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Positive Solutions for Singular φ−Laplacian BVPs

on the Positive Half-line
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Abstract

In this work, we are concerned with the existence of positive so-
lutions for a φ Laplacian boundary value problem on the half-line.
The results are proved using the fixed point index theory on cones of
Banach spaces and the upper and lower solution technique. The non-
linearity may exhibit a singularity at the origin with respect to the
solution. This singularity is treated by regularization and approxima-
tion together with compactness and sequential arguments.

1 Introduction

This paper is devoted to the study of the existence of positive solutions
to the following boundary value problem (BVP for short) on the positive
half-line: {

(φ(x′))′(t) + q(t)f(t, x(t)) = 0, t ∈ I,
x(0) = 0, lim

t→+∞
x′(t) = 0 (1.1)

where I := (0,+∞) denotes the set of positive real numbers while R
+ =

[0,+∞). The function q : I −→ I is continuous and the function f : I ×
I −→ R

+ is continuous and satisfies lim
x→0+

f(t, x) = +∞, i.e. f(t, x) may be

singular at x = 0, for each t > 0. φ : R −→ R is a continuous, increasing
homeomorphism such that φ(0) = 0, extending the so-called p−Laplacian
ϕp(s) = |s|p−1s (p > 1).

Problem (1.1) with φ = Id has been extensively studied in the literature.
In [14], D.O’Regan et al. established the existence of unbounded solutions.
Djebali and Mebarki [5, 6, 7] discussed the solvability and the multiplicity
of solutions to the generalized Fisher-like equation associated to the second-
order linear operator −y′′ + cy′ + λy (c, λ > 0) with Dirichlet or Neumann
limit condition at positive infinity; see also [8] where the nonlinearity may
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change sign and the theory of fixed point index on cones of Banach spaces
is used. In [16], the author proved existence of positive solution to a second-
order multi-point BVP by application of the Mönch’s fixed point theorem.
The method of upper and lower solutions together with the fixed point index
are employed in [14, 15] to discuss the existence of multiple solutions to a
singular BVP on the half line.

Recent papers have also investigated the case of the so-called p−Laplacian
operator ϕ(s) = |s|p−1s for some p > 1. Existence of three positive solu-
tions for singular p−Laplacian problems is obtained by means of the three-
functional fixed point theorem in [11, 12]. The same method is also used
by Guo et al. in [10] to prove existence of three positive solutions when
the nonlinearity is derivative depending. In [13], the authors prove exis-
tence of three positive solutions when the nonlinear operator ϕ generates a
p−Laplacian operator.

In this paper, our aim is to consider a general homeomorphism ϕ and
prove existence of single and twin solutions using fixed point index theory.
Existence of at least one positive solution is also proved by application of
the method of upper and lower solutions.

This paper has mainly three sections. In section 2, we prove some lemmas
which are needed in this work and we gather together some auxiliary results.
Section 3 is devoted to establishing existence and multiplicity results; the
fixed point theory on a suitable cone in a Banach space is employed to an
approximating operator; then a compactness argument allows us to get the
desired solution in Theorem 3.1. Finally, in section 4 we use the method
of lower and upper solutions to prove the existence of a positive solution of
(1.1). For this, a regularization technique both with a sequential argument
are considered to overcome the singularity. Theorems 4.1 and 4.2 correspond
to the regular problem and singular one respectively. Each existence theorem
is illustrated by means of an example of application.

2 Preliminaries

In this section, we gather together some definitions and lemmas we need in
the sequel.

2.1 Auxiliary results

Definition 2.1. A nonempty subset P of a Banach space E is called a cone
if it is convex, closed and satisfies the conditions:

(i) αx ∈ P for all x ∈ P and α ≥ 0,

(ii) x,−x ∈ P imply that x = 0.
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Definition 2.2. A mapping A : E → E is said to be completely continuous
if it is continuous and maps bounded sets into relatively compact sets.

The following lemmas will be used to prove existence of solutions. More
details on the theory of the fixed point index on cones of Banach spaces may
be found in [1, 2, 4, 9].

Lemma 2.1. Let Ω be a bounded open set in a real Banach space E, P
a cone of E and A : Ω ∩ P → Ω a completely continuous map. Suppose
λAx 6= x,∀x ∈ ∂Ω ∩ P, λ ∈ (0, 1]. Then i(A,Ω ∩ P,P) = 1.

Lemma 2.2. Let Ω be a bounded open set in a real Banach space E, P
a cone of E and A : Ω ∩ P → Ω a completely continuous map. Suppose
Ax 6≤ x,∀x ∈ ∂Ω ∩ P. Then i(A,Ω ∩ P,P) = 0.

Let
Cl([0,∞),R) = {x ∈ C([0,∞),R) : lim

t→∞
x(t) exists}

and consider the basic space to study Problem (1.1) namely

E = {x ∈ C([0,∞),R) : lim
t→+∞

x(t)

1 + t
exists}.

Then E is a Banach space with norm ‖x‖ = sup
t∈R+

|x(t)|
1+t ·

From the following result

Lemma 2.3. ([3], p. 62) Let M ⊆ Cl(R
+,R). Then M is relatively compact

in Cl(R
+,R) if the following conditions hold:

(a) M is uniformly bounded in Cl(R
+,R).

(b) The functions belonging to M are almost equicontinuous on R
+, i.e.

equicontinuous on every compact interval of R
+.

(c) The functions from M are equiconvergent, that is, given ε > 0, there
corresponds T (ε) > 0 such that |x(t) − x(+∞)| < ε for any t ≥ T (ε)
and x ∈M.

We easily deduce

Lemma 2.4. LetM ⊆ E. ThenM is relatively compact in E if the following
conditions hold:

(a) M is uniformly bounded in E,

(b) the functions belonging to {u : u(t) = x(t)
1+t , x ∈ E} are almost equicon-

tinuous on [0,+∞),

(c) the functions belonging to {u : u(t) = x(t)
1+t , x ∈ E} are equiconvergent

at +∞.
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2.2 Useful Lemmas

Definition 2.3. A function x is said to be a solution of Problem (1.1) if
x ∈ C(R+,R) ∩ C1(I,R) with φ(x′) ∈ C1(I,R) and satisfies (1.1).

Since φ is an increasing homeomorphism, it is easy to prove

Lemma 2.5. If x is a solution of Problem (1.1), then x is positive, mono-
tone increasing and concave on [0,+∞).

Define the cone

P = {x ∈ E : x is nonnegative, concave on [0,+∞) and lim
t→+∞

x(t)

1 + t
= 0}.

Lemma 2.6. If x ∈ C(R+,R+) is a positive concave function, then x is
nondecreasing on [0,+∞).

Proof. Let t, t′ ∈ [0,+∞) be such that t′ ≥ t and λ := t′ − t. Since x is
positive and concave, for all n ∈ N

∗, we have

x(t′) = x(t+ λ)
= x

(
(1 − 1

n)t+ 1
n(t+ nλ)

)

≥
(
1 − 1

n

)
x(t) + 1

nx(t+ nλ)
≥

(
1 − 1

n

)
x(t).

