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1 Introduction

In the last decades, periodic boundary problems for functional differential equations have
attracted a lot of attention. First of all because of their meaningful interest for modeling
real-life processes (see for instance [1, 4, 6, 7, 11–13, 16, 17, 21, 26, 27, 29, 30, 34, 36] and references
therein). The problem on the existence of periodic solution for linear functional differential
equations is of interest by itself [13, 17, 21, 33, 35], but results concerning linear equations are
often used to investigate periodic solutions to some kinds of nonlinear functional differen-
tial equations (for example, [7–9, 23, 24, 34]). In many publications on functional differential
equations [3–7, 11–13, 16–18, 20–22, 25, 27, 30, 33–36], there are no specific restrictions on devi-
ating arguments. Therefore, it is important to obtain optimal conditions for the existence of
periodic solutions to linear functional differential equations that will be valid for all possi-
ble delays (or for more general deviating arguments). Some such conditions are obtained in
[2,8–10,12,14,23,24,26,31,32] for various boundary value conditions under integral restrictions
on the coefficients of the equations.

Here we research a rather common case when the linear functional operator T of the
second-order functional differential equation is the difference of two positive operators: T =

T+− T−. A new class of sufficient conditions for the existence of periodic solutions is offered.
For arbitrary given non-negative functions p+, p−, we find sharp sufficient conditions for
the existence of periodic solutions to all functional differential equations with linear positive
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2 E. Bravyi

operators T+, T− such that T+1 = p+, T−1 = p− (1 is the unit function). To the best of our
knowledge, for arbitrary functions p+, p−, such conditions are new.

Consider the periodic boundary value problem for a second order functional differential
equation {

ẍ(t) = λ(Tx)(t) + f (t) for almost all t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),
(1.1)

where λ is a real number, T : C[0, 1] → L[0, 1] is a linear bounded operator, f ∈ L[0, 1]. Here
C[0, 1] is the space of continuous functions x : [0, 1] → R with norm ‖x‖ = maxt∈[0,1] |x(t)|,
L[0, 1] is the space of Lebesgue integrable functions z : [0, 1]→ R with norm ‖z‖ =

∫ 1
0 |z(t)| dt.

A linear bounded operator T : C[0, 1] → L[0, 1] is called positive if it maps every non-
negative function into an almost everywhere non-negative function. Let S be the set of all
positive linear operators T : C[0, 1]→ L[0, 1].

Suppose p+, p− ∈ L[0, 1] are given non-negative functions. Define the family of operators
S(p+, p−) by the equality

S(p+, p−) = {T+ − T− : T+ ∈ S, T+1 = p+, T− ∈ S, T−1 = p−},

where 1 is the unit function: 1(t) ≡ 1 for all t ∈ [0, 1].
Suppose a real number λ and a linear operator T : C[0, 1] → L[0, 1] are given. Bound-

ary value problem (1.1) is called uniquely solvable if for all f ∈ L[0, 1] there exists a unique
absolutely continuous function x : [0, 1] → R with an absolutely continuous derivative ẋ sat-
isfying the first equation of (1.1) for almost all t ∈ [0, 1] and satisfying the periodic boundary
conditions x(0) = x(1), ẋ(0) = ẋ(1).

Our main result is that we can find all real numbers λ such that problem (1.1) is uniquely
solvable for all operators T from the operator family S(p+, p−). It allows to obtain some
new sufficient conditions for the solvability. These conditions are unimprovable in a sense. It
means that if our conditions are not fulfilled, then there exists an operator T ∈ S(p+, p−) such
that boundary value problem (1.1) is not uniquely solvable.

Suppose two different non-negative numbers P+, P− are given. Sharp sufficient condi-
tions for the solvability of (1.1) for all operators T from the unify of sets S(p+, p−) with all
non-negative p+, p− satisfying the equalities

∫ 1

0
p+(s) ds = P+,

∫ 1

0
p−(s) ds = P−,

are obtained in [10] (see condition (2.7)). However, if we consider the boundary value problem
(1.1) only for the operator family S(p+, p−) with given non-negative functions p+, p−, we can
essentially improve the results (see Example 2.6).

Here in Section 2, Theorems 2.1, 2.2 contain conditions for the unique solvability of (1.1)
for all operators T from the family S(p+, p−) with arbitrary non-negative functions p+, p−.
Further, we refine these results when p− is the zero function, and the function p+ has one
symmetry axis (Theorem 2.7), two symmetry axes (Theorem 2.10), or three symmetry axes
(Theorem 2.12). It follows from Theorem 2.12 that the consideration of the cases with more
symmetries does not improve the results.

In Section 3, all proofs are given.
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2 Main results

Theorem 2.1. Let p+, p− ∈ L[0, 1] be non-negative functions,
∫ 1

0 p−(t) dt 6=
∫ 1

0 p+(t) dt.
Then there exists a number λ∗(p+, p−) > 0 such that boundary value problem (1.1) is uniquely

solvable for all T ∈ S(p+, p−) if

λ 6= 0, |λ| < λ∗(p+, p−). (2.1)

If |λ| > λ∗(p+, p−), there exists an operator T ∈ S(p+, p−) such that problem (1.1) is not uniquely
solvable.

