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Abstract

Problem of the type-A,u = f(u) + h(z)in (a,b) with « = 0 on
{a, b} is solved under nonresonance conditions stated with retpte first
eigenvalue and the first curve in the FuCik spectrung-ef,, Wol’p(a, b)),
only on a primitive off.
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1 Introduction

This paper is mainly concerned with the following quasiéinevo-point bound-
ary value problem

—(pp(u)' = f(u) +h(x)  in (a,b)

(P) = u=0 on {a,b}

whereyp, : R — R is defined byp, (s) = |s|P~2s, with p €]1, +o0],
f: R — R, is a continuous function anfde L'(a, b).

LAMS subject classification: 34B15
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We denote by) _ the set of couples of positive numbéys, , i) such that the
homogeneous problem

—(p(u))" = pyp(u’) = pogp(u™) i (a,b)

(Pr) = u=20 on {a,b}

has a nontrivial solutiomn.. Hereut = maz(u,0), v~ = u™ — u. The set
S is called the Futik spectrum of the p-Laplacian operatdy, on W, ”(a, b).

Denote respectively by, and\, the first and the second eigenvalue-ef\, on

Wy"(a,b). Itis well known that$" is composed of two trivial lineg;, x R and
R x A1, and of a sequence of hyperbolic-like curves (cf [2],[6heTfirst curve’;

passes through, and is the set

a

Oy = {(t 1) € R, 1/ () 4+ 1) (uy ™ = 2%

Tp

wherer, = 2(p — 1)/7 [} AT

Let us denote by’ the primitive of f defined byF(s) = [ f(t) dt. In some
previous works (see for instance [1],[3],[4], [10] ) manyttzars have proved the
solvability of (P) wherm € L*>(a, b) under various nonresonance assumptions on
either the nonlinearity’, or on the primitivel’, or on bothf andF'. As far as non-
resonance conditions are considered at the right pthe Dolph-type condition:

A1 < liminf /(s) < lim sup f(s) <
s—too |s[P72s T 4o |S[P72s

A2 1)

is sufficient to yield solvability of (P) wheh € L*>(a,b) ( See [1]). It was
observed in a recent work in [3], that weaker conditions wébpect to the first
curve in the Fucik spectrum such as

F
A1 < lim supp () < limsup f(s) < s (2)
s—+oo |S| s—+00 |S|p725
and
. pE(s)
g%lgof B p(Or ) 3)

coupled with
lim sgn(s)f(s) = +oo

|s|—+o0
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yield the same conclusion. Adapting an example given in¢8f can observe
that assumption (3) cannot be relaxed to

lim inf /(s)

s—+00 |S|p_28
or

S——0Q

< pg(Or )

Our purpose in the present paper is to weaken nonresonandéions (2)
and (3) at the light of a recent contribution in [11] fer= 2. Indeed, in [11] the
solvability of (P) wherp = 2 occurs under assumptions such as

‘ |1im sgn(s)f(s) = +oo 4)
Ss|—+00
.. .2F(s)
i e ©
and
2F 2F
lim inf §S> = U, lim sup # =v (6)
s——+00 S S——00 S

wherey; is the first eigenvalue of A, on H{ (a, b) and(u, v) is such that

% +LF>b—alt is worth noticing that the roles of at infinity in (6) are in-
terchangeable. Clearly, assumption such as (6 )improyes (Be particular case
of p = 2 and the question naturally arises to know whether similau@ption
can be extended to the p-Laplacian. The aim of this work istestigate such a
problem and as a result of this investigation we have thevioiig.

Theorem 1.1. Assume that
(hl)| ‘lin_f: sgn(s)f(s) = +oo

(ha) lim inf pEL) 5 )\

|s|P

(3) lim inf L =y, lim sup L —
or liminf p‘i'(;) = U, lim sup p‘i'(;) =v
§——0 s——+00

with  1/p'/? +1/01/P > b;—p“
Then problem (P) is solvable for ahye L'(a,b).

As a consequence of our main result we have the following

Corollary 1.1. Assume that
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lim sgn(s)f(s) = +o0

|s|—=+00

lim inf 2£6) > )\,

s—=+o0 |sP

and I;Ill_:&f p|s\(; < Mg, hslgilop pwf) <X
.. F( . F(s)

o g <n <

Then problem (P) is solvable for aye L'(a,b).

Needless to mention that the limitsat are interchangeable.

Thus, our result improves [3] in what concerns the condgiath respect to the
first curve in the FucCik spectrum.

