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Abstract. This paper deals with positive solutions of some degenerate and quasilinear parabolic
systems not in divergence form: uy; = fi(u2)(Aur + a1u1),- - - -1yt = fr—1(un)(Aup_1 +
p—1Un—1), Unt = fn(u1)(Auy~+anu,) with homogenous Dirichlet boundary condition and posi-
tive initial condition, where a; (i = 1,2, -+, n) are positive constants and f; (i = 1,2, ---, n) satisfy
some conditions. The local existence and uniqueness of classical solution are proved. Moreover,
it will be proved that: (i) when min{aq,- -, a,} < A; then there exists global positive classical
solution, and all positive classical solutions can not blow up in finite time in the meaning of
maximum norm; (ii) when min{ay, - -+, a,} > A1, and the initial datum (uqo,- - -, uno) satisfies
some assumptions, then the positive classical solution is unique and blows up in finite time,

where A; is the first eigenvalue of —A in Q with homogeneous Dirichlet boundary condition.

Key words: quasilinear parabolic system; global existence; blow up in finite time; not

in divergence form.

1 Introduction and main result

In this paper, we consider the following degenerate and quasilinear parabolic systems not in diver-

gence form:

(uit:fi(qu)(Aui—Faiui), zeQ, t>0, i=1,2,--- ,n—1,

Unt = fn(ur)(Au, + apuy), ©€Q, t>0,

(1.1)

ui(z,0) = uio(x), zeQ, i=1,2--.n,
| wiz,t) =0, TN, t>0,i=1,2-n,
where a; are positive constants, f;, uio(x)’ i=1,2,- -, n, satisfy

(H1) uio(x) € CH(Q),uio(x) >0in Q, ;

(H2) wip(x) = 0 and aaLéO <0 on 0%, where 7 is the outward normal vector on 0€2;
(H3) f; € C1(]0,0)), such that f; > 0 and f/ > 0 on [0,00);

(H4) there exists 1 < j < n, such that lisrgg)lf ]{;8 >0,i=1,---,n.

This system can be used to describe the development of n groups in the dynamics of biological

groups, where u; are the densities of the different groups.
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It has been shown that classical positive solutions of parabolic problems of single equation

up = uP(Au+u), ve€Q, t>0,
u(z,t) =0, x €N, t>0, (1.2)

u(z,0) = up(x), x€

blow up at some finite time 7" < oo if p > 1 and the bounded smooth domain {2 is large enough
such that A; < 1, where A1 is the first eigenvalue of —A in €2 with homogeneous Dirichlet boundary
condition. (See [1, 4, 5, 7, 8, 9, 14, 15]).

For the case f1(v) = vP, fa(u) = u? (p, ¢ > 1), (1.1) has been discussed by many authors, see
[3, 12] and the references therein. In [12], Wang and Xie discussed the following system

(up = vP(Au + aju),

vy = ud(Av + agv), zeQ, t>0,

u(z,0) = ug(z), v(z,0) =wo(x), =€, (1.3)

u(z,t) = v(x,t) =0, x €09, t>0.

They proved that: (i) when min{a,b} < A; then there exists global positive classical solution, and
all positive classical solutions can not blow up in finite time in the meaning of maximum norm; (ii)
when min{a,b} > Aq, there is no global positive classical solution. And if in addition the initial
datum (ug,v) satisfies some assumptions then the positive classical solution is unique and blows
up in finite time.

In [13], Wang also considered the problem

(uy = uP(Au+ aqv),

vy = vI(Av + agu), e, t>0,

u(z,0) = ug(z), v(z,0) =vo(z), =z€Q, (1.4)

u(z,t) =v(x,t) =0, x€edN t>0

\

with p,¢ > 0. And he shown that all positive solutions of problem (1.4) exist globally if and only
if a1a9 S )\%

In [2], Deng and Xie promoted the problem (1.4) to the following problem

ur = fi(u)(Au + a1v),

vy = f2(v)(Av + agv), reQ, t>0,

u(z,0) = ug(z), o(z,0) =wv(x), =€, (1.5)

u(z,t) = v(x,t) =0, x €09, t>0.