It turns out that we can compute λ∗(p+, p−) (see equality (3.11)).
So, let non-negative integrable functions p+, p− be given,

p ≡ p+ − p−, P ≡
∫ 1

0
p(s) ds. (2.2)

For every 0 6 t1 < t2 6 1, we define the piecewise linear function

qt1,t2(t) ≡


t(t2 − t1), t ∈ [0, t1),

t2 − t− (1− t)(t2 − t1), t ∈ [t1, t2),

−(1− t)(t2 − t1), t ∈ [t2, 1].

(2.3)

For every z ∈ L[0, 1], let

qt1,t2,z(t) ≡ qt1,t2(t)−
∫ 1

0
z(s)qt1,t2(s) ds, t ∈ [0, 1]; (2.4)

for every a ∈ R

[a]+ ≡ (|a|+ a)/2, [a]− ≡ (|a| − a)/2.

Theorem 2.2. Let P = 1. Then

λ∗(p+, p−) =
1

max
06t1<t261

∫ 1
0

(
p+(t)[qt1,t2,p(t)]+ + p−(t)[qt1,t2,p(t)]−

)
dt

. (2.5)

Remark 2.3. If P = 1, then we have∫ 1

0

(
p+(t)[qt1,t2,p(t)]+ + p−(t)[qt1,t2,p(t)]−

)
ds > 0, 0 < t1 < t2 < 1,

and

λ∗(p+, p−) =
1

max
06t1<t261

∫ 1
0

(
p+(t)[qt1,t2,p(t)]− + p−(t)[qt1,t2,p(t)]+

)
dt

. (2.6)

Example 2.4. Suppose p+, p− are nonnegative constants and p ≡ p+ − p− = 1. Then∫ 1
0 p qt1,t2(s) ds = (t1 + t2 − 1)(t2 − t1)/2, and one can readily check that

λ∗(p+, p−) =
32

p+ + p−
.
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Example 2.5. Set

p(t) = 4− 6 t, p+(t) =

{
p(t), t ∈ [0, 2/3],

0, t ∈ (2/3, 1],
p−(t) =

{
0, t ∈ [0, 2/3],

−p(t), t ∈ (2/3, 1].

To compute λ∗(p+, p−) we have to consider all possible cases of relative positions of the points
t1, t2, 2/3, and the zeros of qt1,t2,p. After that we can conclude that

1
λ∗(p+, p−)

= max
1/36t162/36t261

(
(t2 − t1) (A2 − 1)(A− 1) +

B3

27(1− (t2 − t1)2)

)
,

where

A = (1− t1)
2 + (1− t2)

2 + t1t2, B = 3t3
1 − 6t2

1 + 2t1 − 5t2 + 6t2
2 − 3t3

2 + 2.

After some elementary computations, we get

15.4 < λ∗(p+, p−) < 15.5.

Let P+ ≡
∫ 1

0 p+(t) dt=4/3, P− ≡
∫ 1

0 p−(t) dt = 1/3. The well-known integral sufficient
conditions for the solvability of (1.1) from [10]

λ 6= 0,
|λ|P−

1− |λ|P−/4
6 |λ|P+ 6 8(1 +

√
1− |λ|P−/4) (2.7)

gives the following result: problem (1.1) is uniquely solvable for all T ∈ S(p+, p−) if

0 < |λ| 6 9.

It is obvious that the sufficient condition for the solvability obtained in Theorem 2.2

0 < |λ| 6 15.4

is better. Moreover, if |λ| > 15.5, then there exists an operator T ∈ S(p+, p−) such that
problem (1.1) is not uniquely solvable.

Let 0(t) = 0, t ∈ [0, 1], be the zero function.

Example 2.6. If p+(t) = 2t, t ∈ [0, 1], p− ≡ 0, then P = 1 and

λ∗(p+, 0) =
1

max
k∈[0,1/2],s∈[k,1−k]

g1(k, s)g2(k, s)
,

where

g1(k, s) =
(
−1 + 3k + k2 − 3s + 3s2

9(1− 2k)

)2

,

g2(k, s) = −2k(1 + 2k− 7k2 + 4k3 − 6s + 6sk− 3s2 + 12s2k).

It is easy to compute that(
max

k∈[0,1/2],s∈[k,1−k]
g1(k, s)g2(k, s)

)−1

∈ (29.328, 29.329).

Therefore, in this case, periodic boundary value problem (1.1) is uniquely solvable for
every operator T ∈ S(p+, p−) if |λ| ∈ (0, 29.328]. If |λ| > 29.329, then there exists T ∈
S(p+, p−) such that (1.1) is not uniquely solvable.
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Further we consider symmetric functions p+ and p− = 0. It makes the computation of λ∗

much more easier, especially in Theorem 2.12.

Theorem 2.7. Let p− = 0,

p+(t) = p+(1− t) > 0 for a.a. t ∈ [0, 1/2],
∫ 1

0
p+(t) dt = 1. (2.8)

Then
λ∗(p+, 0) =

1

max
06t161/2, 1−t16t261

∫ 1
0 p+(t)[qt1,t2,p+(t)]+ dt

.

