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Abstract. Existence and stability of spatially periodic solutions for a delay prey–
predator diffusion system are concerned in this work. We obtain that the system can
generate the spatially nonhomogeneous periodic solutions when the diffusive rates are
suitably small. This result demonstrates that the diffusion plays an important role in de-
riving the complex spatiotemporal dynamics. Meanwhile, the stability of the spatially
periodic solutions is also studied. Finally, in order to verify our theoretical results, some
numerical simulations are also included.
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1 Introduction

In recent years, the interactions between two species have attracted much attention due to
their theoretical and practical significance since the pioneering theoretical works by Lotka [22]
and Volterra [28], see [4, 8, 10, 19, 30, 32]. It is well known that the interactions between two
species have mainly three kinds of fundamental forms such as competition, cooperation and
prey-predation in population biology. Among these interactions, extreme attention has been
payed to the prey–predation mechanism because it possesses a very significant function as a
kind of restriction factor in the process of evolvement of biology [6,9,17,23,25]. Understanding
the dynamics of predator–prey models will be very helpful for investigating multiple species
interactions. In [1], Beretta and Kuang have explored the dynamics of the following delayed
Leslie–Gower model.

du(t)
dt

= r1u(t)
[

1− u(t)
K

]
−mu(t)v(t), t > 0,

dv(t)
dt

= r2v(t)
[

1− v(t− τ)

ru(t− τ)

]
, t > 0,

(1.1)

where u(t), v(t) are the population densities of the prey and the predator, respectively; r1 > 0,
r2 > 0 denote the intrinsic growth rates of the prey and the predator, respectively. K > 0 is the
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carrying capacity of the prey and ru takes on the role of a prey-dependent carrying capacity
for the predator. The parameter r > 0 is a measure of the quality of the prey as food for the
predator. They presented some results on the boundedness of solutions permanence, global
stability of the boundary equilibrium and local stability results of the positive equilibrium.
Following this work, Song et al. [27] considered the properties of the local Hopf bifurcation
and the global continuation of the local Hopf bifurcation for model (1.1).

In fact, the distribution of species is generally spatially inhomogeneous and therefore the
species always tend to migrate toward regions of lower population density to improve the
possibility of survival [29]. Therefore, spatial diffusion should be considered in modelling
biological interactions, see [2, 3, 12, 13, 16, 20, 21, 26, 31]. Thus, the dynamics behavior of two
species to model (1.1) should be described by the following model

∂u(t,x)
∂t = d14u(t, x) + r1u(t, x)

[
1− u(t,x)

K

]
−mu(t, x)v(t, x), t > 0, x ∈ Ω

∂v(t,x)
∂t = d24v(t, x) + r2v(t, x)

[
1− v(t−τ,x)

ru(t−τ,x)

]
, t > 0, x ∈ Ω,

u(t, x) = φ(t, x) ≥ 0, v(t, x) = ψ(t, x) ≥ 0, (t, x) ∈ [−τ, 0]×Ω,

(1.2)

with Neumann boundary conditions

∂u(t, x)
∂ν

=
∂v(t, x)

∂ν
= 0, x ∈ ∂Ω, t ≥ 0. (1.3)

Ω ⊆ RN is a bounded domain with smooth boundary ∂Ω; ν is the unit outward normal vector
on the boundary of Ω and the Neumann boundary conditions in (1.3) imply that two species
have zero flux across the domain boundary ∂Ω; d1 > 0, d2 > 0 denote the diffusion coefficients
of two species; (φ, ψ) ∈ C = C([−τ, 0], X), X is defined by

X =

{
(u, v) : u, v ∈W2,2(Ω) :

∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω
}

,

with the inner product 〈·, ·〉.
The main goals of the present paper are to consider the existence and stability of spatially

periodic solutions of system (1.2). By regarding the time delay τ as the bifurcation parameter
and analyzing the associated characteristic equation, we find that an increase of τ can lead
to the occurrence of spatially nonhomogeneous periodic solutions at (u∗, v∗). Moreover, the
stability of the spatially nonhomogeneous periodic solutions is studied.

The remaining parts of this paper are organized as follows. In Section 2, the existence of
spatially nonhomogeneous periodic solutions is investigated. In Section 3, we derive condi-
tions for determining the stability of the spatially nonhomogeneous periodic solutions on the
center manifold. Finally, some conclusions and numerical simulations are presented in Section
4. Throughout the paper, we denote by N the set of all positive integers, and N0 = N∪ {0}.