Under the proper assumptions, they proved that: the positive solution of (1.5) blows up in finite
time if and only if A} < a1az and [;°ds/(s fi(s)) < oo for i =1,2.
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Remark 1. Without loss of generality, by assumptions (H3) and (H4), we may assume that
j=mn. And for any given & > 0, there exists a constant Ko > 0, such that

fl(s) Z KOfn(S)? S Z 55 1= 1,25 N — 1. (16)
Indeed, let K1 = = % when K1 < 0o and K* =1
1<i<n—1 $§—00
when K1 = oco. It is obvious that there exists a constant sg > 0 such that
fils) >K* i=1,2,---,n—1, s> sg.
fn(s)

Furthermore, by (H3) and (H4), denoting Ko = min  min Lils) e have 0 < Ky < co. Hence,
1<i<n—1§<s<so In(5)
let Ko = min{K*, K3}, which shows (1.6).

Remark 2. By change the order of i, we may assume a1 < ag < -+ < ay,.

Remark 3. Ifn =2, fi(s) = s and fa(s) = s?, where p,q > 1, then the assumptions (H3) and
(H4) hold automatically. So our present results develop the work of [12].

This paper is organized as follows. In section 2, we first give a Maximum Principle for degenerate
parabolic systems with unbounded coefficients, which is useful in the following arguments, and the
local existence of positive classical solution is proved. In sections 3 and 4, we discuss the cases
min{ay, - -, a,} < A and min{ay,- - -,a,} > A1, respectively. By above Remarks, we may assume
fi(s) > fu(s),i=1,2,---,n—1,and a3 <ay <--- < a, throughout this paper.

2 Local existence

We first give a maximum principle, the proof is standard and we omit it (see [12]).

Proposition 1. Let a;(z,t), bj(x,t), c¢;(x,t), i =1,2-- n, be continuous functions in  x (0,T).
Assume that a;(x,t),ci(z,t) > 0 in Q x (0,T) and bi(x,t), ci(z,t) are bounded on Q x [0,Ty] for
any Ty < T. If functions u; € C**(Q x (0,T))NC(Q x [0,T)), i =1, 2,---, n, and satisfy

wir < (>)ajAu; + bju; + ciuipr, =1, ,n—1,
Unt < (Z)anAuy + bpuy + cpur, z€Q, 0<t<T,
wlar,0) < ()0, req 2y
ui(z,t) < (=)0, zed, 0<t<T,

then
ui(x,t) < (>)0, V(z,t) €Qx[0,T), i=1,2,---, n

Since u; =0 (i = 1, 2,---, n) on the boundary 9%, the equation of (1.1) is not strictly parabolic

type. The standard parabolic theory cannot be used directly to prove the local existence of solution
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to problem (1.1). To overcome this difficultly we will modify both different equations and boundary

conditions. For € > 0, we consider the following approximate problem

(((wic)t = Gie(U(iv1)e) (Atic + aiuie — aze), i=1,--- ,n—1,
(una)t = gne(ula)(Auna + anlne — an5)7 MRS Q7 t>0,
2.2
uie(2,0) = ujp(x) + ¢, x € Q, (22)
uie(x,t) =€, r €N, t>0,
where
(fi(ui+1)7 Ui+1 257 1:17"'7n_17
fn(ul)a U1 Z g,
gie(Uiv1) = .
fz(%)7 ui+1<€7 1:17”'777‘_17
L fa(3); up < €.

By the standard parabolic theory, it is easy to prove that w;c > ¢, ¢ = 1,- - -, n. The fact that
e > € shows ge = fi, i =1, 2,---, n, and hence (u1e, Uz, -, Upe) solves the following problem
(uic)t = fi(ugiyr)e) (Atic + auie — aze), i=1,---,n—1,

(una)t = fn(ula)(Aune + apUpe — an5)7 HARS Q7 t >0, (2 3)
uie(x,0) = uip(z) + &, x €, .
wie(z,t) = €, x e, t>0,

where ¢ € (0,1]. By the classical parabolic theory, under hypothesis (H1)-(H4), (2.3) admits a
unique positive solution (uie, - - -, une) € [C(Qr) N C*L(Qr)]" for 0 < T < T(g), where T(e) is the
maximal existence time.

Now, estimate the lower and upper bounds of (u1e, uge, - -+, Une).

Let A1, p(x) > 0 be the first eigenvalue and the corresponding eigenfunction of the following

eigenvalue problem
—Ap=Xpin Q; ¢ =0on 0N (2.4)

and think that max ¢(x) = 1, then A\; > 0 and %s < 0 on 0f, where 7 is the outward normal vector
Q
on 0. By (H;) and (H2), there exist positive constants k; and kg such that

kip(z) < wujp(z) < kap(x), z€Q, i=1,2,--- ,n. (2.5)

Let M = max max wio(z) and (g1(t),- - -, gn(t)) be the unique solution of the following ODE
sisn Q)

gézalglfl(gl-i-l)? Z:17 7n_17
g;z = angnfn(gl)7 t> 07 (2'6)
g:(0) =M +1, 1=1,2,--- ,n,
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where fy, -+, f, are given as above. Then ¢;(t) > M+1, i =1, 2,---, n. Denote by T*,0 < T™* < 0,
its maximum existence time (note that 7% < oo must hold because that (g1, ,g,) blow up in
finite time).