It is not difficult to show that λ∗(p+, p−) can take any value from the interval (0,+∞)

for different functions p+, p− under the conditions of Theorem 2.2. Moreover, under the
conditions of Theorems 2.2 and 2.7, we have λ∗(p+, 0) ∈ (16, ∞). It follows from this that
the periodic boundary value problem (1.1) is uniquely solvable for every T ∈ S(p+, 0) if the
function p+ ∈ L[0, 1] is non-negative and

0 < |λ|
∫ 1

0
p+(s) ds 6 16.

This result is well known. For the first time, the best constant 16 was obtained in [15] for
ordinary differential equations, and in [19] for functional differential equations (non-linear).

Example 2.8. If p+(t) = 6t(1− t), t ∈ [0, 1], p− = 0, then P = 1 and

λ∗(p+, 0) =
1

max
t∈[0,1/2]

g3(t)
,

where

g3(t) =
t(2t− 1)(4t2 − 6t− 3)

16
.

We have
1

max
t∈[0,1]

g3(t)
∈ (29.737, 29.738).

Therefore, in this case, the periodic boundary value problem (1.1) has a unique solution for
every operator T ∈ S(p+, 0) if |λ| ∈ (0, 29.737]. But if |λ| > 29.738, then there exists T ∈
S(p+, 0) such that (1.1) is not uniquely solvable.

Example 2.9. If p+(t) = 30t2(1− t)2, t ∈ [0, 1], p− = 0, then P = 1 and

λ∗(p+, 0) =
1

max
t∈[0,1]

g4(t)
,

where

g4(t) =
t(1− 2t)(16t4 − 40t3 + 20t2 + 10t + 5)

32
.

We have
1

max
t∈[0,1]

g4(t)
∈ (30.117, 30.118).

Therefore, in this case, the periodic boundary value problem (1.1) is uniquely solvable for
every operator T ∈ S(p+, 0) if |λ| ∈ (0, 30.117]. But if |λ| > 30.118, then there exists T ∈
S(p+, p−) such that (1.1) is not uniquely solvable.
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Theorem 2.10. Let p− = 0, p+ = p, where

p(t) = p(1/2− t) = p(1/2 + t) = p(1− t) > 0 for a.a. t ∈ [0, 1/4], (2.9)

and
∫ 1

0 p(t) dt = 1. Then

λ∗(p, 0) =
1

max
06t61/4

(∫ 1/4−t
0 (1/4− t− s)p(s) ds−

∫ t
0 (t− s)p(s) ds + t/4

) .

If, moreover, ∫ 1/4

1/4−t
p(t) dt >

∫ t

0
p(t) dt, t ∈ [0, 1/8], (2.10)

then
λ∗(p, 0) =

1∫ 1/4
0 s p(s) ds

;

if ∫ 1/4

1/4−t
p(t) dt >

∫ t

0
p(t) dt, t ∈ [0, 1/8], (2.11)

then
λ∗(p, 0) =

1

1/16−
∫ 1/4

0 s p(s) ds
.

Remark 2.11. If p is increasing on [0, 1/4], then (2.10) is fulfilled. If p is decreasing on [0, 1/4],
then (2.11) is fulfilled.

It is easy to show that λ∗(p, 0) can take any value from the interval (16, 32] under the
conditions of Theorem 2.10.

Theorem 2.12. Let p− = 0, p+ = p, where

p(t) = p(1/2− t) = p(1/2 + t) = p(1− t) = p(1/4− t) > 0, t ∈ [0, 1/4],

and ∫ 1

0
p(t) dt = 1.

Then
λ∗(p, 0) = 32.

Theorems 2.2, 2.7, 2.10 and 2.12 can be reformulated in the form of sharp sufficient con-
ditions for the solvability. In particular, Theorems 2.1 and 2.2 have the following equivalent
version.

Theorem 2.13. Let p+, p− ∈ L[0, 1] be non-negative functions, T ∈ S(p+, p−), p ≡ p+ − p−,
P ≡

∫ 1
0 p(s) ds 6= 0, f ∈ L[0, 1]. The periodic boundary value problem{

ẍ(t) = (Tx)(t) + f (t) for a.a. t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),
(2.12)

is uniquely solvable if

max
06t1<t261

∫ 1

0

(
p+(t)[qt1,t2,p/P (t)]+ + p−(t)[qt1,t2,p/P (t)]−

)
dt < 1. (2.13)

If P = 0 or inequality (2.13) is not fulfilled, then there exists an operator T ∈ S(p+, p−) such that
problem (2.12) is not uniquely solvable.
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3 Proofs

We need two lemmas for proving Theorems 2.1 and 2.2. The proof of the following lemma on
the Fredholm property can be found in [28, p. 85] or [2, pp. 1, 7–8, 60–62].

Lemma 3.1 ([2, 28]). Let T ∈ S(p+, p−). Boundary value problem (2.12) is uniquely solvable if and
only if the homogeneous problem{

ẍ(t) = (Tx)(t) for a.a. t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),
(3.1)

has only the trivial solution.