2 Existence of spatially periodic solutions

In this section, we focus on investigating the local stability and the existence of spatially
periodic solutions of the positive constant steady-state of system (1.2). It is easy to see that
system (1.2) has two feasible boundary equilibria (0, 0), (K, 0) and a unique positive constant
steady-state E∗(u∗, v∗), where

u∗ =
1
r

v∗, v∗ =
Kr1r

r1 + Kmr
.
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Let u(t, x) = u(t, x) − u∗, v(t, x) = v(t, x) − v∗, for convenience, we still use u and v to
denote u and v. Then system (1.2) can be transformed into the following reaction-diffusion
system when Ω is restricted to the one-dimensional spatial domain (0, π):

∂u(t,x)
∂t = d1

∂2u(t,x)
∂x2 + r1(u(t, x) + u∗)

[
1− u(t,x)+u∗

K

]
−m(u(t, x) + u∗)(v(t, x) + v∗),

∂v(t,x)
∂t = d2

∂2v(t,x)
∂x2 + r2(v(t, x) + v∗)

[
1− v(t−τ,x)+v∗

r(u(t−τ,x)+u∗)

]
, t > 0, x ∈ Ω,

∂u(t,x)
∂x = ∂v(t,x)

∂x = 0, t ≥ 0, x ∈ ∂Ω,

u(t, x) = φ(t, x)− u∗, v(t, x) = ψ(t, x)− v∗, (t, x) ∈ [−τ, 0]×Ω.

(2.1)

Thus, the positive constant steady state E∗(u∗, v∗) of system (1.2) is transformed into the zero
steady state of system (2.1).

By virtue of the Taylor expansions, system (2.1) can be rewritten as the following system
∂u(t,x)

∂t = d14u(t, x) + β11u(t, x) + β12v(t, x) + β13u2(t, x) + β14u(t, x)v(t, x),

∂v(t,x)
∂t = d24v(t, x) + β21u(t− τ, x) + β22v(t− τ, x)

+ ∑
i+j+k≥2

1
i!j!k! fijkui(t− τ, x)vj(t− τ, x)vk(t, x),

(2.2)

where

β11 =
−r1

K
u∗ < 0, β12 = −mu∗ < 0, β13 =

−r1

K
< 0, β14 = −m < 0,

β21 = rr2 > 0, β22 = −r2 < 0

fijk =
∂i+j+k f (0, 0)

∂ui∂vj∂vk
1

, f (u, v) = r2v1(t, x)
(

1− v(t, x)
ru(t, x)

)
.

Let u1(t) = u(t, ·), u2(t) = v(t, ·), and U(t) = (u1(t), u2(t))T. According to [11, 12],
then system (2.2) can be rewritten as a delay differential equation in the phase space C =

C([−τ, 0], X)
d
dt

U(t) = d4U(t) + L(Ut) + F(Ut), (2.3)

where

d =

(
d1 0
0 d2

)
, 4 =

(
∂2

∂x2 0
0 ∂2

∂x2

)
,

Ut(θ) = U(t + θ), −τ ≤ θ ≤ 0, L : C → X and F : C → X are given, respectively, by

L(ϕ) =

(
β11ϕ1(0) + β12ϕ2(0)

β21ϕ1(−τ) + β22ϕ2(−τ)

)
,

F(ϕ) =

(
β13ϕ2

1(0) + β14ϕ1(0)ϕ2(0)

∑i+j+k≥2
1

i!j!k! fijk ϕi
1(−τ)ϕ

j
2(−τ)ϕk

2(0)

)
,

where ϕ(θ) = Ut(θ), −τ ≤ θ ≤ 0, ϕ = (ϕ1, ϕ2)T ∈ C.
Linearizing (2.3) at (0, 0) gives the linear equation

d
dt

U(t) = d4U(t) + L(Ut). (2.4)
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The characteristic equation for the linearized equation (2.4) is

λy− d∆y− L(eλ·y) = 0, (2.5)

where y ∈ dom(∆)\{0} and dom(∆) ⊂ X.
It is well known that the linear operator ∆ on (0, π) with homogeneous Neumann bound-

ary conditions has the eigenvalues −k2 (k ∈N0) and the corresponding eigenfunctions are

β1
k =

(
γk
0

)
, β2

k =

(
0
γk

)
, γk =

cos(kx)
‖ cos(kx)‖2,2

, k ∈N0.

Notice that (β1
k, β2

k)
∞
k=0 construct an orthogonal basis of the Banach space X (see [12]). There-

fore L(β1
k, β2

k) ⊂ span{β1
k, β2

k} and thus any element y in X can be expanded a Fourier series
in the form

y =
∞

∑
k=0

(
〈y, β1

k〉β1
k + 〈y, β2

k〉β2
k

)
=

∞

∑
k=0

(
〈y, β1

k〉, 〈y, β2
k〉
)(β1

k
β2

k

)
. (2.6)

In addition, some easy computations can show that

L
(

ϕT
(

β1
k

β2
k

))
= [L(ϕ)]T

(
β1

k
β2

k

)
, (2.7)

where ϕ = (ϕ1, ϕ2)T ∈ C.
From (2.6) and (2.7), (2.5) is equivalent to

∞

∑
k=0

(
〈y, β1

k〉, 〈y, β2
k〉
) [(λ + d1k2 0

0 λ + d2k2

)
−
(

β11 β12

β21e−λτ β22e−λτ

)](
β1

k
β2

k

)
= 0.