The proof of Theorem 1-1 is given in section 4. Basically,ses time-mapping
estimates to yield the needed a-priori bounds for a suifadlametrized problem
related to (P) and combines topological degree argumewitcgde . Our section
2 is devoted to the establishment of general propertiesifasitinear differential
equations useful for the proof of our main result. In secBome have given new
estimate results for the time-mapping related to the p-4@ph and accordingly
improved some estimate results stated in [10]. Those esgpday a central role
in the proof of Theorem 1-1.

2 General properties

Here we give general results for a large class of paramdtgaasilinear prob-
lem of the form

~

—(pp()" = f(x,u,7) + () in (a,b),7 €0,1]
(Qv) =
u=0 on {a,b}

We assume that € L'(a,b) andf : [a,b] x R x [0,1] — R is a function satis-
fying the following:

(i) sign condition:sgn(s)f(x, s,7y) > —c for a positive constant, for a.e.z €
[a,b] and fory € [0, 1];

(i) L'-Carathéodory conditionf(x, .,7) is continuous for a.ex € [a,b], v €
0,1], f(.,s,~) is measurable fos € R and~ € [0, 1]; moreover for eactk > 0,
there isT; € L'(a,b) such that|f(z,s,v)| < Tr(z) for all [s| < R, a.e.

r € [a,b], and fory € [0,1]. Solutions to(Q.) are intended in the sense that
u € C'a, b], ,(u') is absolutely continuous andsatisfies Q. ).

For any solution: of (),) we set here and henceforth the following
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Definition 2.1. We denote by* the first point of maximum aof and z, the last
point of minimum of..

Definition 2.2. For any K such that) < K < max u, we denote

ap = max{z € [a,z"),u(x) =0}
fo = min{z € (z*,b],u(z) = 0}
axg = min{z € [ag, z*],u(zx) = K}

B = max{z € [z", o, ], u(z) = K}

Definition 2.3. For any K’ such that) > K’ > min u, we denote

ay = max{z € [a,z,),u(zr) =0}

B = min{z € (z.,b],u(z) = 0}
= min{z € [ag, 2], u(z) = K'}
By = max{x € [z, 5], u(x) = K'}

Writing the first equation iriQ),) in the planar system

pp(u) = y(x) —yH(x) (7)

y'(z) =—flz,u(z),7) (8)
with f(z,s,7) = f(z,s,7) + candH(z) = [(h(t) — ¢)dt, we derive the
following.

Lemma 2.1. A positive constant exists such that any solutianof (Q), ) satisfy-
ing max u > L, fulfills the following conditions: there exist uniquelytelemined
real numbers andp, withay < p < z* < p < 3, such that

i
X y(x) > [Hlw on [ao,p)
ly(2)| < |||l on|p, p]
y(x) < =[|Hllw on  (p, 5]
(i) wis strictly increasing oy, p], strictly decreasing ofp, (5] and
maxu — L < u(x) <maxu on [p,p]

If furthermore R
lim f(z,s,7) = +00

§—-+00

uniformly for (y € [0, 1], and a.ex € [a, b]), then for anyK > 0 such that
K < maxu we have
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(iii)
Kliffrloo(OZK - OéK—L) = Khm (ﬁK L — ﬁK) =0

Remark 2.1. A dual version of Lemma (2.1)involving, 5, o/}, 37 can be ob-
tained in the case that is a solution of the planar system withinu < —L
and

lim f(z,s,v) = —o0

S§——00

uniformly (fory € [0,1] and a.e.z € [a,b]). In this casef and H in the planar
system are writterf (v, s,7) = f(z,5,7) — ¢, H(z) = [*(h(t) + ) dt.

Proof of Lemma 2.1
The proof of Lemma 2.1 in the particular cgse= 2 is given in [11]. We give
here the general case for apy> 1. So, let us considety, 5y, z* as set in the
definitions 2.1, 2.2. Sincg(x) = —f(, u(x),~), from the sign condition orf,
we have thay is strictly decreasing ofrv, 3y) and accordingly

ylao) > y(z") > y(5o)
Moreovery'(z*) = 0, and then (7) yields

ly(2")| = ¢p(0) + vH ()| < | H]|oo

Let [p, p] C [, fo) be the maximal interval containing and such that
[y (@) < Al (9)

Clearly, for such an interval, part (i) of Lemma 2.1 holds.
Sinceyp, is a bijection orR, one can write (7) on the form

u'(x) = ¢, (y(a) — vH(x))
And then using the monotoniciity @f, and (9), we have fos € [p, p]

W/ ()] = |, (y(w) = vH(2))| < 0, (2] H]loo)
Accordingly, forz” andx” in [p, p|, we get
u(a") — u(a)| < |/ v) de| < (b a)gy (2] Al).
Consequently we get
lulloe = (b= a)p, ' (2] Hlloo) < u(2") < |lullo forall 2" € [p, 7).
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So by settingl. = (b — a)gp;l(2||ﬁ||oo), we have part (ii) of the lemma.
To deal with part (iii) of the lemma, we note that Siﬂdﬁgl flz,s,7) = +o0
uniformly for~ € [0, 1], and a.ex € [a, b]), for anyk > 0, one can choose, > 0
large enough such that

f(z,s,7) > kforall s > v,y € [0,1], anda.e. z € [a,b].

