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1 Introduction

Recently, in [7] were studied the problems of Ψ−boundedness and Ψ−stability of
the solutions of the corresponding Kronecker product system (3) associated with (1)
in case F(t,X) = F(t) (i.e. a linear nonhomogeneous differential system of the form
x′ = G(t)x + f(t)). But the obtained results in [7] are particular cases of our general
results stated in [3], [4]. Indeed, if in Theorems 2.1 and 2.2 ([3]), the fundamental
matrix Y is replaced with the fundamental matrix Z⊗Y of the linear system (5),
Theorems 1 and 2 ([7]) concerning Ψ−boundedness follow. Similarly, if in Theorems
3.1 and 3.3 ([4]), the fundamental matrix Y is replaced with the fundamental matrix
Z⊗Y of the linear system (5), Theorems 3 and 4 ([7]) concerning Ψ−stability follow.
In addition, in all results from [7] there are a few mistakes in connection with the
matrix Ψ.

In our paper [5] it is proved a necessary and sufficient condition so that the linear
nonhomogeneous Lyapunov matrix differential equation Z′ = A(t)Z + ZB(t) + F(t)
have at least one Ψ−bounded solution on R+ for every Lebesgue Ψ−integrable
matrix-valued function F on R+.

The purpose of present paper is to prove (necessary and) sufficient conditions for
Ψ−(uniform) stability of trivial solution of nonlinear Lyapunov matrix differential
equation

Z′ = A(t)Z + ZB(t) + F(t,Z), (1)

which can be seen as a perturbed equation of

Z′ = A(t)Z + ZB(t). (2)
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We investigate conditions on the fundamental matrices of the systems X′ =
A(t)X and Y′ = YB(t) and on the function F under which the trivial solutions of
the equations (1) and (2) are Ψ−(uniformly) stable on R+. Here, Ψ is a matrix
function whose introduction permits us obtaining a mixed asymptotic behavior for
the components of solutions.

The main tool used in this paper is the technique of Kronecker product of
matrices which has been successfully applied in various fields of matrix theory.

2 Preliminaries

In this section we present some basic definitions, notations, hypotheses and results
which are useful later on.

Let R
n be the Euclidean n - space. For x = (x1, x2, x3, ...,xn)

T ∈ R
n, let ‖x‖ =

max{|x1|, |x2|, |x3|, ..., |xn|} be the norm of x ( T denotes transpose).
Let Mm×n be the linear space of all m×n real valued matrices.
For a matrix A = (aij) ∈ Mm×n, we define the norm |A| by |A| = sup

‖x‖≤1

‖Ax‖ .

It is well-known that |A| = max
1≤i≤n

{
n
∑

j=1

|aij|}.

Def inition 1. ([1]) Let A = (aij) ∈ Mm×n and B = (bij) ∈ Mp×q. The Kronecker
product of A and B, written A⊗B, is defined to be the partitioned matrix

A ⊗ B =











a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB











Obviously, A⊗B ∈ Mmp×nq.

Lemma 1. The Kronecker product has the following properties and rules,
provided that the dimension of the matrices are such that the various expressions
exist:

1). A⊗(B⊗C) = (A⊗B)⊗C;
2). (A⊗B)T = AT⊗BT;
3). (A⊗B)·(C⊗D) = (A·C)⊗(B·D);
4). (A⊗B)−1 = A−1⊗B−1;
5). A⊗(B + C) = A⊗B + A⊗C;
6). (A + B)⊗C = A⊗C + B⊗C;

7). Ip⊗A =











A O · · · O
O A · · · O
...

...
...

...
O O · · · A











;
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8). (A(t)⊗B(t))′ = A′(t)⊗B(t) + A(t)⊗B′(t); (here, ′ denotes the derivative d
dt

).
Proof. See in [1].

Def inition 2. The application Vec : Mm×n −→ R
mn, defined by

Vec(A) = (a11,a21, · · · , am1,a12,a22, · · · , am2, · · · , a1n,a2n, · · · , amn)
T
,

where A = (aij) ∈ Mm×n, is called the vectorization operator.

Lemma 2. ([5]) The vectorization operator Vec : Mn×n −→ R
n2

, is a linear
and one-to-one operator. In addition, Vec and Vec−1 are continuous operators.

Lemma 3. A function F : R+ −→ Mn×n is a continuous (differentiable) matrix
function on R+ if and only if the function f = Vec(F) : R+ −→ R

n2

is a continuous
(differentiable) vector function on R+.

Proof. It is a simple exercise.

We recall that the vectorization operator Vec has the following properties as
concerns the calculations (see in [7]):

Lemma 4. If A, B, M ∈ Mn×n, then
1). Vec(AMB) = (BT⊗A)·Vec(M);
2). Vec(MB) = (BT⊗In)·Vec(M);
3). Vec(AM) = (In⊗A)·Vec(M);
4). Vec(AM) = (MT⊗A)·Vec(In).
Proof. It is a simple exercise.