Lemma 3.2. Let T ∈ S(p+, p−). Then for every x ∈ C[0, 1], there exist (depending on x) points t1,
t2 ∈ [0, 1] and functions p1, p2 ∈ L[0, 1] satisfying the conditions

p1(t) + p2(t) = p+(t)− p−(t),

−p−(t) 6 pi(t) 6 p+(t), for a.a. t ∈ [0, 1], i = 1, 2,
(3.2)

such that the following equality holds:

(Tx)(t) = p1(t)x(t1) + p2(t)x(t2) for a.a. t ∈ [0, 1].

Proof. Suppose x ∈ C[0, 1],

max
t∈[0,1]

x(t) = x(t2), min
t∈[0,1]

x(t) = x(t1).

Then

p+(t)x(t1)− p−(t)x(t2) 6 (Tx)(t) 6 p+(t)x(t2)− p−(t)x(t1), t ∈ [0, 1].

Hence, there exists a measurable function ξ : [0, 1]→ [0, 1] such that

(Tx)(t) = x(t1)
(
(1− ξ(t))p+(t)− ξ(t)p−(t)

)
+ x(t2)

(
(ξ(t)− 1)p−(t) + ξ(t)p+(t)

)
, t ∈ [0, 1].

Therefore, the chosen points t1, t2 and the functions p1, p2 defined by the equalities

p1(t) = (1− ξ(t))p+(t)− ξ(t)p−(t), t ∈ [0, 1],

p2(t) = (ξ(t)− 1)p−(t) + ξ(t)p+(t),

satisfy the conditions of the lemma.

Remark 3.3. It follows from the proof of Lemma 3.2, that some maximum and minimum
points of x can be taken as points t1 and t2 in Lemma 3.2.

Proof of Remark 2.3. Let 0 < t1 < t2 < 1 and P = 1. Denote here r = qt1,t2,p. Using equalities
(2.2) and (2.4), one can easily get that if P = 1, then∫ 1

0
p(s)r(s) ds = 0.

That is, ∫ 1

0

(
p+(s)− p−(s)

) (
[r(s)]+ − [r(s)]−

)
ds = 0.
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Therefore,∫ 1

0
(p+(s)[r(s)]+ + p−(s)[r(s)]−) ds =

∫ 1

0
(p+(s)[r(s)]− + p−(s)[r(s)]+) ds. (3.3)

Thus, if ∫ 1

0

(
p+(s)[r(s)]+ + p−(s)[r(s)]−

)
ds = 0, (3.4)

then ∫ 1

0
(p+(s) + p−(s))([r(s)]+ + [r(s)]−) ds =

∫ 1

0
(p+(s) + p−(s))|r(s)| ds = 0.

Since for |r(s)| > 0 for almost all s ∈ [0, 1], it means that assumption (3.4) is not fulfilled.
Equality (2.6) follows from (3.3).

Proof of Theorems 2.1 and 2.2. First we will prove Theorem 2.2. Suppose P = 1. By Lemma 3.1,
the boundary value problem (1.1) is not uniquely solvable if and only if the homogeneous
problem {

ÿ(t) = λ(Ty)(t) for a.a. t ∈ [0, 1],

y(0) = y(1), ẏ(0) = ẏ(1),
(3.5)

has a non-zero solution. Suppose (3.5) has a non-zero solution y. By Lemma 3.2, there exist
points t1, t2 ∈ [0, 1], t1 < t2, and functions p1, p2 ∈ L[0, 1] satisfying (3.2) such that

(Ty)(t) = p1(t)y(t1) + p2(t)y(t2) for a.a. t ∈ [0, 1].

Therefore, y is a solution of the periodic problem{
ÿ(t) = λ(p1(t)y(t1) + p2(t)y(t2)) for a.a. t ∈ [0, 1],

y(0) = y(1), ẏ(0) = ẏ(1).
(3.6)

Thus,

y(t) = y(0) + ẏ(0)t + λ
∫ t

0
(t− s) (p1(s)y(t1) + p2(s)y(t2)) ds, t ∈ [0, 1]. (3.7)

From the condition y(0) = y(1), we get

ẏ(0) = −λ
∫ 1

0
(1− s) (p1(s)y(t1) + p2(s)y(t2)) ds. (3.8)

From the condition ẏ(0) = ẏ(1) it follows that

λ
∫ 1

0
(p1(s)y(t1) + p2(s)y(t2)) ds = 0. (3.9)

Substituting ẏ(0) from (3.8) in (3.7) for t = t1 and t = t2, we obtain

y(t1) = y(0)− λt1

∫ 1

0
(1− s) (p1(s)y(t1) + p2(s)y(t2)) ds

+ λ
∫ t1

0
(t1 − s) (p1(s)y(t1) + p2(s)y(t2)) ds,

y(t2) = y(0)− λt2

∫ 1

0
(1− s) (p1(s)y(t1) + p2(s)y(t2)) ds

+ λ
∫ t2

0
(t2 − s) (p1(s)y(t1) + p2(s)y(t2)) ds.
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Excluding y(0) from these equations, we get

y(t1)− y(t2) + λ
∫ 1

0
qt1,t2(s) (p1(s)y(t1) + p2(s)y(t2)) ds = 0. (3.10)