Hence, we conclude that the characteristic equation (2.4) is equivalent to the sequence of the
characteristic equations

λ2 + [(d1 + d2)k2 − β11]λ + [d1d2k4 − d2β11k2]

+ [−β22λ− d1β22k2 + β11β22 − β12β21]e−λτ = 0, k ∈N0. (2.8)

It is obvious that equation (2.8) has no zero roots since β11 < 0, β12 < 0, β21 > 0, β22 < 0,
d1 > 0, d2 > 0.

When τ = 0, (2.8) reduces to the following quadratic equation with respect to λ

λ2 + [(d1 + d2)k2 − β11 − β22]λ

+ [d1d2k4 − d2β11k2 − d1β22k2 + β11β22 − β12β21] = 0, k ∈N0, (2.9)

where

[(d1 + d2)k2 − β11 − β22] > 0,

[d1d2k4 − d2β11k2 − d1β22k2 + β11β22 − β12β21] > 0.

Consequently, all roots of equations (2.9) have negative real parts. Therefore, the positive
steady state E(u∗, v∗) of system (1.2) is locally asymptotically stable in the absence of delay.
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When d1 = d2 = 0 and τ = 0, system (1.2) becomes an ordinary differential equation, we
know that roots of the characteristic equation of ordinary differential equations have negative
real parts. This indicates that the diffusion coefficients d1, d2 have no effect on the stability of
the positive steady state E(u∗, v∗) in the absence of delay.

Denote

(H) d1β22 − d2β11 > 0, and d1d2 + (d1β22 − d2β11) + (β12β21 − β11β22) > 0.

Lemma 2.1. Assume that the condition (H) holds. If

(d2
1 + d2

2)− 2β11d1 < β2
22 − β2

11 < 16(d2
1 + d2

2)− 8β11d1, (2.10)

[
A2

1 − 2B2
1 − β2

22
]2 − 4(B2

1 − C2
1) > 0, (2.11)

then (2.8) with k = 1 has purely imaginary roots ±iω1, where

ω1 =

√√√√−(A2
1 − 2B1 − β2

22)±
√
(A2

1 − 2B1 − β2
22)

2 − 4(B2
1 − C2

1)

2
.

Proof. Assuming iω (ω > 0) is a solution of (2.8) with k ≥ 1, then substituting iω into equation
(2.8) and separating the real and imaginary parts, one can get that

−ω2 + Bk − β22ω sin(ωτ) + Ck cos(ωτ) = 0, (2.12)

Akω− β22ω cos(ωτ)− Ck sin(ωτ) = 0, (2.13)

where
Ak = (d1 + d2)k2 − β11 > 0, Bk = d1d2k4 − d2β11k2 ≥ 0,

Ck = −d1β22k2 + β11β22 − β12β21 > 0, k ∈N0.

From (2.12) and (2.13), it is easy to see that

ω4 + (A2
k − 2Bk − β2

22)ω
2 + B2

k − C2
k = 0, k ∈N0. (2.14)

By computing, we have Bk − Ck = d1d2k4 + (d1β22 − d2β11)k2 + β12β21 − β11β22. It is clear
that d1d2k4 + (d1β22 − d2β11)k2 + β12β21 − β11β22 ≥ d1d2 + (d1β22 − d2β11) + β12β21 − β11β22

when d1β22 − d2β11 > 0 (k ≥ 1). According to Bk ≥ 0, Ck > 0, if the condition (H) holds, we
can get B2

k > C2
k when k ≥ 1. Obviously, A2

k − 2Bk − β2
22 = (d2

1 + d2
2)k

4 − 2d1β11k2 + β2
11 − β2

22;
if 16(d2

1 + d2
2)− 8d1β11 + a2

11 − β2
22 > 0, that is, β2

22 − β2
11 < 16(d2

1 + d2
2)− 8d1β11, then (2.14)

with k ≥ 2 has no positive roots.
Clearly, if d2

1 + d2
2 − 2d1β11 + β2

11 − β2
22 < 0, that is, β2

22 − β2
11 > d2

1 + d2
2 − 2d1β11, and[

A2
1 − 2B2

1 − β2
22
]2 − 4(B2

1 − C2
1) ≥ 0, then (2.14) with k = 1 has at least one positive root ω1.

From (2.10), (2.11), (H) and (2.14), we have

ω1 =

√√√√−(A2
1 − 2B1 − β2

22)±
√
(A2

1 − 2B1 − β2
22)

2 − 4(B2
1 − C2

1)

2
. (2.15)

That is, it has ω1 such that (2.8) with k = 1 has purely imaginary eigenvalues ±iω1. Thus the
proof is complete.
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According to (2.12),(2.13) and Lemma 2.1, we get

τj =
1

ω1

(
arccos

(A1β22 + C1)ω
2
1 − B1C1

C2
1 + β2

22ω2
1

+ 2jπ
)

, j = 0, 1, . . . (2.16)

Lemma 2.2. Let λ(τ) = µ(τ) ± iω(τ) be the root of (2.8) with k = 1 near τ = τj satisfying
µ(τj) = 0, ω(τj) = ω1, j = 0, 1, . . . Then, the following transversality condition holds

sign Re
[

dλ

dτ

]
τ=τj

6= 0.