In the systems (1) and (2) we assume that A and B are continuous n×n matrices
on R+ = [0,∞) and F : R+ × Mn×n −→ Mn×n is a continuous n×n matrix such
that F(t,On) = On (null matrix of order n×n).

By a solution of the equation (1) we mean a continuous differentiable n×n matrix
function satisfying the equation (1) for all t ≥ 0.

Let Ψi : R+ −→ (0,∞), i = 1,2,...,n, be continuous functions and

Ψ = diag [Ψ1, Ψ2, · · ·Ψn].

Def inition 3. ([4]). The trivial solution of the vector differential equation
x′ = f(t,x) (where x ∈ R

n and f is a continuous n vector function) is said to be
Ψ−stable on R+ if for every ε > 0 and every t0 ∈ R+, there exists δ = δ(ε,t0) > 0 such
that any solution x(t) of the equation which satisfies the inequality ‖ Ψ(t0)x(t0)‖
< δ, exists and satisfies the inequality ‖ Ψ(t)x(t)‖ < ε for all t ≥ t0.

The trivial solution of the vector differential equation x′ = f(t,x) is said to be
Ψ−uniformly stable on R+ if it is Ψ−stable on R+ and the above δ is independent
of t0.

Extend this definition for a matrix differential equation.
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Def inition 4. The trivial solution of the matrix differential equation
X′ = F(t,X) (where X ∈ Mn×n and F is a continuous n×n matrix function) is
said to be Ψ−stable on R+ if for every ε > 0 and every t0 ∈ R+, there exists δ =
δ(ε,t0) > 0 such that any solution X(t) of the equation which satisfies the inequality
| Ψ(t0)X(t0)| < δ, exists and satisfies the inequality | Ψ(t)X(t)| < ε for all t ≥ t0.

The trivial solution of the matrix differential equation X′ = F(t,X) is said to be
Ψ−uniformly stable on R+ if it is Ψ−stable on R+ and the above δ is independent
of t0.

The following lemmas play a vital role in the proofs of main results.
The first result is done in [7]. Because the proof is incomplete, we present it

with a complete proof.

Lemma 5. The matrix function Z(t) is a solution of (1) on the interval J ⊂
R+ if and only if the vector valued function z(t) = VecZ(t) is a solution of the
differential system

z′ =
(

In ⊗ A(t) + BT(t) ⊗ In

)

z + f(t,z) (3)

where f(t,z) = VecF(t,Z), on the same interval J.
Proof. It is similar with the proof of Lemma 7, [5].

Def inition 5. The above system (3) is called ”corresponding Kronecker prod-
uct system associated with (1)”.

Lemma 6. For every matrix function M : R+ −→ Mn×n, we have

1

n
| Ψ(t)M(t) | ≤ ‖ (In ⊗ Ψ(t))VecM(t) ‖

Rn2 ≤ | Ψ(t)M(t) | , t ≥ 0. (4)

Proof. From the proof of Lemma 2, it results that

1

n
| A | ≤ ‖ VecA ‖

Rn2 ≤ | A | ,

for every A ∈ Mn×n.

Setting A = Ψ(t)M(t) for t ≥ 0 and using Lemma 4, the inequality (4) follows
immediately.

Lemma 7. The trivial solution of the equation (1) is Ψ−(uniformly) stable on
R+ if and only if the trivial solution of the corresponding Kronecker product system
(3) is In ⊗ Ψ−(uniformly) stable on R+.

Proof. First, suppose that the trivial solution of the equation (1) is Ψ−stable
on R+. According to Definition 4, for a given ε > 0 and t0 ∈ R+, we choose δ0(ε,t0)
= 1

n
δ(ε,t0). Let z(t) be a solution of (3) such that ‖ (In ⊗ Ψ(t0))z(t0)‖Rn2 < δ0(ε,t0).

From Lemma 5 and Lemma 6, Z(t) = Vec−1z(t) is a solution on R+ of the equation
(1) such that | Ψ(t0)Z(t0)| < δ(ε,t0). It follows that | Ψ(t)Z(t)| < ε for all t ≥ t0.
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From Lemma 6, we have that ‖ (In ⊗ Ψ(t))z(t)‖
Rn2 < ε for all t ≥ t0. Thus, the

trivial solution of the system (3) is In ⊗ Ψ−stable on R+.

Suppose, conversely, that the trivial solution of the system (3) is In ⊗Ψ−stable
on R+. According to Definition 3, for a given ε > 0 and t0 ∈ R+, we choose δ0(ε,t0)
= δ( ε

n
,t0). Let Z(t) be a solution of (1) such that | Ψ(t0)Z(t0)| < δ0. From Lemma

5 and Lemma 6, z(t) = VecZ(t) is a solution on R+ of the system (3) such that
‖ (In ⊗ Ψ(t0))z(t0)‖Rn2 < δ0. It follows that ‖ (In ⊗ Ψ(t))z(t)‖

Rn2 < ε

n
for all t ≥

t0. From Lemma 6, we have that | Ψ(t)Z(t)| < ε for all t ≥ t0. Thus, the trivial
solution of the equation (1) is Ψ−stable on R+.