Problem (3.6) has a non-zero solution if and only if the system of two equations (3.9), (3.10)
(with respect to scalar variables y(t1) and y(t2)) has a non-zero solution. This system has a
non-zero solution if and only if

∆(t1, t2, p1) ≡
∣∣∣∣∣ λ

∫ 1
0 p1(s) ds λ

∫ 1
0 p2(s) ds

1 + λ
∫ 1

0 p1(s)qt1,t2(s) ds −1 + λ
∫ 1

0 p2(s)qt1,t2(s) ds

∣∣∣∣∣
=

∣∣∣∣∣ λ
∫ 1

0 p1(s) ds λ

1 + λ
∫ 1

0 p1(s)qt1,t2(s) ds λ
∫ 1

0 p(s)qt1,t2(s) ds

∣∣∣∣∣
= λ

(
−λ

∫ 1

0
p1(s)qt1,t2,p(s) ds− 1

)
= 0.

Denote by R the set of all {t1, t2, p1} such that t1, t2 ∈ [0, 1], 0 6 t1 6 t2 6 1, the functions
p1 ∈ L[0, 1] and p2 = p− p1 satisfy condition (3.2). Using Remark 2.3, we get

max
{t1,t2,p1}∈R

∫ 1

0
p1(s)qt1,t2,p(s) ds = − min

{t1,t2,p1}∈R

∫ 1

0
p1(s)qt1,t2,p(s) ds

= max
06t1<t261

∫ 1

0

(
p+(t)[qt1,t2,p(t)]+ + p−(t)[qt1,t2,p(t)]−

)
dt > 0.

Moreover, {∫ 1

0
p1(s)qt1,t2,p(s) ds : {t1, t2, p1} ∈ R

}
=

[
− 1

λ∗(p+, p−)
,

1
λ∗(p+, p−)

]
,

where λ∗(p+, p−) is defined by (2.5).
So, if condition (2.1) with λ∗(p+, p−) from equality (2.5) is fulfilled, then ∆(t1, t2, p1) 6= 0

for all t1, t2 ∈ [0, 1] and for all p1 ∈ L[0, 1], satisfying (3.2). Thus, neither problem (3.6) and,
therefore, problem (3.5) have no non-zero solutions.

This contradiction proves that condition (2.1) with λ∗(p+, p−) from equality (2.5) implies
the unique solvability of problem (1.1).

If condition (2.1) (with λ∗(p+, p−) from equality (2.5)) does not hold, then there exist t1,
t2 ∈ [0, 1] and p1 ∈ L[0, 1], p2 = p− p1 such that ∆(t1, t2, p1) = 0, therefore, problem (3.6) has
a non-zero solution. Thus, periodic problem (1.1) is not uniquely solvable for the operator T

(Tx)(t) = p1(t)x(t1) + p2(t)x(t2), t ∈ [0, 1].

It is clear, that T ∈ S(p+, p−). Therefore, Theorem 2.2 is proved. For arbitrary P 6= 0, using
equalities (2.5) (for P > 0) and (2.6) (for P < 0), we can obtain that Theorem 2.1 is valid with
λ∗(p+, p−) defined by the equality

λ∗(p+, p−) =
1

max
06t1<t261

∫ 1
0

(
p+(t)[qt1,t2,p/P (t)]+ + p−(t)[qt1,t2,p/P (t)]−

)
dt

. (3.11)

For proving Theorems 2.7 and 2.10, we need Lemmas 3.4, 3.7 and 3.8.
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Lemma 3.4. Suppose p+ ∈ L[0, 1] is non-negative, T ∈ S(p+, 0), and the boundary value problem{
ẍ(t) = λ(Tx)(t) for a.a. t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),
(3.12)

has a non-trivial solution y such that

min
t∈[0,1]

y(t) = y(τ1), max
t∈[0,1]

y(t) = y(τ2), τ1 < τ2. (3.13)

Then there exists a measurable function

g : [0, 1]→ [τ1, τ2] (3.14)

such that {
ÿ(t) = λp+(t)y(g(t)) for a.a. t ∈ [0, 1],

y(0) = y(1), ẏ(0) = ẏ(1).
(3.15)

Proof. By Lemma 3.2, the solution y satisfies the equality

ÿ(t) = λ
(

p1(t)y(τ1) + (p+(t)− p1(t))y(τ2)
)

for a.a. t ∈ [0, 1],

where p1 ∈ L[0, 1], 0 6 p1(t) 6 p(t), t ∈ [0, 1]. Therefore,

ÿ(t) = λp+(t)ỹ(t) for a.a. t ∈ [0, 1],

where ỹ is measurable and ỹ(t) ∈ [y(τ1), y(τ2)] for a.a. t ∈ [0, 1]. From this, it follows that
there exists a measurable g satisfying the conditions of the lemma.

Remark 3.5. It is obvious that if y is a solution of (3.12), then −y is also a solution. Therefore,
if (3.12) has a non-trivial solution, then this problem has a solution satisfying (3.13).

