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Abstract. We develop a generalized approximation method (GAM) to obtain solution

of a steady state one-dimensional nonlinear convective-radiative-conduction equation. The

GAM generates a bounded monotone sequence of solutions of linear problems. The sequence

of approximants converges monotonically and rapidly to a solution of the original problem.

We present some numerical simulation to illustrate and confirm our results.
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1. Introduction

Most metallic materials have variable thermal properties, usually depending on tempera-

ture. The governing equations describing the temperature distribution along such surfaces

are nonlinear. In consequence, exact analytic solutions of such nonlinear problems are not

available in general. Scientists use some approximation techniques for example, perturbation

method [7], [25], homotopy perturbation method [1], [3], [5], [12], [13], [14] , [24], to approx-

imate solutions of the nonlinear problems. However, these methods have the drawback that

the series solutions may not always converge to a solution of the problem and, in some cases,

produce inaccurate and meaningless results.

In this paper, we develop the generalized approximation method (GAM), [2], [6], [15], [16],

[17], to approximate solutions of nonlinear problems. This method produces excellent result

and is independent of the choice of a small parameter. It generates a bounded monotone

sequence of solutions of linear problems which converges uniformly and rapidly to a solution
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of the original problem. Hence it can be applied to a much larger class of nonlinear boundary

value problems. Moreover, we show that our results are consistent and accurately represent

the actual solution of the problem for any value of the parameter. For the numerical simula-

tion, we use the computer programme, Mathematica. For computational purposes, the linear

iteration is important. The generalized approximation method which uses linear problems

is a particular version of the well studied quasilinearization method [8, 9, 10, 18, 19, 20, 21].

At each iteration, we are dealing with linear problems and obtain a monotone sequence of

solutions of linear problems which converges to a solution of the original nonlinear problem.

2. HEAT TRANSFER PROBLEM: INTEGRAL FORMULATION

Consider a straight fin of length L made of materials with temperature dependent thermal

conductivity k = k(T ). The fin is attached to a base surface of temperature Tb extended

into a fluid of temperature Ta with Tb > Ta and its tip is insolated. Assume that the thermal

conductivity k vary linearly with temperature, that is,

(2.1) k(T ) = ka[1 + η(T − Ta)],

where η is constant and ka is the thermal conductivity at temperature Ta. Choose the tip

of the fin as origin x = 0 and the base of the fin at position x = L. The fin surface transfers

heat through convection, conduction and radiation. Assume that the emissivity coefficient

of the surface Eg is constant and the convective heat transfer coefficient h depends on the

temperature. The convective heat transfer coefficient h usually varies as a power law of the

type,

(2.2) h = h(T ) = hb(
T − Ta

Tb − Ta

)n,

see [23], where hb is the heat transfer coefficient at the base temperature and the number n

depends on the heat transfer mode. For example, for laminar film boiling or condensation

n = −1/4, for laminar natural convection n = 1/4, for turbulent natural convection n = 1/3,

for nucleate boiling n = 2 and for radiation n = 3. Here, we restrict our study to the case

n > 1 and T ≥ Ta. Our results are also valid for the case n ≤ 1 but with possibly different

upper and lower solutions.
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The energy equation describing one dimensional steady state temperature distribution is

given by

d

dx

[

k(T )
dT

dx

]

−
ph

A
(T − Ta) −

Egσ

A
(T − Ta)

4 = 0, x ∈ [0, L],

dT

dx
(0) = 0, T (L) = Tb,

(2.3)

see [11] and [22], where A is the cross-sectional area and p is a parameter of the fin. In view

of (2.1) and (2.2), the boundary value problem (2.3) can be rewritten as follows

d

dx

[

(1 + η(T − Ta))
dT

dx

]

−
phb

Aka

(T − Ta)
n+1

(Tb − Ta)n
−

Egσ

Aka

(T − Ta)
4 = 0, x ∈ [0, L],

dT

dx
(0) = 0, T (L) = Tb,

Introducing the dimensionless quantities θ = T−Ta

Tb−Ta
, y = x

L
, we obtain

d

dy

[

(1 + ǫ1θ)
dθ

dy

]