Since the proof of the Ψ−uniform stability is similar to the above proof, we omit
it here.

The proof is now complete.

The next result is Lemma 1 of [7]. Because the proof is incomplete, we present
it with a complete proof.

Lemma 8. Let X(t) and Y(t) be a fundamental matrices for the equations

X′ = A(t)X (5)

and
Y′ = YB(t) (6)

respectively.
Then, the matrix Z(t) = YT(t)⊗X(t) is a fundamental matrix for the system

z′ =
(

In ⊗ A(t) + BT(t) ⊗ In

)

z (7)

Proof. See Lemma 6, [5].

3 Ψ− stability of the linear Lyapunov matrix dif-

ferential equations

The purpose of this section is to study conditions for Ψ−(uniform) stability of trivial
solution of linear Lyapunov matrix differential equation (2). These conditions can
be expressed in terms of a fundamental matrices for the equations (5) and (6).

Theorem 1. Let X(t) and Y(t) be a fundamental matrices for the equations
(5) and (6) respectively. Then,

a). The trivial solution of (2) is Ψ−stable on R+ if and only if there exists a
positive constant K such that

| YT(t) ⊗ (Ψ(t)X(t)) | ≤ K, for all t ∈ R+. (8)
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b). The trivial solution of (2) is Ψ−uniformly stable on R+ if and only if there
exists a positive constant K such that

| YT(t)(YT(s))−1 ⊗ (Ψ(t)X(t)X−1(s)Ψ−1(s)) | ≤ K, for all t ≥ s ≥ 0. (9)

Proof. a). Suppose that the trivial solution of (2) is Ψ−stable on R+. From
Lemma 7, it follows that the trivial solution of (7) is In ⊗ Ψ−stable on R+. From
Theorem 3.1 ([4]), it follows that the fundamental matrix Z(t) of (7) satisfies the
condition

| (In ⊗ Ψ(t))Z(t) | ≤ K, for all t ∈ R+,

where K is a positive constant.
From Lemma 8, we replace Z(t) = YT(t)⊗X(t) as a fundamental matrix on R+

for the system (7). After computation, it follows that (8) holds.
Now, suppose that (8) holds for some K > 0 and for all t ∈ R+. From Lemma 8

and Theorem 3.1 ([4]), it follows that the trivial solution of (7) is In ⊗Ψ−stable on
R+. From Lemma 7, it follows that the trivial solution of (2) is Ψ−stable on R+.

b). Since the proof for the Ψ−uniform stability is similar to the above proof,
we omit it here.

The proof is now complete.

Remark. 1. In the same manner as in classical stability, we can speak about
Ψ−

(uniform) stability of the linear differential equation (2).
2. It is easy to see that if | Ψ(t) | and | Ψ−1(t) | are bounded on R+, then

the Ψ−(uniform) stability of the linear equation (2) is equivalent with the classical
(uniform) stability of the linear equation (2).

Remark. Theorem 1 generalizes Theorem 3.1 ([4]).
Indeed, in particular case B(t) = On, we have Y = In and then Z(t) = In⊗X(t).

On the other hand, it is easy to see that the solutions of (2) are Z(t) = X(t)C,
C being a n×n constant matrix. Now, the conditions (8) and (9) become the
conditions from Theorem 3.1 ([4]) concerning Ψ−(uniform) stability of the linear
system x′ = A(t)x, because | In⊗M | = |M|

Corollary. If the equation (5) is Ψ−(uniformly) stable on R+ and the equation
(6) is (uniformly) stable on R+, then the equation (2) is Ψ−(uniformly) stable on
R+.

Proof. It results from the above Theorem 1 and from the inequality | A⊗B |
≤ |A||B|, for all A, B ∈ Mn×n.

Sufficient conditions for the Ψ−(uniform) stability of trivial solution of the equa-
tion (2) are given by the next theorems.

Theorem 2. Let X(t) and Y(t) be a fundamental matrices for the equations
(5) and (6) respectively. Suppose that there exist a continuous function ϕ : R+
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−→ (0,∞) and the constants p ≥ 1 and M > 0 which fulfil one of the following
conditions:

(i).

∫ t

0

ϕ(s) | (YT(t)(YT(s))−1)⊗(Ψ(t)X(t)X−1(s)Ψ−1(s)) |p ds ≤ M, for all t ≥ 0,

(ii).

∫ t

0

ϕ(s) | ((YT(s))−1YT(t))⊗(X−1(s)Ψ−1(s)Ψ(t)X(t)) |p ds ≤ M,for all t ≥ 0.

Then, the trivial solution of the equation (2) is Ψ−stable on R+.
Proof. From the hypotheses, Lemma 8 and Theorem 3.3 ([4]), it follows that

the system (7) is In ⊗Ψ−stable on R+. From this and Lemma 7, it follows that the
equation (2) is Ψ−stable on R+.

Remark. 1. The function ϕ can serve to weaken the required hypotheses on
the fundamental metrices X and Y.

2. In the conditions of Theorem 2, the equation (2) can not be Ψ−uniformly
stable on R+. This is shown in the next example, adapted from J. L. Massera and
J. J. Schäffer [6].