Therefore

x(t′) ≥ lim
n→+∞

(
1 − 1

n

)
x(t) = x(t),

and our claim follows.

Moreover, we have

Lemma 2.7. Let x ∈ P and θ ∈ (1,+∞). Then

x(t) ≥ 1

θ
‖x‖, ∀ t ∈ [1/θ, θ].

Proof. Since the continuous, positive function y(t) = x(t)
1+t satisfies y(+∞) =

0, then it achieves its maximum at some t0 ∈ [0,+∞). Moreover x is concave
and nondecreasing by Lemma 2.6; then for t ∈ [1θ , θ]

x(t) ≥ min
t∈[ 1

θ
,θ]
x(t) = x(1

θ ) = x(θ−1+θt0
θ+θt0

1
θ−1+θt0

+ 1
θ+θt0

t0)

≥ θ−1+θt0
θ+θt0

x( 1
θ−1+θt0

) + 1
θ+θt0

x(t0)

≥ 1
θ+θt0

x(t0) = 1
θ

x(t0)
1+t0

= 1
θ‖x‖.
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Lemma 2.8. Define the function ρ by

ρ(t) =

{
t, t ∈ [0, 1]
1
t , t ∈ [1,+∞)

(2.1)

and let x ∈ P. Then

x(t) ≥ ρ(t)‖x‖, ∀ t ∈ [0,+∞).

Proof. Let t ∈ [0,+∞) and distinguish between four cases:

• If t = 0, then x(0) ≥ 0 = ρ(0)‖x‖.

• If t ∈ (0, 1), then 1
t ∈ (1,+∞). By lemma 2.7, we have x(s) ≥

t‖x‖,∀ s ∈ [t, 1
t ]. In particular for s = t, x(t) ≥ t‖x‖ = ρ(t)‖x‖.

• If t ∈ (1,+∞), then by lemma 2.7, we have x(s) ≥ 1
t ‖x‖,∀ s ∈ [1t , t].

In particular for s = t, x(t) ≥ 1
t ‖x‖ = ρ(t)‖x‖.

• If t = 1, then let {tn}n be a real sequence such that tn > 1 and tn → 1.
By the latter case, we have x(tn) ≥ 1

tn
‖x‖, ∀n ≥ 1. Then

x(1) = lim
n→+∞

x(tn) ≥ lim
n→+∞

1

tn
‖x‖ = ‖x‖ = ρ(1)‖x‖.

Lemma 2.9. Let g ∈ C(R+,R+) be such that
∫ +∞
0 g(s)ds < +∞ and let

x(t) =
∫ t
0 φ

−1
(∫ +∞

s (g(τ))dτ
)
ds. Then

{
(φ(x′))′(t) + g(t) = 0, t > 0,
x(0) = 0, lim

t→+∞
x′(t) = 0,

hence x ∈ P.

Proof. It is easy to check that

{
(φ(x′))′(t) + g(t) = 0, t > 0,
x(0) = 0, lim

t→+∞
x′(t) = 0.

Moreover, x is positive, concave on [0,+∞), hence nondecreasing by Lemma
2.6. Therefore





If lim
t→+∞

x(t) <∞, then lim
t→+∞

x(t)
1+t = 0.

If lim
t→+∞

x(t) = +∞, then lim
t→+∞

x(t)
1+t = lim

t→+∞
x′(t) = 0,

proving the lemma.
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3 A fixed point index argument

Let ρ̃(t) = ρ(t)
1+t , F (t, x) = f(t, (1 + t)x) and assume that

(H1) There exist m ∈ C(I, I) and p ∈ C(R+,R+) such that

F (t, x) ≤ m(t)p(x), ∀ (t, x) ∈ I2. (3.1)

There exists a decreasing function h ∈ C(I, I) such that p(x)
h(x) is an

increasing function and for each c, c′ > 0,

∫ +∞

0
q(τ)m(τ)h(cρ̃(τ))dτ < +∞, (3.2)

∫ +∞

0
φ−1

(
p(c′)
h(c′)

∫ +∞

s
q(τ)m(τ)h(cρ̃(τ))dτ

)
ds < +∞. (3.3)

(H2) For any c > 0, there exists ψc ∈ C(I, I) such that

F (t, x) ≥ ψc(t), ∀ t ∈ I, ∀x ∈ (0, c]

with

∫ +∞

0
q(τ)ψc(τ)dτ < +∞ and

∫ +∞

0
φ−1

(∫ +∞

s
q(τ)ψc(τ)dτ

)
ds < +∞.

(3.4)

(H3)

sup
c>0

c
∫ +∞
0 φ−1

(
p(c)
h(c)

∫ +∞
s q(τ)m(τ)h(cρ̃(τ))dτ

)
ds

> 1.

3.1 Existence of a single solution

We first consider a family of regular problems which approximate Problem
(1.1). Given f ∈ C(I2,R+), define a sequence of functions {fn}n≥1 by

fn(t, x) = f(t,max{(1 + t)/n, x}), n ∈ {1, 2, . . .}

and for x ∈ P, define a sequence of operators by

Anx(t) =

∫ t

0
φ−1

(∫ +∞

s
q(τ)fn(τ, x(τ))dτ

)
ds, n ∈ {1, 2, . . .}.

We have

Lemma 3.1. Assume (H1) holds. Then, for each n ≥ 1, the operator An

sends P into P and is completely continuous.
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Proof. (a) AnP ⊆ P. For x ∈ P, we have Anx(t) ≥ 0, ∀ t ∈ R
+. Moreover

(Anx)
′(t) = φ−1

(∫ +∞

t
q(τ)fn(τ, x(τ))dτ

)
≥ 0,

lim
t→+∞

(Anx)
′(t) = φ−1(0) = 0,

and
(φ(Anx)

′)′ = −q(t)fn(t, x(t)) ≤ 0,

which implies that Anx is concave, nondecreasing on [0,+∞) and

lim
t→+∞

(Anx)(t)
1+t = 0. Then AnP ⊆ P.

(b) An is continuous. Let x, x0 ∈ E. By the continuity of f and the
Lebesgue dominated convergence theorem, we have for all s ∈ R

+,

∣∣∣
∫ +∞
s q(τ)fn(τ, x(τ))dτ −

∫ +∞
s q(τ)fn(τ, x0(τ))dτ

∣∣∣
≤

∫ +∞
s q(τ)|fn(τ, x(τ)) − fn(τ, x0(τ))|dτ −→ 0, as x→ x0

i.e.

∫ +∞

s
q(τ)fn(τ, x(τ))dτ →

∫ +∞

s
q(τ)fn(τ, x0(τ))dτ, as x→ x0.