Applying the standard comparison principle for parabolic system, we have the following Lemmas
(see [13, 14]).

Lemma 1. Assume that u;(x,t) € C(Q X [O,T(s))) n o2t (Q X (0,T(e))>(i =1,---, n)isa
lower (or upper) solution of (2.3), then (u1,- -+, up) < (=) (U1, -+, Une) on Q x [0,T(e)).

Lemma 2. Ife; < eg, then (uie, (2,t),+, Une, (7,1)) < (U1, (T, 1), ++, Uney(w,1)) on Q2x [0, T(g2))
and T(&l) > T(€2).

Lemma 3. Lete <1, (Uie,- -+, Une) be the solution of (2.3), then for any fixed
T: 0<T<min{T(e), T*},

wie(w,t) < gi(t), V¥ (z,t) € Qx[0,T], i=1,2,---,n,
which implies that T'(e) > T* for all € < 1.
Proof. Set w;(z,t) = gi(t) — uic(x,t), then we have

w1t = gﬂ — (u1e)e
= a191f1(92) — f1(u2e)(Auie + ar1ure — ase)
= a191f1(92) — f1(u2e)(—Awr + a191 — arwr — aqe)
= fi(uge)(Awy + arwr) + a191(f1(92) — f1(u2:)) + aref1(uze)
) )

> f1(uge)(Awy + agwy) + a1g / J1(uge + s(g2 — u25))d3>w27

1
W(n—-1)t > fnfl(une)(Awnfl + anflwnfl) + anlgnl(/ frll_l(uns + S(Qn - une))d5> Wn,
0

1
Wt > fo(ure)(Awn, + anwn) + an9n</ Sh(uie +s(g1 — U1e))d8)w1, TN 0<t<T,
0
wi(z,0) = M+1—-up—e>0, z€Q, 1=1,2---n,
wi(x,t) = gi(t) —e >0, x€9Q, 0<t<T, i=12---n

Proposition 1 implies that w; > 0 (i = 1,2,- - -,n) and hence the result of this Lemma holds.

In the following we denote Ty, = T™* /2.

Lemma 4. Lete <1, (uie, - upn:) be the solution of (2.3), and the positive constant k; satisfies
(2.5), then we have the following estimates:
(i) if Ay <a; <---<a, then

wie(z,t) > k1p(x) +¢, Y(x,t) € Qx[0,T(c)), i=1, 2,--, n;
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(ii) if there exists j : 1 < j <mn — 1, such that a; < A\; < aj41, then we have, for

p =max{(A — a1)f1(g2(T%)), - -, (M — a;) fi(gj+1(T%)},
{ kip(z)e Pt +¢e, 1<i<j, V(z,t)
uis(x’t) >

kio(x)+e, j+1<i<n, VY(z,1)

(iii) if g < -+ < a, < A1, then we have, for
r=max {(A\ — a1) f1(g2(T%)), -, M1 = an1) fa-1(9a(T%)), (M1 = an) fu(91(T4)) },

Uie(x,1) > kyp(x)e™™ 4+, V(x,t) €cQx[0,T.], i=1,2-, n.
Proof. (i) when A\; <aj <---<ay, set
wi(x,t) = uie — (k1p(x) +¢), i=1, 2,--+, n.
Then we have, by (2.3),
wip = Uier = f1(u2e)(Auie + a1uie — ase)
= fi(uge)(Awy + k1Ap + aqwi + a1kip)
= fi(u2e)(Awr + a1wi) + (a1 — i)k fi(uae),
> fl(UQE)(Awl + alwl), x e Q, 0<t< T(&),
’U)l(ﬂT,O) = ulO('I) - klgp(x) >0, T e Q’
wi(z,t) =0, x€dQ, 0<t<T(e).

Applying Proposition 1 we see that wi(x,t) >0, i.e. uj > k1@ + . Similarly we have
Uie Zk190+57 1:27"'7 n.