Remark 3.6. It is clear that we can replace condition (3.14) in Lemma 3.4 by the condition

g : [0, 1]→ [0, τ1] ∪ [τ2, 1].

Define the sets

R1 ≡ {(t1, t2) : 0 6 t1 6 1/2 6 t2 6 1, t1 + t2 > 1},
R2 ≡ {(t1, t2) : 1/4 6 t1 6 1/2, 3/4 6 t2 6 1, t2 − t1 6 1/2}.

Lemma 3.7. Suppose p+ ∈ L[0, 1] satisfies (2.8), T ∈ S(p+, 0), and homogeneous boundary value
problem (3.12) has a non-trivial solution. Then there exists a measurable function h : [0, 1] → [0, 1]
such that problem {

ẍ(t) = λp+(t)x(h(t)) for a.a. t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1).
(3.16)

has a non-zero solution with some maximum and minimum points (t1, t2) ∈ R1.
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Proof. By Lemma 3.4 and Remark 3.5, there exists a measurable g : [0, 1] → [τ1, τ2] such that
boundary value problem (3.15) has a non-trivial solution y satisfying (3.13). Note, that under
the conditions of the lemma, a solution of (3.15) has a zero at some point t0.

Define the intervals J1 ≡ [0, 1/2], J2 ≡ [1/2, 1]. If both points τ1, τ2 belong to the same
interval, set

h(t) =


g(t), t ∈ [τ1, τ2],

g(1− t), t ∈ [1− τ2, 1− τ1],

t0, otherwise.

Then, using the equality p+(t) = p+(1− t), t ∈ [0, 1], it is easy to prove that the boundary
value problem (3.16) has the solution

x(t) =


−y(t), t ∈ [τ1, τ2],

−y(1− t), t ∈ [1− τ2, 1− τ1],

−y(τ1), t ∈ [0, τ1] ∪ [1− τ1, 1],

−y(τ2), t ∈ [τ2, 1− τ2],

with a minimum at the point 1/2 and a maximum at the point 1.
If τ1 ∈ J1, τ2 ∈ J2, set h(t) = 1− g(1− t). Using the equality p+(t) = p+(1− t), t ∈ [0, 1],

we obtain that x(t) = −y(1− t), t ∈ [0, 1], is a solution of (3.16) with the minimum point θ1 =

1− τ2 ∈ J1 and the maximum point θ2 = 1− τ1 ∈ J2. Since either τ2 + τ1 = 2− (θ1 + θ2) > 1
or θ2 + θ1 > 1, the lemma is proved.

Lemma 3.8. Let p+ ∈ L[0, 1] satisfy (2.9), T ∈ S(p+, 0), and the homogeneous boundary value prob-
lem (3.12) have a non-trivial solution. Then there exists a measurable function h : [0, 1] → [0, 1] such
that problem (3.16) has a non-zero solution with some maximum and minimum points (t1, t2) ∈ R2.

Proof. By Lemmas 3.4 and Remark 3.5, there exists a measurable g : [0, 1] → [τ1, τ2] such that
the boundary value problem (3.15) has a non-trivial solution y with a minimum point τ1 and
a maximum point τ2 > τ1. Under the conditions of Lemma 3.8 a solution of (3.15) has a zero
at some point t0.

Define the intervals I1 ≡ [0, 1/4], I2 ≡ [1/4, 1/2], I3 ≡ [1/2, 3/4], I4 ≡ [3/4, 1].
By Lemma 3.7, we have to consider only three cases.
If τ1 ∈ I2, τ2 ∈ I3, we set

h(t) =


g(t), t ∈ [τ1, τ2],

g(3/2− t), t ∈ [3/2− τ2, 1],

g(1/2− t), t ∈ [0, 1/2− τ1],

t0, otherwise.

Using condition (2.9), it is easy to prove that the boundary value problem (3.16) has the
solution

x(t) =



y(t), t ∈ [τ1, τ2],

y(3/2− t), t ∈ [3/2− τ2, 1],

y(1/2− t), t ∈ [0, 1/2− τ1],

y(τ1), t ∈ [1/2− τ1, τ1],

y(τ2), t ∈ [τ2, 3/2− τ2],
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with a minimum at the point 1/4 and a maximum at the point 3/4.
If τ1 ∈ I2, τ2 ∈ I4, set

h(t) =

{
g(t + 1/2), t ∈ [0, 1/2),

g(t− 1/2), t ∈ [1/2, 1].

Then, using the equality p+(t) = p+(t + 1/2), t ∈ [0, 1/2], it is easy to prove that

x(t) =

{
−y(t + 1/2), t ∈ [0, 1/2),

−y(t− 1/2), t ∈ [1/2, 1],

is a solution of problem (3.16) with the minimum point at θ1 = τ2 − 1/2 and the maximum
point at θ2 = 1/2 + τ1. Since, either τ2 − τ1 6 1/2 or θ2 − θ1 = 1− (τ2 − τ1) 6 1/2, we obtain
that at least one of the pairs (τ1, τ2) or (θ1, θ2) belongs to the set R2.