− Nθn+1 − ǫ2θ
4 = 0, y ∈ [0, 1],

dθ

dy
(0) = 0, θ(1) = 1,

(2.4)

where, ǫ1 = η(Tb − Ta), N = hbpL2

kaA
and ǫ2 = L2Egσ(Tb−Ta)3

kaA
. From the definition of θ, we have

θ ≥ 0. From the differential equation in (2.4), we obtain d
dy

[(1 + ǫ1θ)
dθ
dy

] ≥ 0, which implies

that the function (1+ ǫ1θ)
dθ
dy

in nondecreasing on [0, 1]. Hence using the boundary condition

at 0, it follows that dθ
dy

≥ 0, that is, the function θ is monotonically increasing on [0, 1].

Hence, 0 ≤ θ(y) ≤ θ(1) = 1, y ∈ [0, 1] and these provide bounds for the possible solutions

of the BVP (2.4). Moreover, from (2.4), we obtain d2θ
dy2 ≥ −

ǫ1( dθ
dy

)2

1+ǫ1θ
, which implies that the

function dθ
dy

may not be monotone on [0, 1].

Now, for simplicity, we write the problem (2.4) as follows

−
d2θ

dy2
=

ǫ1(
dθ
dy

)2 − Nθn+1 − ǫ2θ
4

(1 + ǫ1θ)
, y ∈ [0, 1] = I,

θ′(0) = 0, θ(1) = 1,

(2.5)

which can be written as an equivalent integral equation

θ(y) = 1 +

∫ 1

0

G(y, s)
[
ǫ1(

dθ
dy

)2 − Nθn+1 − ǫ2θ
4

(1 + ǫ1θ)
]ds = 1 +

∫ 1

0

G(y, s)f(θ, θ′),(2.6)
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where f(θ, θ′) =
ǫ1(

dθ
dy

)2−Nθn+1−ǫ2θ4

(1+ǫ1θ)
and

G(y, s) =







1 − s, 0 ≤ y < s ≤ 1,

1 − y, 0 ≤ s < y ≤ 1,

is the Green’s function. Clearly, G(y, s) > 0 on (0, 1) × (0, 1).

Recall the concept of lower and upper solutions corresponding to the BVP (2.5).

Definition 2.1. A function α ∈ C1(I) is called a lower solution of the BVP (2.5), if it

satisfies the following inequalities,

−α′′(y) ≤ f(α(y), α′(y)), y ∈ (0, 1)

α′(0) ≥ 0, α(1) ≤ 1.

An upper solution β ∈ C1(I) of the BVP (2.5) is defined similarly by reversing the inequal-

ities.

For example, α = 0 and β = 1 are lower and upper solutions of the BVP (2.5) respectively

as they satisfy the inequalities:

α′′(y) + f(α, α′) = 0, y ∈ I, α′(0) = 0, α(1) < 1

β ′′(y) + f(β, β ′) = −
(N + ǫ2)

1 + ǫ1
< 0, y ∈ I, β ′(0) = 0, β(1) = 1.

For broad variety of nonlinear boundary value problems, it is possible to find a solution

between the lower and the upper solutions. To give an estimate of the derivative u′ of a

possible solution, we recall the concept of Nagumo function.

Definition 2.2. A continuous function ω : (0,∞) → (0,∞) is called a Nagumo function if
∫ ∞

λ

sds

ω(s)
= ∞,

for λ = max{|α(0) − β(1)|, |α(1) − β(0)|}. We say that f ∈ C[R × R] satisfies a Nagumo

condition relative to α, β if for y ∈ [min α, max β], there exists a Nagumo function ω such

that |f(y, y′)| ≤ ω(|y′|).