ChooseX with K > v + L whereL = (b — a)p; (2] H||)-
Let’s consider any solution df;), ) such thatnax u > K.
SinceK — L < u(r) < K whenz € [ag 1, ak|, we have

fz,u(z),y) >k, forallz € ax_p,ak], andy e [0,1] (10)

and then

xT

() = ylane) + / () dt

[£77¢

/ f (t,u(t on J[ag_r,ak]

Sincemaxu > K, we haveny € [, 2*] and then by using part (i) of the lemma
and condition (10) we have

y(@) > —|Hlloo + ko — ).
And then
u'(x) = ¢, (y(x) — vH(x)) > 0, (=2/|Hl|oo + k(ax — ) onax_p, k).

Next, we derive from the integration of on [ax_ 1, ak] the following inequality

Lo —ulow-0) > [ o (2 +hlax—0)de ()

OK—-L

To go further with the integral in the left hand-side of (1&},us set

* ’ -1
v = [ e
A simple computation shows that
2-p P
¢, (s) = s|s|==1  forall s € R andp €]1, +oo[and thenl’(s) = %‘S‘ﬁ forall s €

R andp €]1, +ool. Clearly ¥; is an even strictly increasing function @, . Let
us denote byis~'(s) its positive inverse function oR ..

*— p et
Ul(s)=(——) " s 7 ,seR,.
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On the other hand, the function
© o W(—2| Al + k(ax — )
is differentiable with respect to and so

(-2l + Ko — )] = —ky (2 Al + bax —2)) (12

Combining (11)and (12), we get

1 * ] o
L 2 =2 (V=20 Hloo + klax — 2))I5%_,
and then
kL + 052 Hl o) = 5(—2||Hloo + k(ax — ax_r)).

Now, using the positive inverse df;, one has

U EL + U*(2||Hlo) + 2| H || o
o —any < 2r ( p(]! |oo) + 2| H]| (13)

One can easily see that the right hand-side of inequality {d8quivalent td: ~/»
at infinity. So whenk tends to+oo, k& tends to+-oo, and then

lim (OZK - OZK_L) = 0.
K—+o0

A similar argument onfy, fx 1| leads to

K—+o00
So Lemma (2.1) is provedl

Remark 2.2. WhenK = maxu, thenag = (x = z* and then from (iii ) of
Lemma(2.1) we have*lin+1 (Bmaxu—r — Omaxu—r) = 0.

Lemma 2.2. Letu be a changing sign solution @f).,) for v € [0, 1] and let A,
be a positive real number such thabxu < A or minu > —A uniformly with
respect toy € [0, 1]. Then a constant/ ( depending only ont ) exists such that
|u|loo < M.
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Proof Let us consider only the caseaxu < A, the second casainu >
—A of course can be proved similarly. Thus, suppose on the agntihat there
exist a sequencey,) € [0, 1] denote(~) for sake of simplicity of notation, and
corresponding solutions,, of (Q),), with maxu, < A andminu, tending to
—oo. Then, from the sign condition and ttié-Carathéodory condition ofi we
have

A~

f('r7 U, 7) S CX{un<O} + FA'X{OSUH<A} = F(I‘)

where for any sef, y denote its characteristic function. Choose two points
x} andz,, such that,(z}) = maxu, andu,(z.,) = minu,. We can suppose
without loss of generality that’ > «,,,. Seta,, = u,, — u, with (z} — x.,)u, =

f;f u,(x) dz. Then after the multiplication of the first equation(i@.,) with a,,
and its integration ovelrr.,, x|, we have

/%mu@vm:i/%M@mmw—r@mumwm+/%hu@+@mu@nm

< [Jinloo{ / [— (2, tn, V) + T(@)] dz + | |h]|s + [|T]|1 }-
But .

and then we have
/ @) de < 20kl + [Tl ] oo (14)