Moreover, the continuity of φ−1 implies that

φ−1

(∫ +∞

s
q(τ)fn(τ, x(τ))dτ

)
→ φ−1

(∫ +∞

s
q(τ)fn(τ, x0(τ))dτ

)
,

as x→ x0. Thus

‖Anx−Anx0‖
= sup

t∈R+

|Anx(t)−Anx0(t)|
1+t

= sup
t∈R+

|R t

0 (φ−1(
R +∞

s
q(τ)fn(τ,x(τ))dτ))ds−

R t

0 φ−1(
R +∞

s
q(τ)fn(τ,x0(τ))dτ)ds|

1+t

≤ sup
t∈R+

R t

0 |φ−1(
R +∞

s
q(τ)fn(τ,x(τ)))−φ−1(

R +∞
s

q(τ)fn(τ,x0(τ))dτ)|ds

1+t → 0,

as x→ x0,

and our claim follows.

(c) An(B) is relatively compact, where B = {x ∈ E : ‖x‖ ≤ R} is a
bounded subset of P. Indeed:
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• An(B) is uniformly bounded. Let x ∈ B. By the monotonicity of h
and p

h , we have the estimates:

‖Anx‖E = sup
t∈R+

|Anx(t)|
1+t

= sup
t≥0

1
1+t

∫ t
0 φ

−1
(∫ +∞

s q(τ)fn(τ, x(τ))dτ
)
ds,

≤ sup
t≥0

1
1+t

∫ t
0 φ

−1
(∫ +∞

s q(τ)m(τ)p(max{ 1
n ,

x(τ)
1+τ })dτ

)
ds,

≤ sup
t≥0

1
1+t

∫ t
0 φ

−1

(∫ +∞
s q(τ)m(τ)h(max{ 1

n ,
x(τ)
1+τ })

p(max{ 1
n

, x(τ)
1+τ

})
h(max{ 1

n
, x(τ)
1+τ

})
dτ

)
ds

≤
∫ +∞
0 φ−1

(
p(max{1/n,R})
h(max{1/n,R})

∫ +∞
s q(τ)m(τ)h( eρ(τ)

n )dτ
)
ds < +∞.

• An(B)
1+t is almost equicontinuous. For given T > 0, x ∈ B, and

t, t′ ∈ [0, T ] (t′ < t), we have

∣∣∣Anx(t)
1+t − Anx(t′)

1+t′

∣∣∣

=

∣∣∣∣
R t

0 φ−1(
R +∞

s
q(τ)fn(τ,x(τ))dτ)ds

1+t −
R t′

0 φ−1(
R +∞

s
q(τ)fn(τ,x(τ))dτ)ds

1+t′

∣∣∣∣

≤
∣∣∣ 1
1+t − 1

1+t′

∣∣∣
∫ +∞
0 φ−1(

∫ +∞
s q(τ)fn(τ, x(τ))dτ)ds

+

∣∣∣∣
R +∞
t′

φ−1(
R +∞

s
q(τ)fn(τ,x(τ))dτ)ds

1+t′ −
R +∞

t
φ−1(

R +∞
s

q(τ)fn(τ,x(τ))dτ)ds

1+t

∣∣∣∣

≤ 2
∣∣∣ 1
1+t − 1

1+t′

∣∣∣
∫ +∞
0 φ−1(

∫ +∞
s q(τ)fn(τ, x(τ))dτ)ds

+ 1
1+t′

∫ t
t′ φ

−1(
∫ +∞
s q(τ)fn(τ, x(τ))dτ)ds

≤ 2
∣∣∣ 1
1+t − 1

1+t′

∣∣∣
∫ +∞
0 φ−1

(
p(max{1/n,R})
h(max{1/n,R})

∫ +∞
s q(τ)m(τ)h( eρ(τ)

n )dτ
)
ds

+ 1
1+t′

∫ t
t′ φ

−1
(

p(max{1/n,R})
h(max{1/n,R})

∫ +∞
s q(τ)m(τ)h( eρ(τ)

n )dτ
)
ds.

Then, for any ε > 0 and T > 0, there exists δ > 0 such that∣∣∣Ax(t)
1+t − Ax(t′)

1+t′

∣∣∣ < ε for all t, t′ ∈ [0, T ] with |t − t′| < δ, proving our

claim.

• An(B)
1+t is equiconvergent at +∞. Since

lim
t→+∞

Anx(t)

1 + t
= lim

t→+∞

∫ t
0 φ

−1(
∫ +∞
s q(τ)fn(τ, x(τ))dτ)ds

1 + t
= 0,
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then

sup
x∈B

|Ax(t)
1+t − lim

t→+∞
Anx(t)

1+t |

= sup
x∈B

∣∣∣∣
R t

0 φ−1(
R +∞

s
q(τ)fn(τ,x(τ))dτ)ds

1+t

∣∣∣∣

≤ 1
1+t sup

x∈B

∫ +∞
0 φ−1

(
p(max{1/n,R})
h(max{1/n,R})

∫ +∞
s q(τ)m(τ)h( eρ(τ)

n )dτ
)
ds

≤ 1
1+t sup

x∈B

∫ +∞
0 φ−1

(
p(max{1/n,R})
h(max{1/n,R})

∫ +∞
s q(τ)m(τ)h( eρ(τ)

n )dτ
)
ds

which implies that lim
t→+∞

sup
x∈B

|Ax(t)
1+t − lim

t→+∞
Ax(t)
1+t | = 0.

Theorem 3.1. Assume that Assumptions (H1)− (H3) hold. Then Problem
(1.1) has at least one positive solution.

Proof.

Step 1: an approximating solution. From condition (H3), there exists R > 0
such that:

R
∫ +∞
0 φ−1

(
p(R)
h(R)

∫ +∞
s q(τ)m(τ)h(Rρ̃(τ))dτ

)
ds

> 1. (3.5)

Let
Ω1 = {x ∈ E : ‖x‖ < R}.

We claim that x 6= λAnx for any x ∈ ∂Ω1 ∩ P, λ ∈ (0, 1] and n ≥ n0 >
1/R. On the contrary, suppose that there exist n ≥ n0, x0 ∈ ∂Ω1 ∩ P
and λ0 ∈ (0, 1] such that x0 = λ0Anx0. By Lemma 2.8, we have x0(t) ≥
ρ(t)‖x0‖ = ρ(t)R,∀ t ∈ R

+. Then x0(t)
1+t ≥ ρ̃(t)‖x0‖ = ρ̃(t)R. Therefore, for n

large enough, we have

R = ‖x0‖
= ‖λ0Anx0‖
≤ sup

t≥0

1
1+t

∫ t
0 φ

−1
(∫ +∞

s q(τ)fn(τ, x0(τ))dτ
)
ds,

≤ sup
t≥0

1
1+t

∫ t
0 φ

−1
(∫ +∞

s q(τ)m(τ)p(max{ 1
n ,

x0(τ)
1+τ })dτ

)
ds,

≤ sup
t≥0

1
1+t

∫ t
0 φ

−1

(∫ +∞
s q(τ)m(τ)h(max{ 1

n ,
x0(τ)
1+τ }) p(max{ 1

n
,
x0(τ)

1+τ
})

h(max{ 1
n

,
x0(τ)
1+τ

})
dτ

)
ds

≤
∫ +∞
0 φ−1

(
p(R)
h(R)

∫ +∞
s q(τ)m(τ)h(Rρ̃(τ))dτ

)
ds

which is a contradiction to (3.5). Then by Lemma 2.1, we deduce that

i(An,Ω1 ∩ P,P) = 1, for all n ∈ {n0, n0 + 1, . . .}. (3.6)

Hence there exists an xn ∈ Ω1 ∩ P such that Anxn = xn, ∀n ≥ n0.