For θ ∈ [0, 1] = [min α, max β], we have

|f(θ, θ′)| ≤ ǫ1|θ
′|2 + N + ǫ2 = ω(|θ′|)

and
∫ ∞

1

sds

ω(s)
=

∫ ∞

1

sds

ǫ1s2 + N + ǫ2

= ∞,
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which implies that f satisfies a Nagumo condition with ω(s) = ǫ1s
2 + N + ǫ2 as a Nagumo

function. Hence by Theorem 1.4.1 of [4] (page 14) , there exists a constant C > λ such that

any solution θ of the BVP (2.4) which satisfies α ≤ θ ≤ β on I, must satisfies |θ′| ≤ C on I.

Using the relation
∫ C

1
sds
ω(s)

≥ max β − min α = 1, we obtain C ≥ [e2ǫ1 + (e2ǫ1 − 1)N+ǫ2
ǫ1

]
1

2 .

In particular, we may choose C = [e2ǫ1 + (e2ǫ1 − 1)N+ǫ2
ǫ1

]
1

2 . Hence, any solution θ of the BVP

(2.4) such that 0 ≤ θ ≤ 1 satisfies |θ′| ≤ C and this provide estimate for the derivative of a

solution θ.

The following result is known [4] (Theorem 1.5.1, Page 31).

Theorem 2.3. Assume that α, β ∈ C1(I) are lower and upper solutions of the BVP (2.4)

such that α ≤ β on I. Assume that f : R × R → (0,∞) is continuous and satisfies a

Nagumo’s condition on I relative to α, β. Then the BVP (2.4) has a solution θ ∈ C1(I)

such that α ≤ θ ≤ β and |θ′| ≤ C on I, where C depends only on α, β and h.

We note that the BVP (2.4) satisfies the conditions of Theorem 2.3 with α = 0 and β = 1

as lower and upper solutions.

3. GENERALIZED APPROXIMATION METHOD (GAM)

Notice that fθ(θ, θ
′) = − (N(n+1)nθn+4ǫ2θ3+Nnǫ1θn+1+3ǫ1ǫ2θ4+ǫ1θ′2)

(1+ǫ1θ)2
< 0, fθ′(θ, θ

′) = 2ǫ1θ′

(1+ǫ1θ)
,

fθθ(θ, θ
′) =

2ǫ1(N
2 + ǫ2

1θ
′2) − 2(6 + 8ǫ1θ + 3ǫ2

1θ
2)ǫ2θ

2

(1 + ǫ1θ)3
,

fθ′θ′(θ, θ
′) =

2ǫ1

1 + ǫ1θ
and fθθ′(θ, θ

′) =
−2ǫ2

1θ
′

(1 + ǫ1θ)2
.

(3.1)

Hence, the quadratic form

vTH(f)v = (θ − z)2fθθ(z, z
′) + 2(θ − z)(θ′ − z′)fθθ′(z, z

′) + (θ′ − z′)2fθ′θ′(z, z
′)

=
(

(θ − z)

√

2ǫ3z′2

(1 + ǫz)3
− (θ′ − z′)

√

2ǫ1

(1 + ǫ1z)

)2

+
(θ − z)2

(1 + ǫ1z)3
[Nǫ1(nǫ1(n − ǫ1) + 2)zn]

−
(θ − z)2

(1 + ǫ1z)3
R(z),

(3.2)

where R(z) = [2ǫ2z
2(6+8ǫ1z+3ǫ2

1z
2)+(n(n+1)+2n2z)Nzn−1], H(f) =

(

fθθ fθθ′

fθθ′ fθ′θ′

)

is the

Hessian matrix and v =

(

θ − z

θ′ − z′

)

. If the quadratic form vTH(f)v � 0 on [min α, maxβ]×
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[−C, C], then we need to choose an auxiliary function φ such that vT H(F )v ≥ 0 on

[min α, max β] × [−C, C], where F = f + φ. In our case, we choose φ(θ) = m(z)
2

θ2, where

m(z) = 2ǫ2z
2(6 + 8ǫ1z + 3ǫ2

1z
2) + n(3n + 1)N ≥ R(z). Hence,

(3.3) vT H(F )v ≥ 0, on [min α, max β] × [−C, C],

which implies that

F (θ, θ′) ≥ F (z, z′) + Fθ(z, z
′)(θ − z) + Fθ′(z, z

′)(θ′ − z′),(3.4)

where z, θ ∈ [min α, max β] = [0, 1], z′, θ′ ∈ [−C, C], which further implies that

f(θ, θ′) ≥ f(z, z′) + Fθ(z, z
′)(θ − z) + Fθ′(z, z

′)(θ′ − z′) − (φ(θ) − φ(z)).(3.5)