Example. Let a(t) be a real, continuously differentiable function, equal to 1
except in the intervals Jn = [n − 2−4n,n + 2−4n], n = 1, 2,...; in Jn, a(t) lies between
1 and 4n and a(n) = 4n.

Consider the equation (2) with

A(t) =

(

−(3 + a′(t)
a(t)

) 0

0 −5

)

, B(t) =

(

4 3
−10 −7

)

.

The matrix B has the eigenvalues λ1 = −1, λ2 = −2 and the Jordan canonical

form L = diag [−1, −2]. We have BT = ULU−1, where U =

(

2 5
1 3

)

.

The fundamental matrices for the equations (5) and (6) are

X(t) =

(

e−3t

a(t)
0

0 e−5t

)

and

YT(t) = UeLtU−1 =

(

6e−t − 5e−2t 10e−2t − 10e−t

3e−t − 3e−2t 6e−2t − 5e−t

)

respectively.
Consider

Ψ(t) =

(

et 0
0 e−t

)

.

For t ≥ s ≥ 0, we have

Ψ(t)X(t)X−1(s)Ψ−1(s) =

(

a(s)
a(t)

e−2(t − s) 0

0 e−6(t − s)

)
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and

YT(t)(YT(s))−1 =

(

6e−(t − s) − 5e−2(t − s) 10e−2(t − s) − 10e−(t − s)

3e−(t − s) − 3e−2(t − s) 6e−2(t − s) − 5e−(t − s)

)

.

It follows that

| (YT(t)(YT(s))−1) ⊗ (Ψ(t)X(t)X−1(s)Ψ−1(s)) | ≤

≤ 31max

{

a(s)

a(t)
e−3(t − s), e−7(t − s)

}

, t ≥ s ≥ 0,

and then

∫ t

0

| (YT(t)(YT(s))−1) ⊗ (Ψ(t)X(t)X−1(s)Ψ−1(s)) | ds ≤ 31, for all t ≥ 0.

Thus, the condition (i) of Theorem 2 is satisfied with ϕ = 1, p = 1, M = 31.
It follows that the equation (2) is Ψ−stable on R+.
On the other hand, for s = n, t = n + 2−4n we have

| (YT(t)(YT(s))−1) ⊗ (Ψ(t)X(t)X−1(s)Ψ−1(s)) | ≥

≥
∣

∣

∣

(

6e−2−4n

− 5e−2−4n + 1
)

4ne−2−4n + 1
∣

∣

∣
−→ ∞.

From Theorem 1, it follows that the equation (2) is not Ψ−uniformly stable on
R+.

Remark. Theorem 2 generalizes Theorem 3.3 ([4]).

Theorem 3. Suppose that the linear equation (2) is Ψ−uniformly stable on
R+ and A1, B1 are continuous n×n matrices on R+ such that

∫ ∞

0

| In ⊗ (Ψ(t)A1(t)Ψ
−1(t)) + BT

1 (t) ⊗ In | dt < + ∞.

Then, the linear Lyapunov matrix differential equation

Z′ = (A(t) + A1(t))Z + Z(B(t) + B1(t)) (10)

is also Ψ−uniformly stable on R+.
Proof. The corresponding Kronecker product system associated with (10) can

be seen in the form

z′ =
(

In ⊗ A(t) + BT(t) ⊗ In

)

z +
(

In ⊗ A1(t) + BT
1 (t) ⊗ In

)

z, (11)

i.e. as a perturbed system of the corresponding Kronecker product system associ-
ated with (2),

z′ =
(

In ⊗ A(t) + BT(t) ⊗ In

)

z. (12)
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From the hypothesis and Lemma 7, this system is In ⊗ Ψ−uniformly stable on
R+.

On the other hand, from hypothesis, the matrix In⊗A1(t) + BT
1 (t)⊗In satisfies

the conditions of Theorem 3.4 ([4]).
Now, from this Theorem it follows that the system (11) is In ⊗ Ψ−uniformly

stable on R+.
From Lemma 7 again, it follows that the system (10) is Ψ−uniformly stable on

R+.
The proof is now complete.

Remark. If the linear equation (2) is only Ψ−stable on R+, then the linear
equation (10) can not be Ψ−stable on R+. This is shown by the next Example,
adapted from an example due to O. Perron [8] and Example 3.5 ([4]).

Example. Consider the equation (10) with

A(t) =

(

−1 0
0 sin ln(t + 1) + cos ln(t + 1) − 3

2

)

, A1(t) =

(

0 0

e−
1

2
(t + 1) 0

)

,

B(t) = 1
2
I2 and B1(t) = O2.

Consider Ψ(t) =

(

e
1

2
(t + 1) 0
0 1

)

.

The equation (2) becomes

Z′ =

(

−1
2

0
0 sin ln(t + 1) + cos ln(t + 1) − 1

)

Z.