EJQTDE, 2009 No. 56, p. 9



Step 2: a compactness argument. (a) Since ‖xn‖ < R, from (H2) there exists
ψR ∈ C(I, I) such that

fn(t, xn(t)) ≥ ψR(t), ∀ t ∈ I

with
∫ +∞

0
q(s)ψR(s)ds < +∞ and

∫ +∞

0
φ−1

(∫ +∞

s
q(τ)ψR(τ)dτ

)
ds < +∞.

Then
xn(t) = Anxn(t)

=
∫ t
0 φ

−1(
∫ +∞
s q(τ)fn(τ, xn(τ))dτ) ds

≥
∫ t
0 φ

−1(
∫ +∞
s q(τ)ψR(τ)dτ)ds.

Let

c∗ = φ−1

(∫ +∞

1
q(τ)ψR(τ)dτ

)
,

and distinguish between two cases.

• If t ∈ [0, 1], then

xn(t) ≥ tφ−1(
∫ +∞
t q(τ)fn(τ, xn(τ))dτ) ds

≥ tφ−1(
∫ +∞
1 q(τ)ψR(τ)dτ)ds = ρ(t)c∗.

• If t ∈ (1,+∞), then

xn(t) ≥
∫ 1
0 φ

−1(
∫ +∞
s q(τ)ψR(τ)dτ)ds

≥
∫ 1
0 φ

−1(
∫ +∞
1 q(τ)ψR(τ)dτ)ds

≥ 1
tφ

−1(
∫ +∞
1 q(τ)ψR(τ)dτ ≥ ρ(t)c∗.

We infer that xn(t)
1+t ≥ c∗ρ̃(t), ∀ t ∈ R

+.

(b) {xn}n≥n0 is almost equicontinuous. For any T > 0 and t, t′ ∈ [0, T ]
(t > t′), we have

∣∣∣xn(t)
1+t − xn(t′)

1+t′

∣∣∣ ≤
∣∣∣∣

R t

0 φ−1(
R +∞

s
q(τ)fn(τ,xn(τ))dτ)ds

1+t −
R t′

0 φ−1(
R +∞

s
q(τ)fn(τ,xn(τ))dτ)ds

1+t′

∣∣∣∣

≤ 2
∣∣∣ 1
1+t − 1

1+t′

∣∣∣
∫ +∞
0 φ−1(

∫ +∞
s q(τ)m(τ)h(c∗ρ̃(τ)) p(R)

h(R)dτ)ds

+ 1
1+t′

∫ t
t′ φ

−1(
∫ +∞
s q(τ)m(τ)h(c∗ρ̃(τ)) p(R)

h(R)dτ)ds.

Then, for any ε > 0 and T > 0, there exists δ > 0 such that |xn(t)
1+t −

xn(t′)
1+t′ | < ε

for all t, t′ ∈ [0, T ] with |t− t′| < δ.
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(c) {xn} is equiconvergent at +∞:

sup
n≥n0

|xn(t)
1+t − lim

t→+∞
xn(t)
1+t | = sup

n≥n0

R t

0
φ−1(

R +∞
s

q(τ)fn(τ,xn(τ))dτ)ds

1+t

≤
R +∞
0

φ−1(
R +∞

s
q(τ)m(τ)h(c∗eρ(τ)) p(R)

h(R)
dτ)ds

1+t

→ 0, as t→ +∞.

Therefore {xn}n≥n0 is relatively compact and hence there exists a subse-
quence {xnk

}k≥1 with lim
k→+∞

xnk
= x0. Since xnk

(t) ≥ ρ̃(t)c∗,∀ k ≥ 1, we

have x0(t) ≥ ρ̃(t)c∗,∀ t ∈ R
+. Consequently, the continuity of f implies that

for all s ∈ I

lim
k→+∞

fnk
(s, xnk

(s)) = lim
k→+∞

f(s,max{(1 + s)/nk, xnk
(s)})

= f(s,max{0, x0(s)})
= f(s, x0(s)).

By the Lebesgue dominated convergence theorem, we deduce that

x0(t) = lim
k→+∞

xnk
(t)

= lim
k→+∞

∫ t
0 φ

−1(
∫ +∞
s q(τ)fnk

(τ, xnk
(τ))dτ)ds

=
∫ t
0 φ

−1(
∫ +∞
s q(τ)f(τ, x0(τ))dτ)ds.

Then x0 is a positive nontrivial solution of Problem (1.1).

Example 3.1. Consider the singular boundary value problem





((x′(t))5)′ + e−t m(t)(x2+(1+t)2)

(1+t)
3
2
√

x
= 0, t > 0,

x(0) = 0, lim
t→+∞

x′(t) = 0,
(3.7)

where

m(t) =

{
t

1+t t ∈ (0, 1]
1

t(1+t) t ∈ (1,+∞).

Here f(t, x) = m(t)(x2+(1+t)2)

(1+t)
3
2
√

x
, φ(t) = t5 and q(t) = e−t. Then φ is continu-

ous, increasing and φ(0) = 0. Moreover F (t, x) = f(t, (1+t)x) = m(t)(x2+1)√
x

·

(H1) Let p(x) = x2+1√
x
, h(x) = 1

x · Then h is a decreasing function, p
h is an

increasing one and F (t, x) ≤ m(t)p(x), ∀ (t, x) ∈ I2. In addition, for
any c, c′ > 0, we have

∫ +∞

0
q(τ)m(τ)h(cρ̃(τ))dτ =

1

c

∫ +∞

0
e−τdτ =

1

c
< +∞
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and

∫ +∞
0 φ−1(

∫ +∞
s q(τ)m(τ)h(cρ̃(τ)) p(c′)

h(c′)dτ)ds =
∫ +∞
0 φ−1

(
p(c′)
ch(c′)e

−s
)
ds

=
(

p(c′)
ch(c′)

) 1
5 ∫ +∞

0 e
−s
5 ds

= 5
(

p(c′)
ch(c′)

) 1
5
< +∞.

(H2) For any c > 0, there exists ψc(t) = m(t)√
c

such that

F (t, x) ≥ ψc(t), ∀ t ∈ I, ∀x ∈ (0, c].

(H3)

sup
c>0

c
R +∞
0 φ−1(

R +∞
s

q(τ)m(τ)h(ceρ(τ))
p(c)
h(c)

dτ)ds
= sup

c>0

c

5(
p(c)
ch(c)

)
1
5

= 1
5 sup

c>0

cc
1
10

(c2+1)
1
5

= 1
5 sup

c>0

c
11
10

(c2+1)
1
5
> 1.

Then all conditions of Theorem 3.1 are met, yielding that Problem (3.7) has
at least one positive solution.