Using the relation φ(θ) − φ(z) = m(z)
2

(θ + z)(θ − z) ≤ m(z)(θ − z) for θ ≥ z, we obtain

f(θ, θ′) ≥ f(z, z′) + (Fθ(z, z
′) − m(z))(θ − z) + fθ′(z, z

′)(θ′ − z′), for θ ≥ z.

Now,

Fθ(z, z
′) − m(z) = −

[(N(n + 1)nzn + 4ǫ2z
3 + Nnǫ1z

n+1 + 3ǫ1ǫ2z
4 + ǫ1z

′2)

(1 + ǫ1z)2
+ (1 − z)m(z)

]

≥ −m1,

where,

m1 = max{
(N(n + 1)nzn + 4ǫ2z

3 + Nnǫ1z
n+1 + 3ǫ1ǫ2z

4 + ǫ1z
′2)

(1 + ǫ1z)2
+ (1 − z)m(z) :

z ∈ [0, 1], z′ ∈ [−C, C]}.

Hence,

f(θ, θ′) ≥ f(z, z′) − m1(θ − z) + fθ′(z, z
′)(θ′ − z′), for θ ≥ z.(3.6)

Define g : R4 → R by

g(θ, θ′; z, z′) = f(z, z′) − m1(θ − z) + fθ′(z, z
′)(θ′ − z′) = q(z) − m1θ + p(z)θ′,(3.7)

where p(z) = 2ǫ1z′

1+ǫ1z
, q(z) = m1z − ǫ1z′2+Nzn+1+ǫ2z4

1+ǫz
.

Clearly, g is continuous and satisfies the following relations

(3.8)







f(θ, θ′) ≥ g(θ, θ′; z, z′) for θ ≥ z,

f(θ, θ′) = g(θ, θ′; θ, θ′),
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where θ, z ∈ [0, 1], θ′, z′ ∈ ×[−C, C]. We note that for every θ, z ∈ [0, 1] and z′ ∈ some

compact subset of R, g satisfies a Nagumo condition relative to α, β. Hence, there exists a

constant C1 such that any solution θ of the linear BVP

−θ′′(y) = g(θ, θ′; z, z′) = q(z) − m1θ + p(z)θ′, y ∈ I,

θ′(0) = 0, θ(1) = 1,
(3.9)

with the property that α ≤ θ ≤ β on I, must satisfies |θ′| < C1 on I. We note that the

linear problem (3.9) can be solved analytically.

To develop the iterative scheme, we choose w0(y) = α(y) = 0 as an initial approximation

and consider the following linear BVP

−θ′′(y) = g(θ, θ′; w0, w
′
0) = −m1θ, y ∈ I,

θ′(0) = 0, θ(1) = 0,
(3.10)

whose solution is w1(y) =
cosh(

√
m1y)

cosh(
√

m1)
.

In general, using (3.8) and the definition of lower and upper solutions, we obtain

g(w0, w
′
0; w0, w

′
0) = f(w0, w

′
0) ≥ −w′′

0 ,

g(β, β ′; w0, w
′
0) ≤ f(β, β ′) ≤ −β ′′, on I,

which imply that w0 and β are lower and upper solutions of (3.10). Hence, by Theorem 2.3,

there exists a solution w1 of (3.10) such that w0 ≤ w1 ≤ β, |w′
1| < C1 on I. Using (3.8) and

the fact that w1 is a solution of (3.10), we obtain

(3.11) −w′′
1(y) = g(w1, w

′
1; w0, w

′
0) ≤ f(w1, w

′
1)

which implies that w1 is a lower solution of (2.4). Similarly, we can show that w1 and β are

lower and upper solutions of

−θ′′(y) = g(θ, θ′; w1, w
′
1), y ∈ I,

θ′(0) = 0, θ(1) = 1.
(3.12)

Hence, there exists a solution w2 of (3.12) such that w1 ≤ w2 ≤ β, |w′
2| < C1 on I.