From the Example 3.5, ([4]), it follows that the equation (2) is Ψ−stable on R+,
but it is not Ψ−uniformly stable on R+. In addition, the condition

∫ ∞

0

| I2 ⊗ (Ψ(t)A1(t)Ψ
−1(t)) + BT

1 (t) ⊗ In | dt < + ∞

holds.
Finally, the perturbed equation (10) is not Ψ−stable on R+ (see the Example

3.5, ([4])).

Remark. Theorem 3 is no longer true if we require that

lim
t−→∞

| In ⊗ (Ψ(t)A1(t)Ψ
−1(t)) + BT

1 (t) ⊗ In | = 0,

instead of the condition

∫ ∞

0

| In ⊗ (Ψ(t)A1(t)Ψ
−1(t)) + BT

1 (t) ⊗ In | dt < + ∞.

This is shown by the next Example, adapted from Example 3.6 ([4]).
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Example. Consider the equation (10) with

A(t) =

(

0 1
−1 − 2

t + 1

)

, A1(t) =

(

− 1
t + 1

0

0 1
t + 1

)

,

B(t) = − 1
t + 1

I2 and B1(t) = 2
t + 1

I2.

Consider Ψ(t) =

(

t + 1 0
0 t + 1

)

.

For the corresponding equation (2), we have that

X(t) =

(

sin (t + 1)
t + 1

cos (t + 1)
t + 1

(t + 1) cos (t + 1) − sin (t + 1)

(t + 1)2
− (t + 1) sin (t + 1) + cos (t + 1)

(t + 1)2

)

and Y(t) = 1
t + 1

I2 are the fundamental matrices for the systems (5) and (6) respec-
tively.

From the Theorem 1, it follows that the equation (2) is Ψ−uniformly stable on
R+.

In addition, we have that

∫ ∞

0

| I2 ⊗ (Ψ(t)A1(t)Ψ
−1(t)) + BT

1 (t) ⊗ I2 | dt = + ∞

and

lim
t−→∞

| I2 ⊗ (Ψ(t)A1(t)Ψ
−1(t)) + BT

1 (t) ⊗ I2 | = 0.

On the other hand, the solutions of the equation (10) are

Z(t) =

(

sin t cos t
cos t − sin t

)

· C,

where C is a 2×2 constant matrix.
It is easy to see that the equation (10) is not Ψ−stable on R+.

Remark. Theorem 3 generalizes Theorem 3.4 ([4]).

Theorem 4. Suppose that:
1). There exist a continuous function ϕ : R+ −→ (0,∞) and a positive constant

M such that the fundamental matrices X and Y for the equations (5) and (6)
respectively satisfy the condition

∫ t

0

ϕ(s) | (YT(t)(YT(s))−1) ⊗ (Ψ(t)X(t)X−1(s)Ψ−1(s)) | ds ≤ M, for all t ≥ 0;

2). A1(t) and B1(t) are continuous n×n matrices on R+ such that

sup
t≥0

1

ϕ(t)
| In ⊗ (Ψ(t)A1(t)Ψ

−1(t)) + BT
1 (t) ⊗ In | <

1

M
.
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Then, the linear Lyapunov matrix differential equation (10) is Ψ−stable on R+.
Proof. From the hypothesis 1) and Theorem 2, it follows that the equation (2)

is Ψ−stable on R+. Thereafter, from Lemma 7, it follows that the equation (12) is
In ⊗ Ψ−stable on R+. From Theorem 3.7 ([4]), it follows that the system (11) is
In ⊗Ψ−stable on R+. From Lemma 7 again, the equation (10) is Ψ−stable on R+.

The proof is now complete.

Remark. Theorem 4 is no longer true if we require that the equation (2) be
Ψ−(uniformly) stable on R+, instead of the condition 1) of Theorem. This is shown
by the next simple example, adapted from Example 3.8 ([4]).

Example. Consider the equation (2) with A(t) = B(t) = O2. Then, a funda-
mental matrices for the equations (5) and (6) are X(t) = I2, Y(t) = I2 respectively.

Consider Ψ(t) =

(

1 0
0 1

t + 1

)

.

Therefore,

(YT(t)(YT(s))−1) ⊗ (Ψ(t)X(t)X−1(s)Ψ−1(s)) =









1 0 0 0
0 s + 1

t + 1
0 0

0 0 1 0
0 0 0 s + 1

t + 1









is bounded for 0 ≤ s ≤ t < + ∞.

From Theorem 1, it follows that the equation (2) is Ψ−uniformly stable on R+.
Now, we consider the equation (10) with

A1(t) =

(

0 0
0 a√

t + 1

)

and B1(t) = O2,

a being a positive constant.
It is easy to see (by reduction to absurdity) there is no function ϕ which satisfies

the conditions of Theorem 4.
The solutions of the equation (10) are

Z(t) =

(

1 0

0 e2a
√

t + 1

)

· C,

where C is a 2×2 constant matrix.
It is easy to see that the trivial solution of (10) is not Ψ−stable on R+.
Finally, we have

sup
t≥0

| I2 ⊗ (Ψ(t)A1(t)Ψ
−1(t)) + BT

1 (t) ⊗ I2 | = a

and
lim

t−→∞
| I2 ⊗ (Ψ(t)A1(t)Ψ

−1(t)) + BT
1 (t) ⊗ I2 | = 0.