Proof. Taking the derivative for equation (2.8) with respect to τ at τj, we have[
dλ

dτ

]−1

=
(2λ + A1)eλτ − β11

(C1 − β11λ)λ
− τ

λ
. (2.17)

From (2.17), we get

sign Re
[

dλ

dτ

]−1

τ=τj

= sign Re
[
(2λ + A1)eλτ − β22

(C1 − β22λ)λ
− τ

λ

]
τ=τj

=
(A1 cos ω1τj − 2ω1 sin ω1τj − β22)β11ω2

1(
β2

22ω2
1 + C2

1

)
ω2

1

+
(A1 sin ω1τj + 2ω1 cos ω1τj)C1ω1(

β2
22ω2

1 + C2
1

)
ω2

1

=
1

β2
22ω2

1 + C2
1

[
A2

1 − 2B1 − β2
22 + 2ω2

1
]

=
1

β2
22ω2

1 + C2
1

[√
(A2

1 − 2B1 − β2
22)

2 − 4[B2
1 − C2

1 ]

]
6= 0,

then

sign Re
[

dλ

dτ

]
τ=τj

6= 0.

Thus the proof is complete.

Therefore, we have the following conclusions,

Theorem 2.3. Suppose that the conditions in Lemma 2.1 are satisfied. Let τj be defined as in (2.16).

(i) If τ ∈ [0, τ0), then the positive constant steady-state solution E∗ = (u∗, v∗) of system (1.2) is
stable and unstable when τ > τ0.

(ii) System (1.2) can have spatially nonhomogeneous periodic solutions at the positive constant
steady-state solution E∗ = (u∗, v∗) when τ = τj.

3 Stability of spatially periodic solutions

In the previous section, we have obtained the existence of spatially periodic solutions of
system (1.2) when the parameter τ crosses through the critical value τj (j = 0, 1, 2, . . . ). In this
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section, we shall study the stability of periodic solutions by applying the normal form theory
of partial functional differential equations developed by [15, 29].

Normalizing the delay τ in system (2.2) by the time-scaling t → t
τ , (2.2) is transformed

into
∂u(t,x)

∂t = τ{d14u + β11u(t) + β12v(t) + β13u2(t) + β14u(t)v(t),

∂v(t,x)
∂t = τ

{
d24v + β21u(t− 1) + β22v(t− 1) + ∑

i+j+k≥2

1
i!j!k! fijkui(t− 1)vj(t− 1)vk

}
,

(3.1)

where fijk is defined by (2.2). Let τ = τj + α, then, (3.1) can be written in abstract form in
C = C([−1, 0] : X) as

d
dt

U(t) = (τj + α)d∆U(t) + L(τj)(Ut) + F(Ut, α), (3.2)

where d =
(

d1 0
0 d2

)
, L(α)(·) : C → X, F(·, α) : C → X are given by

L(α)(ϕ) = (τj + α)

(
β11ϕ1(0) + β12ϕ2(0)

β21ϕ1(−1) + β22ϕ2(−1)

)
,

F(ϕ, α) = α∆ϕ(0) + L(α)ϕ + f (ϕ, α),

and

f (ϕ, α) = (τj + α)

(
β13ϕ2

1(0) + β14 ϕ1(0)ϕ2(0),

∑i+j+k≥2
1

ijk fijk ϕi
1(−1)ϕ

j
2(−1)ϕk

2(0)

)
,

for ϕ = (ϕ1, ϕ2)T ∈ C.
Linearizing (3.2) at (0, 0) leads to the following linear equation

d
dt

U(t) = τjd∆U(t) + L(τj)(Ut). (3.3)

It is easy to see from the discussions in the previous section that (2.8) has two purely imaginary
eigenvalues ±iω1 (ω1 is defined by (2.15)).

Let Λ1 = {−iω1, iω1}, consider the following FDE on C([−1, 0], R2)

ż(t) = L(τj)(zt), (3.4)

that is, (
ż1(t)
ż2(t)

)
= (τj + α)

{(
β11 β12

0 0

)(
z1(t)
z2(t)

)
+

(
0 0

β21 β22

)(
z1(t− 1)
z2(t− 1)

)}
.

As is well known, L(τj) is a continuous linear function mapping C([−1, 0], R2) into R2.
According to the Riesz representation theorem, there exists a 2× 2 matrix function η (θ, τ)
(−1 ≤ θ ≤ 0), whose elements are of bounded variation such that

L(τj) (φ) =
∫ 0

−1
dη
(
θ, τj

)
φ (θ) for φ ∈ C. (3.5)

Thus, we can choose

η
(
θ, τj

)
= (τj + α)

(
β11 β12

0 0

)
δ(θ)− (τj + α)

(
0 0

β21 β22

)
δ(θ + 1), (3.6)
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where δ(0) = 1, δ(θ) = 0, −1 ≤ θ < 0, then (3.5) is satisfied.
If φ is any given function in C([−1, 0], R2) and u(φ) is the unique solution of the linear

equation (3.3) with the initial function φ at zero, then the solution operator

T(t) : C([−1, 0], R2)→ C([−1, 0], R2)

is defined by
T(t)φ = ut(φ), t ≥ 0.