Continuing this process we obtain a monotone sequence {wn} of solutions satisfying

α = w0 ≤ w1 ≤ w2 ≤ w3 ≤ ... ≤ wn−1 ≤ wn ≤ β, |w′
n| < C1 on I,
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where wn is a solution of the linear problem

−θ′′(y) = g(θ, θ′; wn−1, w
′
n−1), y ∈ I

θ′(0) = 0, θ(1) = 1

and is given by

(3.13) wn(y) = 1 +

∫ 1

0

G(y, s)g(wn(s), w
′
n(s); wn−1(s), w

′
n−1(s))ds, y ∈ I.

The sequence of functions wn is is uniformly bounded and equicontinuous. The monotonicity

and uniform boundedness of the sequence {wn} implies the existence of a pointwise limit w

on I. From the boundary conditions, we have

0 = w′
n(0) → w′(0) and 1 = wn(1) → w(1).

Hence w satisfy the boundary conditions. Moreover, by the dominated convergence theorem,

for any y ∈ I,
∫ 1

0

G(y, s)g(wn(s), w
′
n(s); wn−1(s), w

′
n−1(s))ds →

∫ 1

0

G(y, s)f(w(s), w′(s))ds.

Passing to the limit as n → ∞, we obtain

w(y) = 1 +

∫ 1

0

G(y, s)f(w(s), w′(s))ds, y ∈ I,

that is, w is a solution of (2.4).

Hence, the sequence of approximants {wn} converges to the unique solution of the non-

linear BVP (2.4). Moreover, the convergence is quadratic, see [16], [17]. The fact that the

sequence converges rapidly to the solution of the problem can also be seen from the numerical

experiment.

4. NUMERICAL RESULTS FOR GAM, HPM and VIM

Starting with the initial approximation w0 = 0 and set N = 0.5, n = 1.1, results obtained

via GAM for (ǫ1 = 0.2ǫ2 = 0.3), ǫ1 = 0.5ǫ2 = 0.5 and ǫ1 = 1ǫ2 = 1 are shown in Tables

(Table 1, Table 2 Table 3 respectively) and also graphically in Fig.1, Fig.2 and Fig.3. Form

the tables and graphs, it is clear that with only few iterations it is possible to obtain good

approximations of the exact solution. Moreover, the convergence is very fast. Even for larger

values of N, n, the GAM produces excellent results and fast convergence, see for example,

Fig.5, Fig 6 and Fig.7. In fact, the GAM accurately approximate the actual solution of the

problem independent of the choice of the parameters ǫ1 and ǫ2 involved, Fig. 4 and Fig. 8.
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y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w1 0.415591 0.430306 0.455217 0.490916 0.538247 0.598333 0.672598 0.762801 0.87108 1

w2 0.678627 0.68872 0.705478 0.728805 0.758576 0.794641 0.836853 0.885104 0.939402 1

w3 0.771179 0.777893 0.789096 0.804813 0.82509 0.850008 0.879701 0.914372 0.954327 1

w4 0.792837 0.798656 0.808407 0.822175 0.840082 0.862301 0.88906 0.920655 0.957472 1

w5 0.797117 0.802753 0.81221 0.825584 0.843017 0.864699 0.890878 0.921871 0.958078 1

w6 0.797921 0.803523 0.812924 0.826224 0.843567 0.865148 0.891218 0.922098 0.958191 1

w7 0.798071 0.803667 0.813057 0.826343 0.84367 0.865231 0.891281 0.92214 0.958212 1