Remark. Theorem 4 generalizes Theorem 3.7 ([4]).
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4 Ψ− stability of the nonlinear Lyapunov matrix

differential equations

The purpose of this section is to study the Ψ−(uniform) stability of trivial solution
of the equation (1), where A, B and F are matrix functions. It will be assumed that
A and B are continuous for t ∈ R+ and that F is continuous for t ∈ R+ and Z ∈
Mn×n. This will ensure the local existence of a solution passing through any given
point (t0,Z0) of the domain of definition of F, but it does not guarantee that the
solution is unique or that it can be continued for all large values of t.

Thus, we state the following hypothesis:

(H) For all t0 ∈ R+ and Z0 ∈ Mn×n, then there exists a unique solution Z(t) of
the equation (1) such that Z(t0) = Z0.

Theorem 5. Suppose that:
a). the hypothesis (H) is satisfied;
b). the trivial solution of (2) is Ψ−uniformly stable on R+;
c). the matrix function F satisfies the inequality

| Ψ(t)F(t,Z) | ≤ γ(t) | Ψ(t)Z |,

for all t ∈ R+ and for all Z ∈ Mn×n, where γ is a continuous nonnegative function

on R+ such that L =

∫ ∞

0

γ(t)dt < +∞.

Then, the trivial solution of the equation (1) is Ψ−uniformly stable on R+.
Proof. From Lemma 5, it follows that if Z(t) is the unique solution of (1) with

Z(t0) = Z0, then, z(t) = VecZ(t) is the unique solution of the system (3) with z(t0)
= z0 = VecZ0. Therefore, z(t) is also a solution of the inhomogeneous linear system

z′ =
(

In ⊗ A(t) + BT(t) ⊗ In

)

z + f(t,z(t)), t ∈ [t0,t1), (13)

[t0,t1) being the existence interval of solution z(t).
If U(t) is a fundamental matrix for the system (7), i.e. the homogeneous system

associated with (13), by the variation of constant formula ([2], Chapter II, section
2(8)),

z(t) = U(t)U−1(t0)z0 +

∫ t

t0

U(t)U−1(s)f(s,z(s))ds, t ∈ [t0,t1).

From Lemma 8, we replace U(t) = YT(t)⊗X(t), X(t) and Y(t) being fundamen-
tal matrices for the equations (5) and (6) respectively. After computation, it follows
that

z(t) = ((YT(t)(YT(t0))
−1) ⊗ (X(t)X−1(t0)))z0 +
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+

∫ t

t0

((YT(t)(YT(s))−1) ⊗ (X(t)X−1(s)))f(s,z(s))ds, t ∈ [t0,t1). (14)

From hypothesis b) and Theorem 1, it follows that there exists a positive con-
stant K such that

| YT(t)(YT(s))−1 ⊗ (Ψ(t)X(t)X−1(s)Ψ−1(s)) | ≤ K,

for all t ≥ s ≥ 0.
From (14), it follows that

(In⊗Ψ(t))z(t) = ((YT(t)(YT(t0))
−1)⊗(Ψ(t)X(t)X−1(t0)Ψ

−1(t0)))(In⊗Ψ(t0))z0+

+

∫ t

t0

((YT(t)(YT(s))−1)⊗(Ψ(t)X(t)X−1(s)Ψ−1(s)))(In⊗Ψ(s))f(s,z(s))ds, t ∈ [t0,t1)

and then,

‖ (In ⊗ Ψ(t))z(t) ‖
Rn2 ≤ K‖ (In ⊗ Ψ(t0))z0 ‖

Rn2 +

+ K

∫ t

t0

‖ (In ⊗ Ψ(s))f(s,z(s)) ‖
Rn2ds, t ∈ [t0,t1).

From hypothesis c) and Lemma 6, it follows that

‖ (In ⊗ Ψ(t))f(t,z) ‖
Rn2 = ‖ (In ⊗ Ψ(t))VecF(t,Z) ‖

Rn2 ≤

≤ | Ψ(t)F(t,Z) | ≤ γ(t) | Ψ(t)Z | ≤

≤ nγ(t) ‖ (In ⊗ Ψ(t))VecZ ‖
Rn2 = nγ(t) ‖ (In ⊗ Ψ(t))z ‖

Rn2 ,

for t ∈ R+ and z ∈ R
n2

.

Then,

‖ (In ⊗ Ψ(t))z(t) ‖
Rn2 ≤ K ‖ (In ⊗ Ψ(t0))z0 ‖

Rn2 +

+ nK

∫ t

t0

γ(s) ‖ (In ⊗ Ψ(s))z(s) ‖
Rn2 ds, t ∈ [t0,t1)

and therefore by Gronwall’s inequality,

‖ (In ⊗ Ψ(t))z(t) ‖
Rn2 ≤ K ‖ (In ⊗ Ψ(t0))z0 ‖

Rn2 ·e
nK

∫ t

t0

γ(s)ds

≤

≤ KenKL ‖ (In ⊗ Ψ(t0))z0 ‖
Rn2 , for all t ∈ [t0,t1).