From the Holder inequality we have

@ty < oot [Tl .
Combining the above inequality and (14), we get
(max iy, — min i) < 2(b — )" [[[Al |1 + [[T]]a]] |l (15)
Since||a,|[?, < (max 4, — minw,), inequality (15) yields
il oo < 277 (b = @)[|[Al s + |IT]1]77

So the sequenceif) is bounded and hende,,) is bounded. This is a contradic-
tion to the fact thatnin u,, tends to—oco. B
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3 Time-mapping and auxiliary functions

3.1 Time-mapping estimates

Let’s consider the initial value problem

{ —(pp(u)) =g(uw) ~ on R

Whereg : R — R is a continuous function satisfyingn(s)g(s) > —cforc > 0
andG(s) — +oo.
The functionr, defined by

° d§ .
74(s) = 20psgn(8)/0 I OPEGIE forsin R

wit(rIl)G(s) = [y 9(&)dg ¢, = ﬁ andp* = .7 is the time-mapping associated
to (1).

Under the assumptiongyn(s)g(s) > —c for ¢ > 0 andG(s) — oo when

|s| — +oo, 74(s) is well defined for|s| large enough. By adapting arguments
developed in [12] for the cage= 2, one can easily derive that fedarge enough
() admits a periodic solutiom,with ||u,|| = s andr,(s) is the value of the
half period. Time-mapping enables to provide a-priorirasties for solutions of
boundary value problems ( cf [7], [10], [11], [12]). Here, w&e new results
on the time-mapping estimates extending and even impr@onte results in [7],
[10], [11], [12].

Lemma 3.1. Assume that there exist positive real numbersand k.. such that

lim sup pG(s)/|s|P = k* (resp.liminpr(s)/\s\p =ky)

s—=o0
then
limiinf 74(s) > ﬂp/(k:i)l/p (resplim sup 7, (s) < m,/(ks)"?)
STEO0 s—+oo
Proof.

One can notice that under the assumptign(s)g(s) > —c for ¢ > 0 and the
fact thatk™ k.. are greater thaf, G(s) — +oo when|s| — +oo so thatr,(s) is
well defined fors large enough. Let’s limit the proof of the lemma to the cases
limsup pG(s)/|s|P = k~, (resp.lig} i&pr(s)/\s\p = k_), the other cases being

§——00

similar.
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Fors < 0 and for any¢ such thats|” > |£|?, we have

G
lim sup p7<8>
s——co [P —[€]P
. . | s|P _
= limsup pG(s)/|s|F x lim ————— =k
§——00 s ‘S‘I) - |€|p

and then

) 2600 ) e

[s[P = [€lP [s[P = [€]P

So fore > 0, there is a real numbeg < 0 such that fos < s, we have
G(s) = G(§) < 1/p(k™ + ) ([s|” — [£").
Recalling the expression af(s) and taking into account inequality above, we get

S0 dg
mo(s) 2 2/ Gs) — GO

2Cpp1/p /so dg
s |

lim sup [

S§——00

T (ke |sP — |g[P]P
Settingz = ¢/s, one has
20p — 1)/P 1
T,(s) > (p=1) dz = "> forall s < sy < 0.
! (k= + )7 Jo [L=2Plr (k= 4 )'/P
Thus .
timinfr(s) 2 o2

For the caséim inf pG(s)/|s|P = k_, we have
Ve > 0, there is a real numbeg < 0 such that fors < s,

G(s) = G(&) = 1/p(k- = e)([s|” = [¢]"), foralls <& <0.
So, fore sufficiently small such that_ — ¢ > 0, we have

2Cpp1/p 0 d&
) < G T / sl — €7

And by a simple computation as previously done we get

. T
hsrgilop T4(s) < )
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3.2 Auxiliary functions related to the time-mapping

Let us consider the following parametrized problem
—(pp(u) = g(u,y) +7h(x)  In (a,b),7 €[0,1]
u=0 on {a,b}

whereh € L'(a,b) andg(.,7) : R — R is a continuous function for any

v € [0,1]. (P,) is a particular type of problert.) where the nonlinearity

does not depend on. We assume thaf satisfies the following sign condition:
lim sgn(s)g(s,vy) = +oo uniformly with respect toy € [0, 1]. From this sign

|s| =00
condition, one can find a positive constarguch thatsgn(s)g(s,vy) > c for all
v € [0, 1]. Let us set

mwz/%mwam @@z/E@w@,

for eachy € [0, 1], and wherej(s,y) = g(s,v) + ¢ for s > 0 andg(s,v) =
g(s,v) — cfor s < 0 The planar system equivalent to the first equatio(A) is
written

pp(u) = y(x) —yH(z) (16)
y'(z) = —glu(z),7) (17)
for x € (a,b) and~ € [0,1]. It is clear that the planar system (16), (17) is a
particular case of the planar system (7), (8) and hence Le(@mais valid for
any solution of (16), (17) as well.