Let A(τj) denote the infinitesimal generator of the strongly continuous semigroup, according
to [14], then,

A
(
τj
)

φ (θ) =

dφ (θ) /dθ, θ ∈ [−1, 0) ,

L(τj) (φ)
def
=
∫ 0
−1 dη

(
t, τj
)

φ (t) , θ = 0,
(3.7)

where φ ∈ C1 ([−1, 0] , R2) .
For ψ ∈ C1([0, 1], (R2)∗

)
, define

A∗ψ (s) =

−dψ (s) /ds, s ∈ (0, 1] ,∫ 0
−1 ψ (−t) dη

(
t, τj
)

, s = 0,
(3.8)

and a bilinear inner product of the Sobolev space W2.2(0, π).

(ψ (s) , φ (θ)) = ψ (0) φ (0)−
∫ 0

−1

∫ θ

ξ=0
ψ(ξ − θ)dη(θ)dξ

= ψ (0) φ (0)− τj

∫ 0

−1
ψ (s + 1)

(
0 0

β21 β22

)
φ (s) ds,

where η (θ) = η
(
θ, τj

)
and A∗ is the formal adjoint of A

(
τj
)
.

Obviously, the characteristic equation of the linear operator A
(
τj
)

is (2.8) with k = 1. So,
it is easy to see from Section 2 that A(τj) has a pair of simple purely imaginary eigenvalues
±iω1 and they are also eigenvalues of A∗ since A

(
τj
)

and A∗ are adjoint operators. Let P
and P∗ be the center spaces, that is, the generalized eigenspaces, of A

(
τj
)

and A∗ associated
with Λ1, respectively, then P∗ is the adjoint space of P and dimP = dimP∗=2.

In addition, according to [11,27], a few simple calculations, we can choose Φ and Ψ be the
bases for P and P∗, respectively. It is known that Φ̇ = ΦB, where B is the 2× 2 diagonal
matrix B =

(
iω1 0
0 iω1

)
.

Let Φ = (Φ1, Φ2) and Ψ = (Ψ1, Ψ2)T, where

Φ1(θ) = eiω1θ

(
1,

iω1 + d1 − β11

β12

)T

, Φ2(θ) = Φ1(θ), −1 ≤ θ ≤ 0,

Ψ1(s) =
1
ρ

(
1,− iω1 − d1 + β11

β21eiω1τj

)T

e−iω1s, Ψ2(s) = Ψ1(s), 0 ≤ s ≤ 1,

ρ =
1

1 + $υ− τj(−d1 + β11 + β21$ + β12υ + (β22 − d2)$υ
,
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where $ = iω1+d1−β11
β12

, υ = − iω1−d1+β11

β21eiω1τj
. Let f1 = (β1

1, β2
1), c · f1 be defined by c · f1 =

c1β1
1 + c2β2

1 for c = (c1, c2)T ∈ R2 and (ψ · f1)(θ) = ψ(θ) · f1 for θ ∈ [−1, 0]. Then the center
space of linear equation (3.3) is given by PCNC, where

PCN ϕ = Φ (Ψ, 〈ϕ, f1〉) · f1, ϕ ∈ C, (3.9)

and C = PCNC ⊕ PQC, here PQC denotes the complementary subspace of PCNC in C.
Let Aτj be defined by:

Aτj ϕ(θ) = ϕ̇(θ) + X1(θ)
[
τj∆ϕ(0) + L∗(τj)(ϕ(θ))− ϕ̇(0)

]
, ϕ ∈ C,

where X1: [−1, 0]→B(X, X) is given by

X1 =

{
0, θ ∈ [−1, 0) ,

I, θ = 0.

Then the infinitesimal generator Aτj induced by the solution of (3.3) and (3.2) can be rewritten
as the following operator differential equation

U̇t = AτjUt + X1F(Ut, α). (3.10)

Using the decomposition C = PCN ⊕PQC and (3.9), the solution of (3.1) can be written as

Ut = Φ
(

x1(t)
x2(t)

)
· f1 + h(x1, x2, α),

where (x1, x2)T = (Ψ, 〈Ut, f1〉), and h(x1, x2, α) ∈ PQC with h(0, 0, 0) = Dh(0, 0, 0) = 0.
Thus, the flow on the center manifold for (3.2) can be described as(

ẋ1(t)
ẋ2(t)

)
=

(
0 ω1

−ω1 0

)(
x1(t)
x2(t)

)
+ Ψ(0)F(0, x1(t), x2(t)),

where
F(0, x1(t), x2(t)) =

〈
f
(

α, Φ
(

x1(t)
x2(t)

)
· f1 + h(α, x1(t), x2(t))

)
, f1

〉
.