If τ1 ∈ I1, τ2 ∈ I4, we use Remark 3.6. Set

h(t) =


g(t), t ∈ [0, τ1] ∪ [τ2, 1],

g(3/2− t), t ∈ [1/2, 3/2− τ2],

g(1/2− t), t ∈ [1/2− τ1, 1/2],

t0, otherwise.

In this case, using condition (2.9), we can also show that the boundary value problem (3.16)
has the solution

x(t) =



y(t), t ∈ [0, τ1] ∪ [τ2, 1],

y(3/2− t), t ∈ [1/2, 3/2− τ2],

y(1/2− t), t ∈ [1/2− τ1, 1/2],

y(τ1), t ∈ [τ1, 1/2− τ1],

y(τ2), t ∈ [3/2− τ2, τ2],

with a minimum at the point 1/4 and a maximum at the point 3/4.
So, in all cases, there exists a measurable function h with the required properties.

Proof of Theorems 2.7 and 2.10. Define λ∗1(p+, 0) and λ∗2(p+, 0) by the equalities

λ∗i (p+, 0) ≡ 1

max
(t1,t2)∈Ri

∫ 1
0 p+(t)q+t1,t2,p(t) dt

, i = 1, 2.

We will show that if p+ satisfies conditions (2.8), then

λ∗(p+, 0) = λ∗i (p+, 0) (3.17)

for i = 1, and if p+ satisfies conditions (2.9), then equality (3.17) holds for i = 2.
For every i = 1, 2, repeating the proof of Theorems 2.1 and 2.2 for the set of pairs (t1, t2)

Ri instead of the set of all pairs {(t1, t2) : 0 6 t1 6 t2 6 1}, we obtain that

|λ| > λ∗i (p+, 0)

if and only if there exists an operator T ∈ S(p+, 0) such that problem (3.5) has a non-zero
solution y with (τ1, τ2) ∈ Ri, where τ1, τ2 are defined by condition (3.13). From this, the
definition of λ∗(p+, 0), and Lemma 3.7, it follows that if p+ satisfies (2.8), then

λ∗1(p+, 0) = λ∗(p+, 0),
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and from Lemma 3.8 it follows that

λ∗2(p+, 0) = λ∗(p+, 0)

if p+ satisfies (2.9).
It proves Theorem 2.7, but for proving Theorem 2.10 we have to compute λ∗2(p+, 0).
Let p+ satisfy (2.9) and

∫ 1
0 p+(t) dt = 1. For 0 6 t1 6 t2 6 1, we have

It1,t2 ≡
∫ 1

0
p+(s) qt1,t2(s) ds = g(θ2)− g(θ1) + 1/8− θ2/2,

where qt1,t2(s) is defined by (2.3),

g(t) ≡
∫ t

0
(t− s)p+(s) ds, t ∈ [0, 1/4], (3.18)

θ1 ≡ 1/2− t1, θ2 ≡ 1− t2.

We introduce some notation: the points t3 ∈ [0, t1] and t4 ∈ [t1, t2] satisfy the equalities

qt1,t2(t3) = qt1,t2(t4) = It1,t2 ,

and
θ3 = t3, θ4 = t4 − 1/2.

Let

M(θ1, θ2) ≡
∫ 1

0
p+(s) [qt1,t2(s)− It1,t2 ]

+ ds,

where t1 = 1/2− θ1, t2 = 1− θ2. Then

M(θ1, θ2) =
θ1 + θ2

8
+ g(θ3)

(
1
2
− (θ2 − θ1)

)
+ g(θ4)

(
1
2
+ (θ2 − θ1)

)
− g(θ1) + g(θ2)

2
, (3.19)

where 0 6 θ1 6 θ2 6 1 and

θ3 = θ3(θ1, θ2) =
1/8− θ2/2 + g(θ2)− g(θ1)

1
2 − (θ2 − θ1)

, (3.20)

θ4 = θ4(θ1, θ2) =
1/8− θ1/2− (g(θ2)− g(θ2))

1
2 + θ2 − θ1

. (3.21)

Thus we have

λ∗(p+, 0) =
1

max
(t1,t2)∈R2

∫ 1
0 p+(s)[qt1,t2,p+(s)]+ ds

=
1

max
06θ16θ261/4

M(θ1, θ2)
. (3.22)

We will show that
max

06θ16θ261/4
M(θ1, θ2) = max

06θ61/4
M(θ, θ). (3.23)

It will prove Theorem 2.10, because

M(θ, θ) =
θ

4
+ g(1/4− θ)− g(θ), θ ∈ [0, 1/4].
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To prove (3.23), we will check the inequality

(M(θ1, θ1) + M(θ2, θ2))/2 > M(θ1, θ2) if 0 6 θ1 6 θ2 6 1/4. (3.24)

Indeed, from (3.24), it follows that

M(θ1, θ2) 6 max{M(θ1, θ1), M(θ2, θ2)} 6 max
θ∈[0,1/4]

M(θ, θ).