(ii) when there exists j : 1 < j <n —1, such that a; < Ay < aj41, set
wi(x,t) = ue — (kro(z)e ™ +¢), 1<i<j.
A routine calculation yields
wiy = uier + pkroe " = fi(uge)(Aure + aruie — are) + pkrpe
= f1(uge) (Awy + k1 Ape™ + aywy + arkyoe™ ™) + phkype™

= f1(u2e)(Awy + aywr) + (a1 — A1) f1(uge)k1pe " + pkipe ™
= fi(uge)(Awy + aywy) 4 kro((a1 — A1) fi(uge) + p)e™ ",

wir = fi(ugr) (Awy + ajwy) + kip((a; — M) fi(ugae) +p)e™.
Since ui(z,t) < gi(t) < gi(Ty), 1 <i < nfor all (x,t) € Q x [0,7,], it follows that
(a; = M) filugyne) +p = p— (A1 — @) fi(gi+1 (1)) >0, 1 < i < j.

Therefore
wit > fi(Ugiy1)e) (Aw; + aw;), 1 <i <.
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It is obvious that

wi(z,0) = uip(x) — krp(z) >0, z€Q, i=1,2,---7,
wi(z,t) =0, €9 0<t<T, i=1,2- j

Proposition 1 asserts that w; > 0, 1 <1 < 3, i.e. uj > kup(m)e*pt +¢, 1 <i<j. The proof of

the second one is the same as that of (i).

(ili) when a; < - -+ < ap < A1, the proof is the same as that of (ii). The proof is completed.

It follows from Lemma 2 that 7} := T'(1) < T'(¢) for all € € (0, 1), and there exists u;(z,t) €
L>®(Q x (0,Ty)) such that (uje, -+ Une) — (u1,- -+, uy) as € — 0. Furthermore, making use of the
fact that on any smooth sub-domain Q' CC Q, by Lemma 4 we obtain that u;(z,t) (i =1,2,---,n)
has a positive lower bound in €’ x [0, T3] which is independent of e.

From the fact just proved it follows in turn by the interior parabolic Holder estimates, which
can obtained by the same argument as that of Theorem VII 3.1 in [6] that for each 7 > 0 and
Q' cc Q, there is o > 0 such that

HUZ'HCQ, a/2(Q x[r, Ti]) < C(Q/, ’7')

and then the local Holder continuity of f; (i = 1,2, ---,n) on (0, 00) together with Schauder estimates
c CX 1+O‘/2(Q X

and diagonal methods we have that there exist subsequence {¢'} of {¢} and u; Pl

(0,7]), where T := min{T, T1}, such that

(ulela t 'aune/) - (ula Tt un) in [02+Oé, 1+Oé/2(Q/ X [7—7 T])]n as 6/ - O+

for any ' cC Q and 0 < 7 < T. And hence (uy,- - -, u,) satisfies the problem (1.1).
Fix eg: 0<egg < 1. For any Q' CcC Q and 0 < ¢’ < ¢, thanks to Lemma 4 and

uier (2,1) < gi(t) on Q' x [0, T],
the L? theory and imbedding theorem show that the C® */2(Q x[0, T7) norms of wjs (i = 1,2, -, n)
are uniformly bounded for all ¢/ < 9. And hence
(ulely T unE') - (U1, T un) in [067 ﬁ/Q(Q/ X [07 T])]n (0 < B < O[) as 6/ - 0+?

which implies that u; € C(Q x [0, T]),i = 1,2,--- ,n. Similar to the arguments of [4, 15] we can
prove that (uq,--- ,uy) is continuous on 92 x (0, T ]. Using the initial and boundary condition of

(2.3) we see that (ug,--- ,uy,) satisfies the initial and boundary conditions of (1.1), i.e.

(- un) € [CEEPPP 0 x (0, 7)) n (@ x [0, 7))

loc

is a classical solution of (1.1).

Theorem 1. Problem (1.1) has a positive classical solution (uy, -, uy) € {Cﬁ;ﬁ’Hﬁ/Q (Qx(0,7])N
C(Q X [O,T])}n for some 8:0< 8 <1 and T < .
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3 The case a; < )\;: global existence

In this section we will prove the global existence of positive classical solution.