3.2 Two positive solutions

In this section, we suppose further that the nonlinear function φ is such that
the inverse φ−1 is super-multiplicative, that is:

φ−1(xy) ≥ φ−1(x)φ−1(y), ∀x, y > 0.

Remark 3.1. (a) If φ is sub-multiplicative, say

∀x, y ∈ R
+, φ(xy) ≤ φ(x)φ(y), (3.8)

then φ−1 is super-multiplicative.
(b) The p−Laplacian operator is super-multiplicative and sub-multiplicative,
hence a multiplicative mapping.

Consider the additional hypothesis:

(H4) there exist m1 ∈ C(I, I) and p1 ∈ C(I, I) such that

F (t, x) ≥ m1(t)p1(x), ∀ t > 0, ∀x > 0, (3.9)

with lim
x→+∞

p1(x)
φ(x) = +∞ and

∫ +∞
0 q(τ)m1(τ)dτ < +∞.
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Then, we have

Theorem 3.2. Under Assumptions (H1)− (H4), Problem (1.1) has at least
two positive solutions.

Proof. Choosing the same R as in the proof of Theorem 3.1, we get

i(An,Ω1 ∩ P,P) = 1, for all n ∈ {n0, n0 + 1, . . .} (3.10)

and there exists x0 solution of Problem (1.1) in Ω1 = {x ∈ E : ‖x‖ < R}.
Let 0 < a < b − 1 < b < +∞ and N = 1 +

φ( 1
c2

)
R b

b−1
q(s)m1(s) ds

where

c = min
t∈[a,b]

ρ̃(t). By (H4), there exists an R′ > R such that

p1(x) > Nφ(x), ∀x ≥ R′.

Define

Ω2 =

{
x ∈ E : ‖x‖ < R′

c

}
.

Without loss of generality, we may assume R′ > max{1, R} and show that
Anx 6≤ x for all x ∈ ∂Ω2 ∩ P and n ∈ {1, 2, . . .}. Suppose on the contrary
that there exist an n ∈ {1, 2, . . .} and x0 ∈ ∂Ω2 ∩ P such that Anx0 ≤ x0.

Since x0 ∈ P, we have x0(t)
1+t ≥ ρ̃(t)‖x0‖ ≥ mint∈[a,b] ρ̃(t)

R′

c ≥ R′, ∀ t ∈ [a, b].
Then for any t ∈ [a, b− 1], we have the lower bounds:

x0(t)
1+t ≥ Anx0(t)

1+t =

R t

0
φ−1

“

R +∞
s

q(τ)F (τ,
x0(τ)
1+τ

)dτ
”

ds

1+t

≥
R t

0
φ−1

“

R +∞
t

q(τ)F (τ,
x0(τ)
1+τ

)dτ
”

ds

1+t

≥ t
1+tφ

−1
(∫ b

b−1 q(τ)m1(τ)p1

(
x0(τ)
1+τ

)
dτ

)

> t
1+tφ

−1
(∫ b

b−1 q(τ)m1(τ)Nφ
(

x0(τ)
1+τ

)
dτ

)

≥ t
1+tφ

−1
(
φ(R′)N

∫ b
b−1 q(τ)m1(τ)dτ

)

≥ ρ̃(t)φ−1
(
φ(R′))φ−1(N

∫ b
b−1 q(τ)m1(τ)dτ

)

≥ cR′φ−1
(
N

∫ b
b−1 q(τ)m1(τ)dτ

)

> R′

c ,

contradicting ‖x0‖ = R′

c . Finally, Lemma 2.2 yields

i(An,Ω2 ∩ P,P) = 0, ∀n ∈ N
∗ (3.11)
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while (3.10) and (3.11) imply that

i(An, (Ω2 \ Ω1) ∩ P,P) = −1, ∀n ≥ n0. (3.12)

This shows that An has another fixed point yn ∈ (Ω2 \ Ω1) ∩ P, ∀n ≥ n0.
Consider the sequence {yn}n≥n0. Then yn(t) ≥ ρ(t)R, ∀ t ∈ R

+ and ‖yn‖ <
R′

c , ∀n ≥ n0. Arguing as above, we can show that {yn}n≥n0 has a convergent
subsequence {ynj

}j≥1 with lim
j→+∞

ynj
= y0 and y0 is a solution of Problem

(1.1). Moreover R < ‖y0‖ < R′

c . Hence x0 and y0 are two distinct nontrivial
positive solutions of Problem (1.1).

Example 3.2. Consider the singular boundary value problem





(a(x′(t))
3
5 )′ + e−t m(t)(x2+(1+t)2)

(1+t)
3
2
√

x
= 0, t > 0

x(0) = 0, lim
t→+∞

x′(t) = 0,
(3.13)

where m is as in Example 3.1, φ(t) = at
3
5 and a > 1 is a large parameter.

Then φ is continuous, increasing, φ(0) = 0 and for all x, y > 0 we have

φ−1(xy) ≥ φ−1(x)φ−1(y).

Moreover F (t, x) = m(t)(x2+1)√
x

. Let m1(t) = m(t), h(x) = 1
x and p1(x) =

p(x) = x2+1√
x

; then it is easy to show (H1) and (H2).

(H3)

sup
c>0

c
R +∞
0 φ−1(

R +∞
s

q(τ)m(τ)h(ceρ(τ))
p(c)
h(c)

dτ)ds
= sup

c>0

c
3
5
(

p(c)
a

)
5
3

= 5
3a

5
3 sup

c>0

cc
5
6

(c2+1)
5
3
.

If we choose a large enough, say a > max{1, (sup
c>0

cc
5
6

(c2+1)
5
3
)−1}, then

condition (H3) hold.

(H4) It is clear that

F (t, x) ≥ m1(t)p1(x), ∀ t > 0, ∀x > 0.

and lim
x→+∞

p1(x)
φ(x) = lim

x→+∞
x2+1

ax
3
5
√

x
= lim

x→+∞
x2+1

ax
11
10

= +∞.

Then all conditions of Theorem 3.2 hold which implies that Problem (3.13)
has at least two positive solutions.
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4 Upper and Lower solutions

4.1 Regular Problem

For some real positive number k1, consider the regular boundary value prob-
lem {

−(φ(x′))′(t) = q(t)f(t, x(t)), t > 0,
x(0) = k1, lim

t→+∞
x′(t) = 0. (4.1)

Definition 4.1. A function α ∈ C(R+, I)∩C1(I,R) is called lower solution
of (4.1) if φ ◦ α′ ∈ C1(I,R) and satisfies

{
−(φ(α′(t)))′ ≤ q(t)f(t, α(t)), t > 0
α(0) ≤ k1, lim

t→+∞
α′(t) ≤ 0.

A function β ∈ C(R+, I)∩C1(I,R) is called upper solution of (4.1) if φ◦β′ ∈
C1(I,R) and satisfies

{
−(φ(β′(t)))′ ≥ q(t)f(t, β(t)), t > 0
β(0) ≥ k1, lim

t→+∞
β′(t) ≥ 0.

If there exist two functions β and α such that α(t) ≤ β(t) for all t ∈ R
+,

then we can define the closed set

Dβ
α(t) = {x ∈ R : α(t) ≤ x ≤ β(t)}, t ≥ 0.