Therefore, (3.23) holds.
Let θ0 ≡ 1/4− (θ1 + θ2)/2. We have

(θ3 − θ0)

(
1
2
− (θ2 − θ1)

)
= g(θ2)− g(θ1)−

θ2
2 − θ2

1
2

= (θ0 − θ4)

(
1
2
+ (θ2 − θ1)

)
. (3.25)

Therefore, the points θ3, θ4 are on opposite sides of the point θ0.
Using (3.25), one can prove that

M(θ1, θ2) = g(θ0) +
θ1 + θ2

8
− g(θ1) + g(θ2)

2
+
∫ θ3

θ0

(θ3 − s)p+(s) ds
(

1
2
− (θ2 − θ1)

)
+
∫ θ4

θ0

(θ4 − s)p+(s) ds
(

1
2
+ (θ2 − θ1)

)
.

It is clear that inequality (3.24) is equivalent to inequality

g(1/4− θ1) + g(1/4− θ2)

2
− g(θ0) >

∫ θ3

θ0

(θ3 − s)p+(s) ds
(

1
2
− (θ2 − θ1)

)
+
∫ θ4

θ0

(θ4 − s)p+(s) ds
(

1
2
+ (θ2 − θ1)

)
.

(3.26)

Using the integral representation (3.18) for the function g, we can rewrite the latter inequality
in the form ∫ 1/4−θ1

1/4−θ2

A(s)p+(s) ds >
∫ τ4

τ3

B(s)p+(s) ds, (3.27)

where ∫ 1/4−θ1

1/4−θ2

A(s)p+(s) ds =
g(1/4− θ1) + g(1/4− θ2)

2
− g(θ0),∫ τ4

τ3

B(s)p+(s) ds =
∫ θ3

θ0

(θ3 − s)p+(s) ds
(

1
2
− (θ2 − θ1)

)
+
∫ θ4

θ0

(θ4 − s)p+(s) ds
(

1
2
+ (θ2 − θ1)

)
,

τ3 = min{θ3, θ4}, τ4 = max{θ3, θ4}, and the continuous function A(s) is linear on the intervals
[1/4− θ2, θ0], [θ0, 1/4− θ1] and is equal to zero at the ends of the interval [1/4− θ2, 1/4− θ1]:
the equalities A(1/4− θ2) = A(1/4− θ1) = 0 hold; the continuous function B(s) is linear on
the intervals [τ3, θ0], [θ0, τ4] and is equal to zero at the ends of the interval [τ3, τ4]: B(τ3) =

B(τ4) = 0. Moreover, we have

A(θ0) = (θ2 − θ1)/4, B(θ0) =

∣∣∣∣g(θ2)− g(θ1)−
θ2

2 − θ2
1

2

∣∣∣∣ .
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If we prove that A(θ0) > B(θ0) and

θ3 > 1/4− θ2, θ4 > 1/4− θ1, (3.28)

then inequalities (3.26) and (3.27) are fulfilled and the theorem is proved.
We have

0 6 g(θ2)− g(θ1) =
∫ θ2

0
(θ2 − s)p+(s) ds−

∫ θ1

0
(θ1 − s)p+(s) ds

= (θ2 − θ1)
∫ θ1

0
p+(s) ds + (θ2 − θ1)

∫ θ2

θ1

(θ2 − s)p+(s) ds

6 (θ2 − θ1)
∫ θ2

0
p+(s) ds 6

θ2 − θ1

4
.

(3.29)

Hence,

− θ2 − θ1

4
6 − θ2

2 − θ2
1

2
6 g(θ2)− g(θ1)−

θ2
2 − θ2

1
2

6
θ2 − θ1

4
for all 0 6 θ1 6 θ2 6 1/4, therefore, A(θ0) > B(θ0).

Using equalities (3.20), (3.21) and inequality (3.29), it is easy to check that conditions (3.28)
are also fulfilled.

Proof of Theorem 2.12. If p+ satisfies condition (2.9), then p+(t) = p+(1/4− t), t ∈ [0, 1/4], and∫ 1/8
0 p+(s) ds = 1/8. Therefore, for M(θ, θ) defined by (3.19), we get

M(θ, θ) = θ/4−
∫ 1/4

0
(1/4− s)p+(s) ds =

∫ 1/4

0
sp+(s) ds

=
∫ 1/8

0
s p+(s) ds +

∫ 1/8

0
(1/4− s) p+(s) ds =

1
4

∫ 1/8

0
p+(s) ds =

1
32

.

From equalities (3.22) and (3.23) it follows the theorem.

Proof of Theorem 2.13. If P 6= 0, the assertion follows from Theorems 2.1 and 2.2. One can use
the condition

1 < λ∗(p+, p−)

for the unique solvability of boundary value problem (2.12), where λ∗(p+, p−) is defined by
(3.11).

If P = 0, define the operator T ∈ S(p+, p−) by the equality

(Tx)(t) = p+(t)x(0)− p−(t)x(0) for a.a. t ∈ [0, 1].

It follows from Lemma 3.1 that boundary value problem (2.12) is not uniquely solvable, since
the homogeneous problem (3.1) has a non-trivial solution

x(t) = 1 +
∫ 1

0
sp(s) ds t +

∫ t

0
(t− s)p(s) ds, t ∈ [0, 1].
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