Let z = x1 − ix2, and Ψ(0) = (Ψ1(0), Ψ2(0))T, when α = 0, then z satisfies

ż = iω1z + g(z, z), (3.11)

where

g(z, z) = (Ψ1(0)− iΨ2(0))
〈

f
(

0,
1
2

Φ
(

z+z
(z−z)i

)
· f1 + w(z, z)

)
, f1

〉
,

w(z, z) = h
(

0,
z + z

2
,
(z− z)i

2

)
, (3.12)

w(z, z) = w20
z2

2
+ w11zz + w02

z2

2
+ w21

z2z
2

+ · · · . (3.13)

Noticing that p1 = Φ1 + iΦ2, p2 = p1, therefore, solutions of (3.10) can be rewritten as

Ut =
1
2

Φ
(

(z+z)
i(z−z)

)
· f1 + w(z, z) =

1
2
(p1z + p2z) · f1 + w(z, z). (3.14)
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In addition, (3.11) can be rewritten as the following form

ż = iω1z + g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z
2

+ · · · . (3.15)

Let

g (z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z
2

+ · · · .

From (3.12), we have

〈F (Ut, 0) , f1〉

=
τj

4

( (
$β14 +

1
2 β13

)
z2

e−2iω1τj($ f110 + eiω1τj $ f101 + eiω1τj $2 f (2)011 +
1
2 f200 +

1
2 $2 f020)z2

)

+
τj

4

(
[($ + $)β14 + β13] zz[

($ + $) f110 + e−iω1τj $( f101 + $ f011) + eiω1τj $( f101 + $ f011) + f200 + $$ f020

]
zz

)

+
τj

4

(
($β14 + β13) z2

e2iω1τj($ f110 + e−iω1τj $ f101 + e−iω1τj $2 f011 +
1
2 f200 +

1
2 $2 f020)z2

)

+
τj

2



〈
β14

(
w2

11(0) +
w2

20(0)
2 + w1

11(0)$ +
w1

20(0)
2 $

)
+ β13

(
w1

11(0) +
w1

20(0)
2

)
, 1
〉

〈
f110e−iω1τj

(
w2

11(−1) + e2iω1τj w2
20(−1)

2 + w1
11(−1)$ + e2iω1τj w1

20(−1)
2 $

)
+ f101

(
e−iω1τj w2

11(0) + eiω1τj w2
20(0)
2 + w1

11(−1)$ +
w1

20(−1)
2 $

)
+ f011

(
e−iω1τj w2

11(0)$ + eiω1τj w2
20(0)
2 $ + w2

11(−1)$ +
w2

20(−1)
2 $

)
+ 1

2 f200

(
2e−iω1τj w1

11(−1) + eiω1τj w1
20(−1)

)
+ 1

2 f020

(
2e−iω1τj w2

11(−1)$ + eiω1τj w2
20(−1)$

)
, 1
〉


z2z

+ · · · ,

where 〈
wn

ij (θ) , 1
〉
=

1
π

∫ π

0
wn

ij (θ) (x)dx, i + j = 2, n = 1, 2.

Noting that Ψ1(0)− iΨ2(0) =
2(1−iω1)

(1+ω2
1)(1+$υ)

(1, υ). Therefore,

g20 =
τj(1− iω1)

(1 + ω2
1)(1 + $υ)

×
[ (

$β14 +
1
2

β13

)
+ e−2iω1τj

(
$ f110 + eiω1τj $ f101 + eiω1τj $2 f011 +

1
2

f200 +
1
2

$2 f020

)
υ

]
,

g11 =
τj(1− iω1)

(1 + ω2
1)(1 + $υ)

×
{
[($ + $)β14 + β13]

+
[
($ + $) f110 + e−iω1τj $( f101 + $ f011) + eiω1τj $( f (2)101 + $ f011) + f200 + $$ f020

]
υ
}

,

g02 = g20,
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g21 =
2τj(1− iω1)

(1 + ω2
1)(1 + $υ)

×
[〈

β14

(
w2

11(0) +
w2

20(0)
2

+ w1
11(0)$ +

w1
20(0)
2

$

)
+ β13

(
w1

11(0) +
w1

20(0)
2

)
, 1
〉

+

〈
f110e−iω1τj

(
w2

11(−1) + e2iω1τj
w2

20(−1)
2

+ w1
11(−1)$ + e2iω1τj

w1
20(−1)

2
$

)

+ f101

(
e−iω1τj w2

11(0) + eiω1τj
w2

20(0)
2

+ w1
11(−1)$ +

w1
20(−1)

2
$

)

+ f011

(
e−iω1τj w2

11(0)$ + eiω1τj
w2

20(0)
2

$ + w2
11(−1)$ +

w2
20(−1)

2
$

)

+
1
2

f200

(
2e−iω1τj w1

11(−1) + eiω1τj w1
20(−1)

)
+

1
2

f020

(
2e−iω1τj w2

11(−1)$ + eiω1τj w2
20(−1)$

)
, 1
〉

υ

]
.