Theorem 4.1. Assume that α, β are lower and upper solutions of Problem
(4.1) respectively with α(t) ≤ β(t) for all t ∈ R

+. Furthermore, suppose that
there exists some δ ∈ C(R+,R+) such that

sup
x∈Dβ

α(t)

|f(t, x)| ≤ δ(t), ∀ t ∈ I

and
∫ +∞

0
q(τ)δ(τ)dτ < +∞,

∫ +∞

0
φ−1

(∫ +∞

s
q(τ)δ(τ)dτ

)
ds < +∞. (4.2)

Then Problem (4.1) has at least one solution x∗ ∈ E with

α(t) ≤ x∗(t) ≤ β(t), t ∈ R
+.

Proof. Consider the truncation function

f∗(t, x) =





f(t, α(t)), x < α(t)
f(t, x), α(t) ≤ x ≤ β(t)
f(t, β(t)), x > β(t)

and the modified problem
{

−(φ(x′))′(t) = q(t)f∗(t, x(t)), t > 0,
x(0) = k1, lim

t→+∞
x′(t) = 0. (4.3)

EJQTDE, 2009 No. 56, p. 15



Step 1. To show that Problem (4.3) has at least one solution x, let the oper-
ator defined on E by

Ax(t) = k1 +

∫ t

0
φ−1

(∫ +∞

s
q(τ)f∗(τ, x(τ))dτ

)
ds.

(a) A(E) ⊆ E. For x ∈ E and t ∈ R
+, we have

lim
t→+∞

Ax(t)

1 + t
= lim

t→+∞
k1

1 + t
+

∫ t
0 φ

−1(
∫ +∞
s q(τ)f∗(τ, x(τ))dτ)ds

1 + t
= 0,

then A(E) ⊆ E.

(b) A is continuous. Let some sequence {xn}n≥1 ⊆ E be such that lim
n→+∞

xn =

x0 ∈ E. By the continuity of f∗ and the Lebesgue dominated conver-
gence theorem, we have for all s ∈ R

+,
∣∣∣
∫ +∞
s q(τ)f∗(τ, xn(τ))dτ −

∫ +∞
s q(τ)f∗(τ, x0(τ))dτ

∣∣∣
≤

∫ +∞
s q(τ)|f∗(τ, xn(τ)) − f∗(τ, x0(τ))|dτ −→ 0, as n→ +∞

i.e.
∫ +∞

s
q(τ)f∗(τ, xn(τ))dτ →

∫ +∞

s
q(τ)f∗(τ, x0(τ))dτ, as n→ +∞.

Moreover, the continuity of φ−1 implies that

φ−1

(∫ +∞

s
q(τ)f∗(τ, xn(τ))dτ

)
→ φ−1

(∫ +∞

s
q(τ)f∗(τ, x0(τ))dτ

)
,

as n→ +∞. Thus

‖Axn −Ax0‖ = sup
t∈R+

|Axn(t)−Ax0(t)|
1+t

= sup
t∈R+

|R t

0
(φ−1(

R +∞
s

q(τ)f∗(τ,xn(τ))dτ))ds−
R t

0
φ−1(

R +∞
s

q(τ)f∗(τ,x0(τ))dτ)ds|
1+t

≤ sup
t∈R+

R t

0 |φ−1(
R +∞

s
q(τ)f∗(τ,xn(τ)))−φ−1(

R +∞
s

q(τ)f∗(τ,x0(τ))dτ)|ds

1+t

→ 0, as n→ +∞,

and our claim follows.

(c) A(E) is relatively compact. Indeed

• A(E) is uniformly bounded. For x ∈ E, we have

‖Ax‖ = sup
t∈R+

|Ax(t)|
1+t

≤ sup
t∈R+

k1
1+t +

R t

0 φ−1(
R +∞

s
q(τ)f∗(τ,x(τ))dτ)ds

1+t

≤ sup
t∈R+

k1
1+t +

R t

0
(φ−1(

R +∞
s

q(τ)δ(τ)dτ))ds

1+t <∞.

EJQTDE, 2009 No. 56, p. 16



• A(E)
1+t is almost equicontinuous. For a given T > 0, x ∈ E, and

t, t′ ∈ [0, T ] (t > t′), we have

∣∣∣Ax(t)
1+t − Ax(t′)

1+t′

∣∣∣
≤ k1

∣∣∣ 1
1+t − 1

1+t′

∣∣∣

+

∣∣∣∣
R t

0
φ−1(

R +∞
s

q(τ)f∗(τ,x(τ))dτ)ds

1+t −
R t′

0
φ−1(

R +∞
s

q(τ)f∗(τ,x(τ))dτ)ds

1+t′

∣∣∣∣

≤ k1

∣∣∣ 1
1+t − 1

1+t′

∣∣∣ +
∣∣∣ 1
1+t − 1

1+t′

∣∣∣
∫ +∞
0 φ−1(

∫ +∞
s q(τ)f∗(τ, x(τ))dτ)ds

+

∣∣∣∣
R +∞
t′

φ−1(
R +∞

s
q(τ)f∗(τ,x(τ))dτ)ds

1+t′ −
R +∞

t
φ−1(

R +∞
s

q(τ)f∗(τ,x(τ))dτ)ds

1+t

∣∣∣∣

≤ k1

∣∣∣ 1
1+t − 1

1+t′

∣∣∣ + 2
∣∣∣ 1
1+t − 1

1+t′

∣∣∣
∫ +∞
0 φ−1(

∫ +∞
s q(τ)f∗(τ, x(τ))dτ)ds

+ 1
1+t′

∫ t
t′ φ

−1(
∫ +∞
s q(τ)f∗(τ, x(τ))dτ)ds

≤ k1

∣∣∣ 1
1+t − 1

1+t′

∣∣∣ + 2
∣∣∣ 1
1+t − 1

1+t′

∣∣∣
∫ +∞
0 φ−1(

∫ +∞
s q(τ)δ(τ)dτ)ds

+ 1
1+t′

∫ t
t′ φ

−1(
∫ +∞
s q(τ)δ(τ)dτ)ds.

Then, for any ε > 0 and T > 0, there exists δ > 0 such that∣∣∣Ax(t)
1+t − Ax(t′)

1+t′

∣∣∣ < ε for all t, t′ ∈ [0, T ] with |t− t′| < δ. Hence {A(E)
1+t }

are almost equicontiuous.

• A(E)
1+t is equiconvergent at +∞. Since

lim
t→+∞

Ax(t)

1 + t
= lim

t→+∞
k1

1 + t
+

∫ t
0 φ

−1(
∫ +∞
s q(τ)f∗(τ, x(τ))dτ)ds

1 + t
= 0,

then

sup
x∈E

|Ax(t)
1+t − lim

t→+∞
Ax(t)
1+t | = sup

x∈E

∣∣∣∣
k1
1+t +

R t

0 φ−1(
R +∞

s
q(τ)f∗(τ,x(τ))dτ)ds

1+t

∣∣∣∣

≤ sup
x∈E

k1
1+t +

R t

0 φ−1(
R +∞

s
q(τ)δ(τ)dτ)ds

1+t

which implies that lim
t→+∞

sup
x∈E

|Ax(t)
1+t − lim

t→+∞
Ax(t)
1+t | = 0.

