

(
|∇u|p(x) + V(x)|u|p(x)

)
dx < +∞

}
,

we equip with the norm

‖u‖E = inf
{

λ > 0 :
∫

RN

(∣∣∣∇u
λ

∣∣∣p(x)
+ V(x)

∣∣∣u
λ

∣∣∣p(x))
dx ≤ 1

}
.

Then (E, ‖ · ‖E) is continuously embedded into W1,p(x)(RN) as a closed subspace. Therefore,
(E, ‖ · ‖E) is also a separable reflexive Banach space. It is easy to see that with the norm ‖ · ‖E,
Proposition 2.1 remains valid, that is,

Proposition 2.2. Set I(u) =
∫

RN (|∇u|p(x) + V(x)|u|p(x))dx. If u ∈W1,p(x)(RN), then

(i) for u 6= 0, ‖u‖E = λ⇔ I( u
λ ) = 1;
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(ii) ‖u‖E < 1(= 1;> 1)⇔ I(u) < 1(= 1;> 1);

(iii) if ‖u‖E ≥ 1, then ‖u‖p−
E ≤ I(u) ≤ ‖u‖p+

E ;

(iv) if ‖u‖E ≤ 1, then ‖u‖p+
E ≤ I(u) ≤ ‖u‖p−

E .

Proposition 2.3 ([13]). The conjugate space of Lp(x)(RN) is Lq(x)(RN), where 1
p(x) +

1
q(x) = 1. For

any u ∈ Lp(x)(RN) and v ∈ Lq(x)(RN), we have∣∣∣∣∫
RN

uvdx
∣∣∣∣ ≤ 2|u|p(x)|v|q(x).

Proposition 2.4 ([11]). Let p : RN → R be Lipschitz continuous and satisfy 1 < p− ≤ p+ < N,
and q : RN → R be a measurable function.

(i) If p ≤ q ≤ p∗, then there is a continuous embedding W1,p(x)(RN) ↪→ Lq(x)(RN).

(ii) If p ≤ q� p∗, then there is a compact embedding W1,p(x)(RN) ↪→ Lq(x)
loc (RN).

Proposition 2.5 ([10]). Let p(x) and q(x) be measurable functions such that p(x) ∈ L∞(RN) and
1 ≤ p(x)q(x) ≤ ∞ almost everywhere in RN . Let u ∈ Lq(x)(RN), u 6= 0. Then

|u|p(x)q(x) ≥ 1⇒ |u|p
−

p(x)q(x) ≤
∣∣∣|u|p(x)

∣∣∣
q(x)
≤ |u|p

+

p(x)q(x),

|u|p(x)q(x) ≤ 1⇒ |u|p
+

p(x)q(x) ≤
∣∣∣|u|p(x)

∣∣∣
q(x)
≤ |u|p

−

p(x)q(x).

In particular, if p(x) = p is a constant, then
∣∣|u|p∣∣q(x) = |u|

p
pq(x).

Set

I(u) =
∫

RN

1
p(x)
|∇u|p(x)dx +

∫
RN

V(x)
p(x)

|u|p(x)dx.

We know that (see [5]), I ∈ C1(E, R) and p(x)-Laplacian operator −∆p(x)u is the derivative
operator of J in the weak sense. We denote L= I′ : E→ E∗, then

〈Lu, v〉 =
∫

RN
(|∇u(x)|p(x)−2∇u · ∇v + V(x)|u|p(x)−2uv)dx, ∀u, v ∈ E.

Proposition 2.6 ([13]). Set E and L as above, then

(i) L : E→ E∗ is a continuous, bounded and strictly monotone operator;

(ii) L is a mapping of type (S+), if un ⇀ u (weak) in E and lim supn→∞(L(un)−L(u), un− u) ≤
0, then un → u in E;

(iii) L : E→ E∗ is a homeomorphism.

In order to assure the existence of infinitely many solutions for the problem (P), our main
tool will be the variant fountain theorem [26, Theorem 2.2], which will be used in our proof.