To determine the properties of the Hopf bifurcation, we need to compute wij, i + j = 2, since
w20(θ) and w11(θ) for (θ ∈ [−1, 0]) appear in g21.

In addition, we can rewrite (3.12) as

ẇ (z, z) = w20zż + w11(żz + zż) + w02zż + · · · (3.16)

and

Aτj w = Aτj w20
z2

2
+ Aτj w11zz + Aτj w02

z2

2
+ · · · . (3.17)

According to [29], we can know
ẇ = Aτj w + H(z, z), (3.18)

where

H(z, z) = H20
z2

2
+ H11zz + H02

z2

2
+ · · · (3.19)

and Hij ∈ PQC, i + j = 2.
Thus, by using the chain rule

ẇ =
∂w(z, z)

∂z
ż +

∂w(z, z)
∂z

ż.

And according to (3.14) and (3.18), we can obtain
(2iω1 − Aτj)w20 = H20,

−Aτj w11 = H11,

(−2iω1 − Aτj)w02 = H02.

(3.20)

Noticing that Aτj has only two eigenvalues ±iω1, therefore, (3.20) has the unique solution
wij (i + j = 2) in PQC and 

w20 = (2iω1 − Aτj)
−1H20,

w11 = −A−1
τj

H11,

w02 = (−2iω1 − Aτj)
−1H02.

(3.21)
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From (3.19), then, for −1 ≤ θ < 0,

H(z, z) = −Φ(θ)Ψ(0) 〈 f (Ut, 0) , f1〉 · f1

= −
(

p1(θ) + p2(θ)

2
,

p1(θ)− p2(θ)

2i

)(
Ψ1(0)
Ψ2(0)

)
〈 f (Ut, 0) , f1〉 · f1

= − 1
2
[p1(θ) (Ψ1(0)− iΨ2(0)) + p2(θ) (Ψ1(0) + iΨ2(0))] 〈 f (Ut, 0) , f1〉 · f1

= − 1
4
[g20 p1(θ) + g02 p2(θ)] z2 · f1 + · · · .

So, for −1 ≤ θ < 0,

H20(θ) = −
1
2
[g20 p1(θ) + g02 p2(θ)] · f1, H11(θ) = 0.

When θ = 0,

H20(0) =
iτj

2

(
$β14 +

1
2 β13

e−2iω1τj
(

$ f110 + eiω1τj $ f101 + eiωτj $2 f011 +
1
2 f200 +

1
2 $2 f020

))

− 1
2
[g20 p1(0) + g02 p2(0)] · f1,

H11(0) = 0.

Using the definition of Aτj , for −1 ≤ θ < 0, we have

ẇ20(θ) = 2iω1w20(θ) +
1
2
[g20 p1(θ) + g02 p2(θ)] · f1, −1 ≤ θ < 0.

Note that p1 (θ) = p1 (0) eiω1θ ,−1 ≤ θ ≤ 0, hence

w20 (θ) =
i
2

[
g20

ω1
p1 (θ) +

g02
3ω1

p2 (θ)

]
· f1 + e2iω1θE, −1 ≤ θ < 0, (3.22)

and

E = w20(0)−
i
2

[
g20

ω1
p1 (0) +

g02
3ω1

p2 (0)
]
· f1. (3.23)

By the definition of Aτj again, and combining (3.17) and (3.20), we have

2iω1

[
ig20

2ω1
p1 (0) · f1 +

ig02
6ω1

p2 (0) · f1 + E
]

−τj∆
[

ig20

2ω1
p1 (0) · f1 +

ig02
6ω1

p2 (0) · f1 + E
]

−L∗(τj)

[
ig20

2ω1
p1 (θ) · f1 +

ig02
6ω1

p2 (θ) · f1 + Ee2iω1θ

]
=

iτj

2

(
$β14 +

1
2 β13

e−2iω1τj
(

$ f110 + eiω1τj $ f101 + eiω1τj $2 f011 +
1
2 f200 +

1
2 $2 f020

))

−1
2
[g20 p1(0) + g02 p2(0)] · f1.

For

τj∆p1 (0) · f1 + L∗(τ̃)(p1 (θ) · f1) = iω1 p1 (0) · f1,
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τj∆p2 (0) · f1 + L∗(τj)(p2 (θ) · f1) = −iω1 p2 (0) · f1,

then

2iω1E− τj∆E− L∗(τj)(Ee2iω1θ)

=
iτj

2

(
$β14 +

1
2 β13

e−2iω1τj
(

$ f110 + eiω1τj $ f101 + eiω1τj $2 f011 +
1
2 f200 +

1
2 $2 f020

))

From the above expression, we can see easily that

E =

(
E1

E2

)
=

i
2

(
−2iω1 + β11 β12

β21 −2iω1 + β22

)−1

×
(

$β14 +
1
2 β13

e−2iω1τj
(

$ f110 + eiω1τj $ f101 + eiω1τj $2 f011 +
1
2 f200 +

1
2 $2 f020

)) .