By Lemma 2.4, A(E) is relatively compact. Finally by the Schauder fixed
point theorem, A has at least one fixed point x ∈ E, which is a solution of
Problem (4.3).
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Step 2. We show that α(t) ≤ x(t) ≤ β(t),∀ t ∈ R
+, in which case x is also a

solution of (4.1). On the contrary, suppose that some point t∗ ∈ R
+ exists

and satisfies x(t∗) > β(t∗) and let z(t) = x(t) − β(t). Define

t1 = inf{t < t∗ : x(t) > β(t), ∀ t ∈ [t, t∗]},

t′1 = inf{t > t∗ : x(t) > β(t), ∀ t ∈ [t∗, t]}.
Then z(t) > 0 on (t1, t

′
1), z(t1) = 0 and for all t ∈ [t1, t

′
1), we have

(φ(x′(t))′ − (φ(β′(t))′ ≥ −q(t)f∗(t, x(t)) + q(t)f∗(t, β(t))
= q(t)[f(t, β(t)) − f(t, β(t))] = 0.

Hence φ(x′(t)) − φ(β′(t)) is nondecreasing on [t1, t
′
1).

If t′1 < ∞, then z(t1) = z(t′1) = 0 and there exists t0 ∈ [t1, t
′
1] such that

z(t0) = max
t∈[t1,t′1]

z(t) > 0. Hence

φ(x′(t)) − φ(β′(t)) ≤ φ(x′(t0)) − φ(β′(t0)) = 0, ∀ t ∈ [t1, t0].

Then x′(t) ≤ β′(t) on [t1, t0], i.e. z is nonincreasing on [t1, t0]; therefore
0 = z(t1) ≥ z(t0), which is a contradiction.

If t′1 = ∞, then

φ(x′(t)) − φ(β′(t)) ≤ φ(x′(∞)) − φ(β′(∞)) ≤ 0, ∀ t ∈ [t1,+∞).

Then x′(t) ≤ β′(t) on [t1,+∞), i.e. z is nonincreasing on [t1,∞);
therefore z(t) ≤ z(t1) = 0, ∀ t ∈ [t1,+∞), which is a contradiction.

In the same way, we can prove that α(t) ≤ x∗(t). The proof is complete.

4.2 The singular problem

Using Theorem 4.1, our main existence result in this section is:

Theorem 4.2. Further to Assumptions (H1), (H2), assume that

(H5) There exist a constant M > 0 and a function k ∈ C(I, I) such that

f(t, x) ≤ k(t), ∀ (t, x) ∈ I × [M,+∞) (4.4)

with
∫ +∞

0
q(τ)k(τ) dτ < +∞ and

∫ +∞

0
φ−1

(∫ +∞

s
q(τ)k(τ)dτ

)
ds < +∞.

(4.5)

Then Problem (1.1) has at least one positive solution.
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Proof. Choose a decreasing sequence {εn}n≥1 with lim
n→+∞

εn = 0 and ε1 <

M, then consider the sequence of boundary value problems
{

−(φ(x′))′(t) = q(t)f(t, x(t)), t > 0,
x(0) = εn, lim

t→+∞
x′(t) = 0. (4.6)

Step 1. For each n ≥ 1, (4.6) has at least one solution xn.
(a) Let αn(t) = εn, t ≥ 0. Then

{
−(φ(α′

n(t)))′ = −φ(0) = 0 ≤ q(t)f(t, αn(t)), t > 0
α(0) ≤ εn, lim

t→+∞
α′

n(t) ≤ 0.

Let β be a solution of the boundary value problem
{
φ(x′(t))′ + q(t)k(t) = 0, t > 0
x(0) = M, lim

t→+∞
x′(t) = 0,

that is

β(t) = M +

∫ t

0
φ−1

(∫ +∞

s
q(τ)k(τ)dτ

)
ds;

then β(t) ≥ M,∀ t ∈ R
+ which implies that for any t > 0, f(t, β(t)) ≤ k(t).

Hence {
−(φ(β′(t)))′ = q(t)k(t) ≥ q(t)f(t, β(t)), t > 0
β(0) ≥ εn, lim

t→+∞
β′(t) ≥ 0.

For any n ≥ 1, αn and β are lower and upper solution of (4.6) respectively;
moreover

αn(t) ≤ β(t), ∀ t > 0.

(b) For all t ∈ R
+, by the monotonicity of h and p

h , the following esti-
mates hold

sup
x∈Dβ

αn(t)

f(t, x) = sup
αn≤x≤β

F
(
t, x

1+t

)

≤ sup
αn≤x≤β

m(t)p
(

x
1+t

)

≤ sup
αn≤x≤β

m(t)h
(

x
1+t

)
p( x

1+t)
h( x

1+t)

≤ m(t)h (εnρ̃(t))
p(‖β‖)
h(‖β‖) := δ(t).

Using (H1), we have
∫ +∞

0
q(τ)δ(τ)dτ < +∞,

∫ +∞

0
φ−1

(∫ +∞

s
q(τ)δ(τ)dτ

)
ds < +∞.

Then all conditions of Theorem 4.1 are satisfied. Hence for any n ≥ 1,
Problem (4.6) has at least one positive solution xn ∈ E with

αn(t) ≤ xn(t) ≤ β(t), ∀ t ∈ R
+.
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Step 2. The sequence {xn}n≥1 is relatively compact in E.

(a) The sequence {xn}n≥1 is bounded in E. By Step 1, we have

‖xn‖ = sup
t∈R+

xn(t)

1 + t
≤ sup

t∈R+

β(t)

1 + t
= ‖β‖, ∀n ≥ 1.

From condition (H2), there exists ψ‖β‖ ∈ C(R+, (0,+∞)) such that

|F (t, x)| ≥ ψ‖β‖(t), for t ∈ I and 0 < x ≤ ‖β‖ (4.7)

with ∫ +∞

0
q(τ)ψ‖β‖(τ)dτ < +∞.

Let

c∗∗ = φ−1

(∫ +∞

1
q(τ)ψ‖β‖(τ)dτ

)
.

Then we have the discussion:

• If t ∈ [0, 1], then

xn(t) ≥
∫ t
0 φ

−1(
∫ +∞
s q(τ)f(τ, xn(τ))dτ)ds

≥
∫ t
0 φ

−1(
∫ +∞
s q(τ)F (τ, xn(τ)

1+τ )dτ)ds

≥
∫ t
0 φ

−1(
∫ +∞
s q(τ)ψ‖β‖(τ)dτ)ds

≥ tφ−1(
∫ +∞
t q(τ)ψ‖β‖(τ)dτ)

≥ tφ−1(
∫ +∞
1 q(τ)ψ‖β‖(τ)dτ) ≥ ρ(t)c∗∗.