Let X be a Banach space with the norm ‖ · ‖ and X =
⊕∞

i∈N Xi with dimXi < ∞ for any
i ∈N. Set

Yk =
k⊕

i=0

Xi, Zk =
∞⊕

i=k

Xi. (2.1)

Consider the following C1-functional ϕλ : E→ R defined by

ϕλ(u) = A(u)− λB(u), λ ∈ [1, 2],

where A, B : X → R are two functionals.
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Lemma 2.7. Suppose that the functional ϕλ defined above, and satisfies the following conditions.

(1) ϕλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Furthermore, ϕλ(−u) = ϕλ(u)
for all (λ, u) ∈ [1, 2]× X.

(2) B(u) ≥ 0; B(u)→ ∞ as ‖u‖ → ∞ on any finite dimensional subspace of X.

(3) There exist ρk > rk > 0 such that

ak(λ) := inf
u∈Zk ,‖u‖=ρk

ϕλ(u) ≥ 0 > bk(λ) := max
u∈Yk ,‖u‖=rk

ϕλ(u)

for all λ ∈ [1, 2], dk(λ) := inf
u∈Zk ,‖u‖≤ρk

ϕλ(u)→ 0 as k→ ∞ uniformly for λ ∈ [1, 2].

Then there exist λn → 1, u(λn) ∈ Yn such that

ϕ′λn
|Yn(u(λn)) = 0, ϕλn(u(λn))→ ck ∈ [dk(2), bk(1)] as n→ ∞.

Particularly, if {u(λn)} has a convergent subsequence for every k, then ϕ1 has infinitely many non-
trivial critical points {uk} ∈ X\{0} satisfying ϕ1(uk)→ 0− as k→ ∞.

In order to discuss the problem (P), we need to consider the energy functional ϕ : E → R

defined by

ϕ(u) =
∫

RN

1
p(x)

[
|∇u|p(x) + V(x)|u|p(x)

]
dx−

∫
RN

F(x, u)dx.

Under our hypotheses, it follows from a Hölder-type inequality and Sobolev’s embedding
theorem that the energy functional ϕ is well-defined. It is well known that ϕ ∈ C1(E, R) and
its derivative is given by

〈ϕ′(u), v〉 =
∫

RN

(
|∇u|p(x)−2∇u∇v + V(x)|u|p(x)−2uv

)
dx−

∫
RN

f (x, u)vdx

for v ∈ E. It is standard to verify that the weak solutions of problem (P) correspond to the
critical points of the functional ϕ.

3 Proof of the main results

In this section, for the notation in Lemma 2.7, the space X = E, and related functionals on E
are

A(u) =
∫

RN

1
p(x)

[
|∇u|p(x) + V(x)|u|p(x)

]
dx, B(u) =

∫
RN

F(x, u)dx. (3.1)

So the perturbed functional which we will study is

ϕλ(u) =
∫

RN

1
p(x)

[
|∇u|p(x) + V(x)|u|p(x)

]
dx− λ

∫
RN

F(x, u)dx.

Clearly, ϕλ ∈ C1(E, R) for all λ ∈ [1, 2]. We choose a completely orthogonal basis {ei} of E and
define Xi := Rei, and Zk, Yk defined as (2.1). We shall prove that ϕλ satisfies the conditions of
Lemma 2.7. Following along the same lines as in [9], we can obtain that

• B(u) ≥ 0, and B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional subspace of E (see
[9, Lemma 3.1]).
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• There exists a sequence ρk → 0+ as k→ ∞ such that

ak(λ) := inf
u∈Zk ,‖u‖=ρk

ϕλ(u) ≥ 0

and

dk(λ) := inf
u∈Zk ,‖u‖≤ρk

ϕλ(u)→ 0

as k → ∞ uniformly for λ ∈ [1, 2]. For further details, we refer the reader to Duan–
Huang [9, Lemma 3.2],

• There exists a sequence {rk} with 0 < rk < ρk for all k ∈N such that

bk(λ) := inf
u∈Yk ,‖u‖=rk

ϕλ(u) < 0, ∀λ ∈ [1, 2],

for details, see [9, Lemma 3.3].