Thus, from the definition of g20 and g02 we see easily that

w20 (0) =
i
2

(
g20

ω1
+

g02
3ω1

)(
1
$

)
+ E

and

w20 (−1) =
1
2

(
g20

ω1
−

g02
3ω1

)(
1
$

)
− E.

Therefore, g21 can be determined by the parameters.
In fact, by a transformation

z = ϑ + a20
ϑ2

2
+ a11ϑϑ + a20

ϑ
2

2
+ · · · ,

where a20 = g20
iω1

, a11 = ig11
ω1

, a02 = ig02
3ω1

. Then, (3.15) can be written as Poincaré normal form

ϑ̇ = iω1ϑ + c1(0)ϑ|ϑ|2 + O(|ϑ|5),

where

c1(0) =
i

2ω1

(
g11g20 − 2|g11|2 −

|g2
02|
3

)
+

g21

2
.

Thus, we can compute ε2 = 2 Re(c1(0)). Hence, we have the following result.

Theorem 3.1. If ε2 < 0, then the spatially periodic solutions are stable; if ε2 > 0, then the spatially
periodic solutions are unstable.

4 Conclusions and numerical simulations

In this paper, by studying the existence and stability of spatially periodic solutions for a
delay Leslie–Gower diffusion system, we obtain that the system can generate the spatially
nonhomogeneous periodic solutions when the diffusive rates are suitably small. We discover
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that system (1.2) have more abundant dynamic behavior than system (1.1), this indicates that
diffusion plays a fundamental role in classifying the rich dynamics. In addition, we considered
the stability of periodic solutions by applying the normal form theory of partial functional
differential equations.

To illustrate the analytical results obtained, we give some numerical simulations and con-
sider the following case of model (1.2)

∂u(t,x)
∂t = 104u(t, x) + u(t, x) [1− u(t, x)]− u(t, x)v(t, x), t > 0, x ∈ (0, π)

∂v(t,x)
∂t = 0.014v(t, x) + v(t, x)

[
1− v(t−τ,x)

2u(t−τ,x)

]
, t > 0, x ∈ (0, π),

u(t, x) = 0.2, v(t, x) = 0.2, (t, x) ∈ [−τ, 0]× (0, π),

(4.1)

which has a positive equilibrium E∗ = (0.3333, 0.6667). From (2.15), (2.16) and system (4.1),
we know ω1 = 1.0638, τ0 = 1.4796. Therefore, we know from Theorem 2.3 that the posi-
tive equilibrium E∗ = (0.3333, 0.6667) is asymptotically stable when τ ∈ [0, 1.4796). These
properties are illustrated by the numerical simulation in Figs. 1–10

When τ passes through the critical value τ0, E∗ = (0.3333, 0.6667) loss its stability, a family
of periodic solution bifurcates from equilibrium E∗ = (0.3333, 0.6667) which is depicted by
the numerical simulation in Figs. 11–12. From Theorem 3.1 and system (4.1), we can com-
pute c1(0) = −2.0788e + 0.03− 6.9946e + 0.02i by the software package Matlab R2009b, and
ε2 = 2 Re(c1(0)) < 0. Therefore, the bifurcated periodic solutions are orbitally asymptotically
stable on the center manifold. These properties are depicted by the numerical simulation in
Figs. 11–12.
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Figures

Figure 1: The trajectory graph(u(t,x)) of system (4.1) with 0.3 = τ < τ0 = 1.4796.

Figure 2: The trajectory graph(v(t,x)) of system (4.1) with 0.3 = τ < τ0 = 1.4796.
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Figure 3: The trajectory graph(u(t,x)) of system (4.1) with 0.6 = τ < τ0 = 1.4796.

Figure 4: The trajectory graph(v(t,x)) of system (4.1) with 0.6 = τ < τ0 = 1.4796.
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Figure 5: The trajectory graph(u(t,x)) of system (4.1) with 0.8 = τ < τ0 = 1.4796.

Figure 6: The trajectory graph(v(t,x)) of system (4.1) with 0.8 = τ < τ0 = 1.4796.
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Figure 7: The trajectory graph(u(t,x)) of system (4.1) with 1.0 = τ < τ0 = 1.4796.

Figure 8: The trajectory graph(v(t,x)) of system (4.1) with 1.0 = τ < τ0 = 1.4796.
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Figure 9: The trajectory graph(u(t,x)) of system (4.1) with 1.3 = τ < τ0 = 1.4796.

Figure 10: The trajectory graph(v(t,x)) of system (4.1) with 1.3 = τ < τ0 = 1.4796.
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Figure 11: The trajectory graph(u(t,x)) of system (4.1) with 1.5 = τ > τ0 = 1.4796.

Figure 12: The trajectory graph(v(t,x)) of system (4.1) with 1.5 = τ > τ0 = 1.4796.
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