Theorem 2. If a; < Ay then problem (1.1) has positive global classical solution (ui,- - -, Up).
Moreover, all positive classical solutions must satisfy the following estimates.
(i) if an < A1, then
ui(x,t) < kap(x) on Q x [0,00), i =1,---, n;
(i1) if there exists j : 1 < j <mn —1 such that a; < A\ < ajy1, then
kQQD(x)’ izl""’ ja
k26@ifi(Fi+1)t’ i=j+1,---, n,
where Fpy1 = ko, F; = kzgea"fi(Fi“)t,j + 1 <i <n, and the positive constant ko is given by (2.5).
Proof. For any given € : 0 < & < 1, let (u1e,- -+, une) be the unique positive classical solution

of (2.3) which is defined on Q x [0,T(¢)) with T'(¢) < oo, and the positive constants k1 and ko are
given by (2.5).

Step 1: upper bounds of (uje,: -, Upe).
(1) If ap < A1, let wi(z,t) = koo(x) + € — wie(z,t), i =1,---, n, then we have
wyy = — f1(uge) (Aute + aruie — are)

= fi(uze)(Awr + arwr) + ko fi(uze) (A1 — ar)p

> filuge)(Awy + arwr)  (z, t) € 2 x (0, T(e)),
wimt) =0, (2 £) €09 x (0, T(e),
wi(z,0) = kap(z) —uglx) >0, €.

Proposition 1 implies that wy > 0, i.e. uic(z,t) < kap(z) +€ on Q x (0,T(¢)). By the same way
we can prove that u;.(z,t) < kap(z) + ¢ on Q x (0,T(g)), 2 <i < n.

(ii) if there exists j : 1 < j < n — 1 such that a; < A\ < a;11, then similar to (i), we(x,t) <
kap(z) +eon Q x (0,T(g)), i=1,---, j. Let

w; = koe®fiFandt 4o g =41, n,
where Fi, 1) = ko + &, Fre = koenInb2F9l o/ B = et ilFOHD! o 41 <i<n—1 in
view of w;c(x,t) < kap(z) +e < ko +¢, 1 <i < j, we have that
Wnt = koay frn(ko + e)ea"f"(k2+6)t — (Une)t
= koanfa(ks + €)e™mFF £ (01 ) (Atne + antine — ane)
= koay fn(ks + E)ea"f"(k2+5)t — fo(u1e)(—Aw, + ankge“”f”(k2+€)t — apwy,)
= fn(ure)(Awy, + anwy,) + ankge“"f"(k2+€)t(fn(k2 +e) — fuluie))
> folwe)(Aw, +anwn),  (z,t) € 2 x(0,T(e)),
W (2, 1) = kget Ikt Lo o500 (2,1) € 99 x (0,T(c)),

wp(x,0) = kg —upg >0, xz€Q.

EJQTDE, 2009 No. 49, p. 8



Proposition 1 implies that w, > 0, i.e. t,e < kge® k2t Lo on Q x (0,7(¢)).

Similarly, we have

Win-1)t = Sr—1(tne)(=Awp—1 + ap-1wn-1) + an71k2ean71fn71(Fns)t(fnfl(Fm—:) — fra—1(une))
> fro—1(tne) (—Awp—1 + ap—1wp—1), (z,t) € Q x (0,T(e)),
Wpo1(2,t) = ket In1 )l 5 00 (2,4) € 99 x (0, T(¢)),
wn_l(x,O) = ky — U(n—1)0 = 0, x € Q.
Proposition 1 also implies that w,—1 > 0, i.e. ug_1). < kpetn—1/n-1(Fne)t £ on Q x (0,7T(g)).
Similarly, we can get u;. < koe®filFit)t e on Q x (0,T(e)), j+1<i<n—2.
Step 2: lower bounds of (u1e, -+, Upe).

(1) if a3 = A1, similar to the proof of (i) of Lemma 4 we have
uiE(x’t) = kl@(x) +é, (x’t) € x (Oa T(&)),
(ii) if there exists j: 1 < j <n —1, such that a; < A\; < a1, then

.4) k1o(x) exp{— fg()\l — ;) fi(kge®it1 Fir1Far2e)s 4 o)dst e, (2,8) € A x [0,T(e)), 1<i<j,
Uie(x,T) >
5 kip@) +e (@) €0.TE), j+1<i<n