Obviously, condition (1) in Lemma 2.7 have been satisfied. Thus, conditions (1), (2) and
(3) in Lemma 2.7 have been verified. Therefore, we know from Lemma 2.7 that there exist
λn → 1, u(λn) ∈ Yn such that

ϕ′λn
|Yn(u(λn)) = 0, ϕλn(u(λn))→ ck ∈ [dk(2), bk(1)] as n→ ∞. (3.2)

For simplicity, we denote u(λn) by un for all n ∈N.
Claim: The sequence {un} is bounded in E.
By virtue of hypothesis H( f ), Proposition 2.2, Proposition 2.3 and Proposition 2.5, we have

1
p+

min{‖un‖p+ , ‖un‖p−} ≤
∫

RN

1
p(x)

[
|∇un|p(x) + V(x)|un|p(x)

]
dx

= ϕλn(un) + λn

∫
RN

F(x, un)dx

= ϕλn(un) + λn

∫
RN

b(x)|un|q(x)dx

≤ M0 + 2|b| s(x)
s(x)−q(x)

∣∣|un|q(x)∣∣ s(x)
q(x)

≤


M0 + 2|b| s(x)

s(x)−q(x)
|un|q

+

s(x), if |un|s(x) ≥ 1,

M0 + 2|b| s(x)
s(x)−q(x)

|un|q
−

s(x), if |un|s(x) ≤ 1,

(3.3)

for some M0 > 0. Since 1 < q− ≤ q+ < p−, (3.3) implies that {un} is bounded in E. Next,
we show that there is a strongly convergent subsequence of {un} in E. Indeed, in view of the
boundedness of {un}, passing to a subsequence if necessary, still denoted by {un}, we may
assume that un ⇀ u weakly in E.

From the choice of the function b ∈ L
s(x)

s(x)−q(x) (RN), for any given number ε > 0, we can
choose Rε > 0 such that ∫

|x|>Rε

|b(x)|
s(x)

s(x)−q(x) dx < ε
s−−q+

s− . (3.4)

Since the embedding E ↪→ Ls(x)
loc (RN) is compact, un ⇀ u0 in E implies un → u0 in

Ls(x)
loc (RN), and hence,

lim
n→+∞

∫
|x|≤Rε

|un − u|s(x)dx = 0. (3.5)
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Let Bε = {x ∈ RN : |x| ≤ Rε} and Bc
ε = RN \ Bε. Using Proposition 2.1 and (3.4), we have

|b|
L

s(x)
s(x)−q(x) (Bc

ε )

< ε. (3.6)

Also from Proposition 2.1 and (3.5), there exists n0 ∈ N such that

|un − u0|Ls(x)(Bε)
< ε, for n ≥ n0. (3.7)

Now it is easily seen that

〈Lun −Lu0, un − u0〉 = 〈ϕ′λn
(un)− ϕ′λ1

(u0), un − u0〉

+
∫

RN
(λn f (x, un)− f (x, un))(un − u0)dx.

(3.8)

We will estimate the right-hand side of (3.8). One clearly has

〈ϕ′λn
(un)− ϕ′λ1

(u0), un − u0〉 = 〈ϕ′λn
(un), un − u0〉 − 〈ϕ′λ1

(u0), un − u0〉 → 0. (3.9)

Moreover, we have

∫
RN

(λn f (x, un)− f (x, un))(un − u0)dx

≤ q+
∫

RN
b(x)(λn|un|q(x)−1 + |u0|q(x)−1)|un − u0|dx

≤ q+
∫

RN
b(x)|un|q(x)−1|un − u0|+ q+

∫
RN

b(x)|u0|q(x)−1|un − u0|dx

= q+
∫

RN

b(x)

V
q(x)−1

s(x)