Table 1; GAM for N = 0.5, n = 1.1, ǫ1 = 0.2, ǫ2 = 0.3

y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w1 0.415591 0.430306 0.455217 0.490916 0.538247 0.598333 0.672598 0.762801 0.87108 1

w1 0.633881 0.645693 0.665265 0.692429 0.726952 0.768547 0.816897 0.871696 0.932727 1

w1 0.633881 0.645693 0.665265 0.692429 0.726952 0.768547 0.816897 0.871696 0.932727 1

w1 0.781477 0.787865 0.798528 0.8135 0.832833 0.856616 0.884984 0.918133 0.956343 1

w1 0.795044 0.800863 0.810606 0.824344 0.842181 0.864264 0.890789 0.922014 0.958274 1

w1 0.799332 0.80497 0.814421 0.827767 0.845129 0.866673 0.892615 0.923233 0.95888 1

w1 0.800653 0.806235 0.815595 0.82882 0.846036 0.867414 0.893176 0.923608 0.959066 1

Table 2; GAM for N = 0.5, n = 1.1, ǫ1 = 0.5, ǫ2 = 0.5

y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w1 0.415591 0.430306 0.455217 0.490916 0.538247 0.598333 0.672598 0.762801 0.87108 1

w1 0.563954 0.578328 0.602123 0.635093 0.676886 0.727048 0.785031 0.850229 0.922041 1

w1 0.665224 0.676386 0.694797 0.720182 0.7522 0.790471 0.834626 0.884357 0.939478 1

w1 0.724421 0.733153 0.747614 0.767676 0.793195 0.82403 0.860085 0.901337 0.947887 1

w1 0.756648 0.763985 0.776192 0.793248 0.81514 0.841885 0.873548 0.910269 0.952292 1

w1 0.773581 0.78018 0.791197 0.806666 0.826649 0.851243 0.880601 0.914947 0.9546 1

w1 0.782336 0.788554 0.798958 0.813609 0.832606 0.85609 0.884256 0.917373 0.955797 1

w1 0.786807 0.792832 0.802923 0.817158 0.835652 0.858569 0.886127 0.918615 0.956409 1

Table 3; GAM for N = 0.5, n = 1.1, ǫ1 = 1, ǫ2 = 1

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1
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Fig.1, [N = 0.5, n = 1.1, ], results via GAM for ǫ1 = 0.2, ǫ2 = 0.3

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Fig.2, [N = 0.5, n = 1.1], results via GAM for ǫ1 = 0.5, ǫ2 = 0.5

0 0.2 0.4 0.6 0.8 1
0.4
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0.9

1

Fig.3, [N = 0.5, n = 1.1], results via GAM for ǫ1 = 1, ǫ2 = 1

0 0.2 0.4 0.6 0.8 1

0.8

0.85

0.9

0.95

1

Fig.4, N = 0.5, n = 1.1],GAM for ǫ1 = 0.2, ǫ2 = 0.3 (Red), ǫ1 = 0.5, ǫ2 = 0.5 (Green) and

ǫ1 = 1, ǫ2 = 1 (Blue)
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Fig.5, [N = 1, n = 2], results via GAM for ǫ1 = 0.2, ǫ2 = 0.3
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1

Fig.6, [N = 1, n = 2], results via GAM for ǫ1 = 0.5, ǫ2 = 0.5
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Fig.7, [N = 1, n = 2], results via GAM for ǫ1 = 1, ǫ2 = 1
EJQTDE, 2009 No. 52, p. 11



0 0.2 0.4 0.6 0.8 1

0.75

0.8

0.85

0.9

0.95

1

Fig.8, N = 1, n = 2],GAM for ǫ1 = 0.2, ǫ2 = 0.3 (Red), ǫ1 = 0.5, ǫ2 = 0.5 (Green) and

ǫ1 = 1, ǫ2 = 1 (Blue)

5. Conclusion

In this paper, the GAM is developed for the heat flow problems. The GAM generates a

bounded monotone sequence of solutions of linear problems that converges monotonically and

rapidly to a solution of the original problem. It also ensure existence of solution with lower

and upper solutions as estimates for the exact solution. It does not require the existence of

small or large parameter as most of the perturbation type methods do. The results obtained

via GAM are accurate for any value of the parameters involved. Hence it is a powerful tool

for solutions of nonlinear problems.
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