In fact, similar to the proof of (ii) of Lemma 4 we know that u;. > ky1o(z)+¢c on Qx[0,7.), j+
1 <7 < n. Denote

hl(t) = ()‘1 - ai)fi(k26ai+1fi+l(F(i+2)5)t + 6)? 1= 15 2’ o ',ja

where F(nJrl)e =ko+e¢, Fj. = k2edifi(F(i+1)6)t +e t=1,2,---,7. And let

t
W; = Uje — klgp(x) exp{ _/ hZ(S)dS} - & = 1’25 ]
0

Note that w1y < koe®i+1fi+1(FG+2)e)t 4 2 on Q x [0,7), and by the direct computations we can

see that

wit = (uge)e + krp(@)hy(t)e Jo Rl
= fi(ugene) (Bw; + ajwy) + kip(@)(a; — M) fiugpne)e 0O 4 kyo(@)h; (e Jo hieds
> fi(ugsne) (Auwj + ajwy) + kip(@)(hi () — (A1 = ag) fi(ugpne))e o b
> [i(ugine) (Awj + ajwy),  (z,t) € Q< (0,T(e)),
wi(z,t) =e—e=0, (x,t) €00 x(0,T(¢g)),
w;i(z,0) = ujo — k1p(z) >0, €.

By Proposition 1 we have w; > 0, i.e. uje > kip(x)e” Johi(9ds 4o on Q x (0, T(e)).

If 1 <14 < j, similar as above we also can prove
wie > kip(x)e” MO e on Q% [0,T()), 1<i<]
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(iii) If a,, < Ay, then for i = 1,2, -, n, then

t
wic(x,t) > k1p(x) exp{ — / (A1 — ;) fi(koetit1Fir1(Far2se)s 4 g)dS} +e, (z,t) €Qx0,T2),
0

where f,+1 = f1 and F; given above.

The proof is similar as (ii).

Step 3: the upper bounds of (uic, - - -, une) obtained by Step 1 show that (uie, - - -, upe) exists
globally, i.e. T'(¢) = oo for all 0 < ¢ < 1. For any Q, CC Qand 0 < 7 < T,, < o0, Step 1 and 2

show that there exist positive constants o(n,7) and M (n,7) such that
o(n,7) <upe < M(n,7) on Q, x [1,T,], i =1,2,---,n

for all 0 < ¢ < 1. Applying the standard local Schauder estimates and diagonal method we have
that there exist subsequence {¢'} of {¢} and u; € CQ+a’1+a/Q(Q x (0,00)) such that

loc

(Uiery =y Uper) — (U1, - -, Un) in [C’lita’lJra/Q(Q* x [r, ToD)]™ as & — 0
for any 2, CC Q and 0 < 7 < Ty < co. And hence (uq,- - -, uy,) satisfies the problem (1.1) in
Q2 x (0,00).

Similar to the arguments of §2 we see that

(u1, - -, un) € |CEI2(0 % (0,00)) N C(Q x [o,oo))]"

loc

is a classical solution of (1.1).

Estimates (i) and (ii) can be proved in the similar way to that of Step 1. The proof is completed.

4 The case a; > A\i: blow up result

In this section we will prove the blow up result of problem (1.1). Let G be a bounded domain of
RN, A\1(G) be the first eigenvalue of —A on G with homogeneous boundary condition. And we

consider the following initial-boundary problem:
wy = Af(w)(Aw + Bw), seG, t>0,
w(z,0) =C, z € G, (4.1)
w(z,t) = C, z e, t>0.

where constants A, B,C > 0 and f(w) satisfy (H3). By the standard method (see [10]), it follows

that (4.1) has a unique classical solution w(z,t) and w(z,t) > C. And we can get following Lemma
(see [2]):

Lemma 5.  Let f satisfy (H3), then for any A > 0 and C > 0, the unique (local) solution w(z,t)
of (4.1) blow up in finite time T if [[°1/(sf(s))ds < oo and A\; < B, while the solution w(z,t)
exists globally if [7°1/(sf(s))ds = occ.

Theorem 3. Assume that ay > A1, the initial datum (uig,- - -, uno) € [CHQ)]" and (H1) — (H4)
hold. If Au;g+ a;uo > 0 in Q and Au;g =0 on 9Q, i = 1,---, n, then the positive classical solution
of (1.1) is unique and blow up in the finite time.
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Proof. Step 1: monotonicity of (uq,- - -, uy) in t.
Let € € (0,1) and (uqe, - -+, une) be the solution of (2.3), then

(11e,++, une) € [CHHOTH2(Q x (0,7(6))) x C21(@ x [0,7(e))]”

since Aujp =0, i =1,2,---,n on I ( see Theorem 7.1 of chap.7 of [6]). Let w; = wiet, i = 1,2,--+,n,

then we have,

Wi = <f1(u2€)(Aule +a1ule — ale))t

= fi(uge)(Awr + aqwy) + fie(uge)wa(Auie + a1ur: — ar€)

flt (u25)
1 (UQE)