V
q(x)−1

s(x) |un|q(x)−1|un − u0|dx

+q+
∫

RN

b(x)

V
q(x)−1

s(x)

V
q(x)−1

s(x) |u0|q(x)−1|un − u0|dx

≤ q+

K0

∫
RN

b(x)V
q(x)−1

s(x) |un|q(x)−1|un − u0|dx

+
q+

K0

∫
RN

b(x)V
q(x)−1

s(x) |u0|q(x)−1|un − u0|dx
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≤ q+

K0

[ ∫
Bε

b(x)V
q(x)−1

s(x) |un|q(x)−1|un − u0|dx

+
∫

Bc
ε

b(x)V
q(x)−1

s(x) |un|q(x)−1|un − u0|dx
]

+
q+

K0

[ ∫
Bε

b(x)V
q(x)−1

s(x) |u0|q(x)−1|un − u0|dx

+
∫

Bc
ε

b(x)V
q(x)−1

s(x) |u0|q(x)−1|un − u0|dx
]

=:
q+

K0
[I1 + I2] +

q+

K0
[I3 + I4], (3.10)

where

K0 := min
{

V
q−−1

s+
0 , V

q+−1
s−

0

}
.

Using the Proposition 2.5, Hölder’s inequality and (3.7), we have

I1 =
∫

Bε

b(x)V
q(x)−1

s(x) |un|q(x)−1|un − u0|dx

≤ 3|b|
L

s(x)
s(x)−q(x) (Bε)

∣∣∣V q(x)−1
s(x) |un|q(x)−1

∣∣∣
L

s(x)
q(x)−1 (Bε)

|un − u0|Ls(x)(Bε)

≤ 3ε|b|
L

s(x)
s(x)−q(x) (Bε)

∣∣∣V s(x)−1
q(x) |un|q(x)−1

∣∣∣
L

s(x)
q(x)−1 (Bε)

≤ 3ε|b|
L

s(x)
s(x)−q(x) (RN)

∣∣∣V s(x)−1
q(x) |un|q(x)−1

∣∣∣
L

s(x)
q(x)−1 (RN)

≤ 3ε|b|
L

s(x)
s(x)−q(x) (RN)


∣∣∣V(x)|un|s(x)

∣∣∣ q+−1
s−

1
, if

∣∣∣V(x)|un|s(x)
∣∣∣
1
≤ 1,∣∣∣V(x)|un|s(x)

∣∣∣ q−−1
s+

1
, if

∣∣∣V(x)|un|s(x)
∣∣∣
1
≥ 1,

≤ 3ε|b|
L

s(x)
s(x)−q(x) (RN)



‖un‖
(q+−1)s+

s−
E , if

∣∣∣V(x)|un|s(x)
∣∣∣
1
≤ 1, ‖un‖E ≥ 1,

‖un‖q+−1
E , if

∣∣∣V(x)|un|s(x)
∣∣∣
1
≤ 1, ‖un‖E ≤ 1,

‖un‖q−−1
E , if

∣∣∣V(x)|un|s(x)
∣∣∣
1
≥ 1, ‖un‖E ≥ 1,

‖un‖
(q−−1)s−

s+
E , if

∣∣∣V(x)|un|s(x)
∣∣∣
1
≥ 1, ‖un‖E ≤ 1.

(3.11)

On the other hand, using Proposition 2.4, Proposition 2.5, Hölder’s inequality and (3.6),
we have

I2 =
∫

Bc
ε

b(x)V
q(x)−1

s(x) |un|q(x)−1|un − u0|dx

≤ 3|b|
L

s(x)
s(x)−q(x) (Bc

ε )

∣∣∣V q(x)−1
s(x) |un|q(x)−1

∣∣∣
L

s(x)
q(x)−1 (Bc

ε )

|un − u0|Ls(x)(Bc
ε )

≤ 3|b|
L

s(x)
s(x)−q(x) (Bc

ε )