• If t ∈ (1,+∞), then

xn(t) ≥
∫ t
0 φ

−1(
∫ +∞
s q(τ)ψ‖β‖(τ)dτ)ds

≥
∫ 1
0 φ

−1(
∫ +∞
s q(τ)ψ‖β‖(τ)dτ)ds

≥ φ−1(
∫ +∞
1 q(τ)ψ‖β‖(τ)dτ)ds

≥ c∗∗ ≥ 1
t c

∗∗ = ρ(t)c∗∗.

Then, for any t ∈ R
+, and n ≥ 1, xn(t) ≥ ρ(t)c∗∗. Using (H1) and the

monotonicity of h and p
h , we obtain the upper bounds

q(s)f(s, xn(s)) = q(s)F (s, xn(s)
1+s )

≤ q(s)m(s)h(xn(s)
1+s )

p(
xn(s)
1+s

)

h(xn(s)
1+s

)

≤ q(s)m(s)h(c∗∗ρ̃(s)) p(‖β‖)
h(‖β‖) ·
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(b) The sequence {xn}n≥1 is almost equicontinuous. For any T > 0 and
t, t′ ∈ [0, T ] (t > t′), we have the estimates

|xn(t)
1+t − xn(t′)

1+t′ |
≤ εn

∣∣∣ 1
1+t − 1

1+t′

∣∣∣

+

∣∣∣∣
R t

0 φ−1(
R +∞

s
q(τ)f(τ,xn(τ))dτ)ds

1+t −
R t′

0 φ−1(
R +∞

s
q(τ)f(τ,xn(τ))dτ)ds

1+t′

∣∣∣∣

≤ εn

∣∣∣ 1
1+t − 1

1+t′

∣∣∣
+2| 1

1+t − 1
1+t′ |

∫ +∞
0 φ−1(

∫ +∞
s q(τ)f(τ, xn(τ))dτ)ds

+ 1
1+t′

∫ t
t′ φ

−1(
∫ +∞
s q(τ)f(τ, xn(τ))dτ)ds

≤ M
∣∣∣ 1
1+t − 1

1+t′

∣∣∣
+2| 1

1+t − 1
1+t′ |

∫ +∞
0 φ−1(

∫ +∞
s q(τ)m(τ)h(c∗∗ρ̃(s)) p(‖β‖)

h(‖β‖)dτ)ds

+ 1
1+t′

∫ t
t′ φ

−1(
∫ +∞
s q(τ)m(τ)h(c∗∗ρ̃(s)) p(‖β‖)

h(‖β‖)dτ)ds.

Then, for any ε > 0 and T > 0, there exists δ > 0 such that |xn(t)
1+t −

xn(t′)
1+t′ )| < ε for all t, t′ ∈ [0, T ] with |t− t′| < δ.

(c) {xn} is equiconvergent at +∞:

sup
n≥1

|xn(t)
1+t − 0| = sup

n≥1

εn+
R t

0 φ−1(
R +∞
s

q(τ)f(τ,xn(τ))dτ)ds

1+t

≤ εn+
R +∞
0

φ−1(
R +∞

s
q(τ)m(τ)h(c∗∗eρ(τ)) p(‖β‖)

h(‖β‖)
dτ)ds

1+t

→ 0, as t → +∞.

Consequently {xn} is relatively compact in E by Lemma 2.4. Therefore
{xn}n≥1 has a subsequence {xnk

}k≥1 converging to some limit x0, as k →
+∞. The continuity of f, φ−1 and the Lebesgue dominated convergence
theorem, imply that, for every t ∈ R

+,

∫ t

0
φ−1

(∫ +∞

s
q(τ)f(τ, xnk

(τ))dτ

)
ds→

∫ t

0
φ−1

(∫ +∞

s
q(τ)f(τ, x0(τ))dτ

)
ds,

as → +∞. Then

x0(t) = lim
k→+∞

xnk
(t)

= lim
k→+∞

(
εnk

+
∫ t
0 φ

−1
(∫ +∞

s q(τ)f(τ, xnk
(τ))dτ

)
ds

)

=
∫ t
0 φ

−1(
∫ +∞
s q(τ)f(τ, x0(τ))dτ)ds.

Hence x0 is a positive nontrivial solution of Problem (1.1).
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Example 4.1. Consider the singular boundary value problem
{

((x′(t))3)′ + e−t m(t)√
x

= 0,

x(0) = 0, lim
t→+∞

x′(t) = 0,
(4.8)

where

m(t) =

{
t√
1+t

t ∈ (0, 1]
1

t
√

1+t
t ∈ (1,+∞).

Here f(t, x) = m(t)√
x

, φ(t) = t3 and q(t) = e−t. Then φ is continuous, in-

creasing and φ(0) = 0. Therefore for each M > 0, there exists k(t) = m(t)√
M

∈
C(I, I) such that f(t, x) ≤ k(t), ∀ t > 0,∀x ≥M with

∫ +∞

0
q(τ)k(τ)dτ ≤ 1√

M

∫ +∞

0
e−τdτ =

1√
M

< +∞

and
∫ +∞
0 φ−1

(∫ +∞
s q(τ)k(τ)dτ

)
ds ≤

∫ +∞
0 φ−1

(
1√
M
e−s

)
ds

= ( 1√
M

)
1
3

∫ +∞
0 e

−s
3 ds = 3

(
1√
M

) 1
3
< +∞.

Moreover F (t, x) = f(t, (1 + t)x) = m(t)√
x
, for (t, x) ∈ I2.

(H1) Let p(x) = x2+1√
x
, and h(x) = 1

x · Then h is a decreasing function, g
h

is increasing and F (t, x) ≤ m(t)p(x), ∀ t > 0, ∀x > 0. In addition,
for any c, c′ > 0, we have

∫ +∞

0
q(τ)m(τ)h(cρ̃(τ))dτ =

1

c

∫ +∞

0
e−τdτ =

1

c
< +∞

and
∫ +∞
0 φ−1

(∫ +∞
s q(τ)m(τ)h(cρ̃(τ)) g(c′)

h(c′)dτ
)
ds =

∫ +∞
0 φ−1

(
p(c′)
ch(c′)e

−s
)
ds

=
(

p(c′)
ch(c′)

) 1
3 ∫ +∞

0 e
−s
3 )ds

= 3
(

p(c′)
ch(c′)

) 1
3
< +∞.

(H2) For any c > 0, there exists ψc(t) = m(t)√
c

such that

F (t, x) ≥ ψc(t), ∀ t ∈ I, ∀x ∈ (0, c].

As a consequence, all conditions of Theorem 4.2 hold and then Problem (4.8)
has at least one positive solution.
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Smäıl DJEBALI (e-mail: djebali@ens-kouba.dz)
Department of Mathematics, Lab. EDP & HM, E.N.S. Po

Box 92 Kouba, 16050. Algiers, ALGERIA

Ouiza Saifi (e-mail: saifi kouba@yahoo.fr)
Department of Economics, Faculty of Economic and Man-

agement Sciences. Algiers University, Algeria

(Received June 27, 2009)

EJQTDE, 2009 No. 56, p. 24