= f1(uge)(Awr + aywr) + | walwy,  (x,t) € 2 x (0,T(e)),

Jnp(une)
fn—l (une)

wl]wn, (z,t) € Q x (0,T(e)),

Wn-1)t = fnfl(uns)(Awnfl + anflwnfl) + [ wn] Wn—1, ('Iat) € 0 x (0,T(6)),

fnt(ula)
fn(ule)
w;(x,0) = fi(uio(x) + ) (Auio(z) + ajuip(x)) >0, z€Q, i=1,---, n,
wi(z,t) =0, (2,t)€Qx(0,T(e)), i=1,--, n.

wnt = fu(ure)(Awn + anwn) + |

In view of u;z > ¢ and w; € C(Q x [0,T(¢))), i = 1,- -+, n, the LP—theory and Schauder-Theory
implies that (wq,- - -, wy,) is a classical solution, i.e. w; € C(Q x [0,T(¢))) N C*1(Q x (0,T(e))).
Proposition 1 shows that w; > 0, i.e. u;ee >0, i =1,2,---,n. since

(Utey "+ vy Upe) — (U1, -+, Up) N [CIQ;O"HQ/Q(Q x (0,T)]" as e — 0,
we know that u;; >0, ¢ =1,---, n and hence u; > ujo(z), i =1,---, n,in Q x (0,7).

Step 2: the uniqueness.

Let (uy, ---, u,) be the solution of (1.1) obtained by §2, then by step 1 uy >0, i =1,---, n,
which implies Au; + a;u; > 0. Let (@y,- - -, 1y ), which defined on Q x [0, T), be another positive
solution of (1.1) with the same initial datum (uqq,- - -, uno), and set w; = @; — ugy, @ = 1,- -+, n,
then we have, for any 0 < Ty < min{T, 1},

wyy = Gy — e = f1(t2) (At + art) — fi(uz)(Auy + aguy)

= fl(ﬂg)(Awl + Aug + ajwy + alul) — fl(UQ)(Aul + alul)
= fl(ﬁg)(Awl + alwl) + (fl(ﬁg) — fl(UQ))(Aul + alul)

1
= fi(a2)(Awy + ajwy) + (/0 f1(ug + s(tg — ug))ds(Auy + a1u1)>w2, (x,t) € Q x (0,Tp),

Win—-1)t = fnfl(ﬂn)(Awnfl + anflwnfl)

1
+(/ f1 (un + s(tn — un))ds(Aun,l + an,lun,l))wn, (x,t) € Q x (0,Tp),
0

1
Wnt = fn(t1)(Awy, + apwy,) + (/ f1 (u1 + s(ag — ul))ds(Aun + anun))wl, (x,t) € Q x (0,Tp),
0
w; =0, (2,t) €02 x (0, TH) UL x {0}, i=1,2-- n.
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Since Au; + a;u; > 0,4 = 1,2 - -, n, Proposition 1 implies that w;(z, t) = 0,i = 1,2, - -, n, ie.
ui(x,t) = ui(x,t), i =1,2,---,n. The uniqueness is proved.

Step 3: (u1,- -, u,) blow up in the finite time.

Since a; > A1, 3Q : Q' CC Q, s.t. the first eigenvalue A} of —A in ' with homogeneous
Dirichlet boundary condition satisfies a1 > A|. Applying u; > uo > 0 (i = 1,2,---,n) in Q we
know that

ui(w,t) >0, i=1,2,---n on  x(0,T)
for some positive constant o. Next, we consider the following system

wy = fi(w 1) (Ay; +a;), i=1,---n—1,

Upy = frluy)(Au, +any,), €, t>0,

(4.2)
u;(z,t) = o, red, i=1,2---n,
yl’(x70):0'7 xEQI7 ’i:1’27...’n.
By the classical parabolic theory, there exists a nonnegative classical solution (u;,- -+, u,) for

(z,t) € ' x(0,T"), where T” denotes the maximal existence time of (4.2). The standard comparison

principle for parabolic system implies that 77 > T and
ui(xat) Zﬂ(x’t)’ (x’t) e x [O’T)a 1=1,2,--+n.

If we can prove that the solution (u;(z,t),- -, u,(z,t)) of (4.2) blow up in finite time, So does
(w1, - - ).

Since the initial data (o, -+, o) is a lower solution of (4.2), the standard upper and lower solutions
method asserts that u;; > 0, i =1,2,---, n, which implies that Aw; +a;u; >0, i =1,2,---,n. And

hence

w(x,t) >0, i=1,2,---n, (x,t)€Q x[0,T").