This inequality shows that t1 = +∞ and hence, the solution z is defined on
[t0, +∞).

Therefore, it follows that the trivial solution of the system (13) is In⊗Ψ−uniformly
stable on R+.
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From Lemma 7, it follows that the trivial solution of (1) is Ψ−uniformly stable
on R+.

The proof is now complete.

Example. Consider the equation (1) with

A(t) =

(

1 1
−1 1

)

, B(t) =

(

−6 −3
10 5

)

and F(t,Z) =

(

e−tz1 0
0 sin z4

1 + t2

)

.

The matrices A, BT have the eigenvalues λ1 = 1 + i, λ2 = 1 − i and µ1 = −1,
µ2 = 0 respectively. The fundamental matrices for the systems (5) and (6) are

X(t) =

(

et cos t et sin t
−et sin t et cos t

)

and Y(t) =

(

2e−t e−t

5 3

)

respectively.
Consider

Ψ(t) =

(

e−t 0
0 e−t

)

.

We have

Ψ(t)X(t)X−1(s)Ψ−1(s) =

(

cos (t − s) sin (t − s)
− sin (t − s) cos (t − s)

)

and

YT(t)(YT(s))−1 =

(

6e−(t − s) − 5 10 − 10e−(t − s)

3e−(t − s) − 3 6 − 5e−(t − s)

)

.

From Corollary of Theorem 1, it follows that the equation (2) is Ψ−uniformly
stable on R+.

Further, the function F satisfies a Lipschitz condition and

| Ψ(t)F(t,Z) | = max

{

e−2t | z1 |,
e−t | sin z4 |

1 + t2

}

≤
1

1 + t2 | Ψ(t)Z |

for all t ∈ R+ and Z ∈ M2×2.

From these, it is easy to see that the function F satisfies all the hypotheses of
Theorem 5.

Thus, the trivial solution of the equation (1) is Ψ−uniformly stable on R+.

Theorem 6. Suppose that:
a). the hypothesis (H) is satisfied;
b). the trivial solution of (5) is Ψ−uniformly stable on R+;
c). the matrix function F satisfies the inequality

| Ψ(t)F(t,Z) | ≤ γ(t) | Ψ(t)Z |,
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for all t ∈ R+ and for all Z ∈ Mn×n, where γ is a continuous nonnegative function

on R+ such that

∫ ∞

0

γ(t)dt < +∞;

d). the matrix function B satisfies the condition

∫ ∞

0

|B(t)|dt < +∞.

Then, the trivial solution of the equation (1) is Ψ−uniformly stable on R+.
Proof. It is similar to the proof of the above Theorem 5.

Remark. Theorems 5 and 6 generalize Theorem 6 ([2], Chapter III, Section 3).

Theorem 7. Suppose that:
a). the hypothesis (H) is satisfied;
b). there exist a continuous function ϕ : R+ −→ (0,∞) and a positive constant

M such that the fundamental matrices X and Y for the equations (5) and (6)
respectively satisfy the condition

∫ t

0

ϕ(s) | (YT(t)(YT(s))−1) ⊗ (Ψ(t)X(t)X−1(s)Ψ−1(s)) | ds ≤ M, for all t ≥ 0;

c). the matrix function F satisfies the inequality

| Ψ(t)F(t,Z) | ≤ γ(t) | Ψ(t)Z |,

for all t ∈ R+ and for all Z ∈ Mn×n, where γ : R+ −→ [0,+∞) is a continuous
function such that

q = sup
t≥0

γ(t)

ϕ(t)
<

1

nM
.

Then, the trivial solution of the system (1) is Ψ−stable on R+.
Proof. From Lemma 5, it follows that if Z(t) is the unique solution of (1) with

Z(t0) = Z0, then, z(t) = VecZ(t) is the unique solution of the system (3) with z(t0) =
z0 = VecZ0. Therefore, z(t) is also a solution of the inhomogeneous linear equation

z′ =
(

In ⊗ A(t) + BT(t) ⊗ In

)

z + f(t,z(t)), t ∈ [t0,t1),

[t0,t1) being the existence interval of solution z(t).
If U(t) is a fundamental matrix for the system (7), by the variation of constant

formula ([2], Chapter II, section 2(8)),

z(t) = U(t)U−1(t0)z0 +

∫ t

t0

U(t)U−1(s)f(s,z(s))ds, t ∈ [t0,t1).