∣∣∣V q(x)−1
s(x) |un|q(x)−1

∣∣∣
L

s(x)
q(x)−1 (RN)

|un − u0|Ls(x)(RN)

≤ 3Cε‖un − u0‖E

∣∣∣V q(x)−1
s(x) |un|q(x)−1

∣∣∣
L

s(x)
q(x)−1 (RN)
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≤ 3Cε‖un − u0‖E


∣∣∣V(x)|un|s(x)

∣∣∣ q+−1
s−

1
, if

∣∣∣V(x)|un|s(x)
∣∣∣
1
≤ 1,∣∣∣V(x)|un|s(x)

∣∣∣ q−−1
s+

1
, if

∣∣∣V(x)|un|s(x)
∣∣∣
1
≥ 1,

≤ 3Cε(‖un‖E + ‖u0‖E)



‖un‖
(q+−1)s+

s−
E , if

∣∣∣V(x)|un|s(x)
∣∣∣
1
≤ 1, ‖un‖E ≥ 1,

‖un‖q+−1
E , if

∣∣∣V(x)|un|s(x)
∣∣∣
1
≤ 1, ‖un‖E ≤ 1,

‖un‖q−−1
E , if

∣∣∣V(x)|un|s(x)
∣∣∣
1
≥ 1, ‖un‖E ≥ 1,

‖un‖
(q−−1)s−

s+
E , if

∣∣∣V(x)|un|s(x)
∣∣∣
1
≥ 1, ‖un‖E ≤ 1.

(3.12)

Similarly, we also have that

I3 =
∫

Bε

b(x)V
q(x)−1

s(x) |u0|q(x)−1|un − u0|dx

≤ 3ε|b|
L

s(x)
s(x)−q(x) (RN)



‖u0‖
(q+−1)s+

s−
E , if

∣∣∣V(x)|u0|s(x)
∣∣∣
1
≤ 1, ‖u0‖E ≥ 1,

‖u0‖q+−1
E , if

∣∣∣V(x)|u0|s(x)
∣∣∣
1
≤ 1, ‖u0‖E ≤ 1,

‖u0‖q−−1
E , if

∣∣∣V(x)|u0|s(x)
∣∣∣
1
≥ 1, ‖u0‖E ≥ 1,

‖u0‖
(q−−1)s−

s+
E , if

∣∣∣V(x)|u0|s(x)
∣∣∣
1
≥ 1, ‖u0‖E ≤ 1,

(3.13)

and

I4 =
∫

Bc
ε

b(x)V
q(x)−1

s(x) |un|q(x)−1|un − u0|dx

≤ 3Cε(‖un‖E + ‖u0‖E)



‖u0‖
(q+−1)s+

s−
E , if

∣∣∣V(x)|u0|s(x)
∣∣∣
1
≤ 1, ‖u0‖E ≥ 1,

‖u0‖q+−1
E , if

∣∣∣V(x)|u0|s(x)
∣∣∣
1
≤ 1, ‖u0‖E ≤ 1,

‖u0‖q−−1
E , if

∣∣∣V(x)|u0|s(x)
∣∣∣
1
≥ 1, ‖u0‖E ≥ 1,

‖u0‖
(q−−1)s−

s+
E , if

∣∣∣V(x)|u0|s(x)
∣∣∣
1
≥ 1, ‖u0‖E ≤ 1.

(3.14)

Since ε is arbitrary, it follows from (3.10)–(3.14) that∫
RN

(λn f (x, un)− f (x, un))(un − u0)dx → 0 as n→ +∞. (3.15)

According to (3.8), (3.9) and (3.15) we obtain

〈Lun −Lu0, un − u0〉 → 0 as n→ +∞, (3.16)

which implies un → u0 in E from Proposition 2.6 (ii). Thus, from the last assertion of
Lemma 2.7, we know that ϕ = ϕ1 has infinitely many nontrivial critical points. Therefore,
problem (P) possesses infinitely many nontrivial solutions. The proof of Theorem 1.1 is com-
pleted.
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