1

Furthermore, (u;,- - - u,) satisfies, by (1.6),

{Qit > Kofn(ur1)(Au; + azu;), i=1,2,---n—1, (43)

Up = fn(ﬂl)(Agn + angn)’ T € Q,a 0<t< T,'
Choose k = min{1, Ky}, and denote by z(x,t) the unique positive solution of the following problem:

2 =kfn(2)(Az+a12), x€Q, t>0,
2(z,0) = o, z e, (4.4)
2(z,t) = o, zed, t>0.

By Lemma 5 it comes that z(x, t) blow up in finite time Ty < oco. Moreover z; > 0, i.e. Az+a1z > 0,
since the initial data is a lower solution of (4.4). Next we will prove z(x,t) < u,;(x,t), i =1,2,---,n.
Let

wi(z,t) = w(z,t) — z(z,t), i=1,2,-- -, n,
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then

wig = Uy — 2 > kfn(u)(Auy + a1uy) — kfn(2)(Az +a12)
> kfn(u2)(Awy + Az + aqwi + a12) — kfn(2)(Az 4 a12)
= kfn(ug)(Awr + arwr) + k(Az + a12)(fa(ug) = fn(2))
1

= kfn(u2)(Awi + aqwy) + [k(Az + alz)/ Lz + s(uy — 2))ds|we, xe€Q, 0<t<Tp,
0

wi(x,0) =0 re,

)
)

wy(z,t) =0 reo, 0<t<Ty.

Proposition 1 implies wy > 0, i.e. uy(x,t) > z(x,t). similarly we can prove u,(z, t) > z(z,t), i =
2, -+ ,n. which also implies that (u;,- - -, w,) blow up in finite time, and so does the solution

(uy,- -+, uy) of (1.1). The proof is completed.

5 Acknowledgement

The author would like to express his sincere gratitude to the valuable suggestions from Professor
Mingxin Wang.

References

[1] H. W. Chen, Analysis of blow-up for a nonlinear degenerate parabolic equation, J. Math. Anal.
Appl. 192(1995), 180-193.

[2] W. B. Deng, Y. X. Li & C. H. Xie, Global ezistence and nonexistence for a class of degenerate
parabolic systems, Nonlinear Analysis 55(2003) 223-244.

[3] Z. W. Duan, L. Zhou, Global and blow-up solutions for nonlinear degenerate parabolic systems
with crosswise-diffusion, J. Math. Anal. Appl. 244(2000), 263-278.

[4] A. Friedman, J. B. McLeod, Blow up of solutions of nonlinear degenerate parabolic equations,

Arch. Rational Mech. Anal. 96(1987), 55-80.

[5] M. E. Gage, On the size of the blow-up set for a quasilinear parabolic equation, Contemporary
Mathematics 127(1992), 55-80.

[6] O. A. Ladyzenskaja, V. A. Solonnikov & N. N. Uralceva, Linear and Quasilinear Equations of
Parabolic Type, Amer. Math. Soc. Providence 1968.

[7] Z. G. Lin, C. H. Xie The blow-up rate for a system of heat equations with nonlinear boundary
conditions, Nonlinear Analysis, 34, (1998), 767-778.

[8] H. H. Lu, M. X. Wang, Global solutions and blow-up problems for a nonlinear degenerate
parabolic system coupled via nonlocal sources, J. Math. Anal. Appl. 333 (2007) 984-1007.

[9] H. L. Li, M. X. Wang, Blow-up behaviors for semilinear parabolic systems coupled in equations
and boundary conditions, J. Math. Anal. Appl. 304 (1) (2005) 96-114.



[10] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

[11] M. H. Protter & H. F. Weinberger, Mazimum Principles in Differential Equations, Prentice-
Hall, 1967.

[12] M. X. Wang & C. H. Xie, A degenerate strongly coupled quasilinear parabolic system not in
divergence form, Z. angew. Math. Phys. 55 (2004) 741-755.

[13] M. X. Wang, Some degenerate diffusion systems not in divergence form, J. Math. Anal. Appl.
274(1)(2002), 424-436.

[14] S. Wang, M. X. Wang & C. H. Xie, A nonlinear degenerate diffusion equation not in divergence
form, Z. Angew. Math. Phys. 51(2000), 149-159.

[15] M. Wiegner, Blow-up for solutions of some degenerate parabolic equations, Diff. and Int. Eqns.
7(1994), 1641-1647.

(Received June 8, 2009)

EJQTDE, 2009 No. 49, p. 14