From Lemma 8, we replace U(t) = YT(t)⊗X(t), as a fundamental matrix on R+

for the system (7). After computation, it follows that

z(t) = (YT(t) ⊗ X(t)) · ((YT(t0))
−1 ⊗ X−1(t0)) · z0 +

+

∫ t

t0

(YT(t) ⊗ X(t)) · ((YT(s))−1 ⊗ X−1(s))f(s,z(s))ds, t ∈ [t0,t1). (15)
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From hypothesis b) and Theorems 2 and 1, it follows that there exists a positive
constant K such that

| YT(t) ⊗ (Ψ(t)X(t)) | ≤ K,

for all t ≥ 0.
From (15), it follows that

(In ⊗Ψ(t))z(t)=(YT(t)⊗Ψ(t)X(t))((YT(t0))
−1⊗X−1(t0)Ψ

−1(t0))(In ⊗Ψ(t0))z0+

+

∫ t

t0

((YT(t)(YT(s))−1)⊗(Ψ(t)X(t)X−1(s)Ψ−1(s)))(In⊗Ψ(s))f(s,z(s))ds, t ∈ [t0,t1)

and then,

‖ (In ⊗Ψ(t))z(t) ‖
Rn2 ≤ K| (YT(t0))

−1⊗X−1(t0)Ψ
−1(t0) |‖ (In ⊗Ψ(t0))z0 ‖

Rn2 +

+

∫ t

t0

ϕ(s)| (YT(t)(YT(s))−1)⊗(Ψ(t)X(t)X−1(s)Ψ−1(s)) | ·

· 1
ϕ(s)

‖ (In ⊗ Ψ(s))f(s,z(s)) ‖
Rn2ds, t ∈ [t0,t1).

From hypothesis c) and Lemma 6, it follows that

‖ (In ⊗ Ψ(t))f(t,z) ‖
Rn2 ≤ nγ(t) ‖ (In ⊗ Ψ(t))z ‖

Rn2 ,

for t ∈ R+ and z ∈ R
n2

.

Then, for t ∈ [t0,t1) we have

‖ (In ⊗Ψ(t))z(t) ‖
Rn2 ≤ K| (YT(t0))

−1⊗X−1(t0)Ψ
−1(t0) |‖ (In ⊗Ψ(t0))z0 ‖

Rn2 +

+

∫ t

t0

ϕ(s)| (YT(t)(YT(s))−1)⊗(Ψ(t)X(t)X−1(s)Ψ−1(s)) | ·

·nγ(s)
ϕ(s)

‖ (In ⊗ Ψ(s))z(s) ‖
Rn2ds ≤

≤ K| (YT(t0))
−1⊗X−1(t0)Ψ

−1(t0) |‖ (In ⊗ Ψ(t0))z0 ‖
Rn2 +

+

∫ t

t0

ϕ(s)| (YT(t)(YT(s))−1)⊗(Ψ(t)X(t)X−1(s)Ψ−1(s)) | ·

·nγ(s)
ϕ(s)

sup
t0≤s≤t

‖ (In ⊗ Ψ(s))z(s) ‖
Rn2ds ≤

≤ K| (YT(t0))
−1⊗X−1(t0)Ψ

−1(t0) |‖ (In ⊗ Ψ(t0))z0 ‖
Rn2 +

+ nqM sup
t0≤s≤t

‖ (In ⊗ Ψ(s))z(s) ‖
Rn2

and hence
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sup
t0≤s≤t

‖ (In ⊗ Ψ(s))z(s) ‖
Rn2 ≤

≤ (1 − nqM)−1K| (YT(t0))
−1⊗X−1(t0)Ψ

−1(t0) |‖ (In ⊗ Ψ(t0))z0 ‖
Rn2 .

Thus, for t ∈ [t0,t1) we have

‖ (In ⊗ Ψ(t))z(t) ‖
Rn2 ≤

≤ (1 − nqM)−1K| (YT(t0))
−1⊗X−1(t0)Ψ

−1(t0) |‖ (In ⊗ Ψ(t0))z0 ‖
Rn2 .

This inequality shows that t1 = +∞ and hence, the solution z is defined on
[t0,+∞).

From the inequality

‖ (In ⊗ Ψ(t))z(t) ‖
Rn2 ≤

≤ (1 − nqM)−1K| (YT(t0))
−1⊗X−1(t0)Ψ

−1(t0) |‖ (In ⊗ Ψ(t0))z0 ‖
Rn2 , t ≥ t0,

it follows that the trivial solution of the system (3) is In ⊗ Ψ−stable on R+.
From Lemma 7, it follows that the trivial solution of the equation (1) is Ψ−stable

on R+.
The proof is now complete.

Theorem 8. Suppose that:
a). the hypothesis (H) is satisfied;
b). there exist a continuous function ϕ : R+ −→ (0,∞) and a positive constant

M such that the fundamental matrix X of the system (5) satisfies the inequality

∫ t

0

ϕ(s) | Ψ(t)X(t)X−1(s)Ψ−1(s) | ds ≤ M,

for all t≥0;
c). the matrix function F satisfies the inequality

| Ψ(t)F(t,Z) | ≤ γ(t) | Ψ(t)Z |,

for all t ∈ R+ and for all Z ∈ Mn×n, where γ : R+ −→ [0,+∞) is a continuous
function such that

q = sup
t≥0

| B(t) | + γ(t)

ϕ(t)
<

1

nM
.

Then, the trivial solution of the equation (1) is Ψ−stable on R+.
Proof. It is similar to the proof of the above Theorem 7.
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