For any solution: of (16), (17), let us consider the functi@h wheree = +1 and
defined by

7.(a) = P lula) + el 1|1 + G (u(a)) - ona

with v € [0, 1] andp > 1. One can easily see that

T!(w) =y (@)[[y(@) + el [H||oel 7 (y(@) + €| H]]o0) — '(2)]

Recalling part (i) of Lemma (2.1), we derive that:
fore = —1

:m@:{wmmwwmwﬁiwm on [a,
) —y'(@)[(—y(x) + || H||o)7 +2'(z)]  0np, ]
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fore=1

Ti() = { Y @)(w(@) + | Hll)7 (@) onfay, 7
—y'(@)[(—y(z) = [|H||o) 77 + ()] onp, B]

So recalling again part (i) of Lemma (2.1), one can easilyckhkat

T'\(x)20 onlag,p] Ti@) <0 onlp,G) (18)

Accordingly we have

T_\(2) < Toa(p) = Gy (u(p)) < Gy(maxu)  on o, ) (19)

<
Ti(z) < Ti(p) = G, (u(p)) < G,(maxu)  onlp, ]

Taking into account the expressionsiof, (x) andT; (x) and recalling again (i) of
Lemma 2.1, we get

W) <o 2] Hl e+ *) 7 (G (maxu

< szjl[QHgHoo + (p*)T(éy(maxu

Next, by setting = u(x), we get

S— S—
|
QO
=2 =2
— —
I~y I~y
— —
= =
S— S—
S— S—
S— S—
<L =]
(@] (@]
=) =)
N
S
S <

(Bo—a) > (Bo—p)+ (p— ) >

. /u(P) ] ] dé¢ ] _ (20)
0 12 V| H] oo + (G (maxu) — G (u())) 7 ]
» /U(p) d¢
“Jo o 20 Y H] oo + (G (maxu) — Gy (u(x))) "7 ]

From Lemma (2.1)u(p) andu(p) are greater thamaxu — L and then writing
max u = s in (20), one has

(8o — a0) = 2¢, / k@
0 g e[|l + (Go(s) — Gy (€))7

fors > L.

Considering the function®_; andT; respectively oray, p'] and [y, 35] where
ap, o'y, By are the equivalents efy, p, p, Gy in the dual version of Lemma (2.1),
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and arguing as above within u playing the role oinax u, we get

(By — ) = (By — )+ (0 — o) >

p—1

¢ /0 &
@) g5 26| ]| + (G min ) — G (u(z)))

te /° &
" Jute) o5 20, Y H|loo + (G (minw) — G (u(x))) 7 ]

Next, writingmin v = s and taking into account the fact that from the dual version
of Lemma (2.1)u(p") andu(p’) are lower thamin v + L, one has

(22)

p—1

’ d
(5 - ) 2 26, | : =

s+L 05 20771 H||oo + (G (s) — G4 (8))

fors < —L.

In conclusion we have
(Bo — o) + (B — ap) >

2¢c,0 Z / dé ) (23)

ce{—1,1} 26,77 Hlso + (G (5) = G4(€)) 7 ]

for |s| > L.

ThusT. provides lower estimates for the length of the interVals 5,] and[«y,, 5]
Let us now deal with upper estimates providey

Going back to (18) and to the expressiongofr) and7"_; (z) we derive that

Ti(z) > Ty (z%) > CEY (maxu) on |ag, x|
Ty(z) = Toq(2") =2 Gy(maxu) on [z, o]
and hence
(@) = 0 [<2/|Hl oo + (") T (G, (maxu) — G, (u(@)))7 ] (24)

*

on [, «

-

p—

g
—u'(x) 2 ¢, [<2/|H||oe + (") 7 (G (maxu) — G, (u ( M (@8)
on [z, B

0

From part (i) of Lemma (2.1), one h@sy, amaxw—1] C [0, 2*] @and|Bmax w1, Fo] C
[z*, Bo]. So letus consider inequalities in (24)and (25) respestivelag, dmax w1
and[Gmaxw—1, Bo] and let us assume that the following is satisfied (we will show
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farther in section 4 that such a condition is indeed satisfreter suitable condi-
tion):

p=1

—2||H||w + (0) "7 (G, (maxu) — G, (u(2))7 >0 (26)
on [a07 amaxu—L] U [ﬁmaxu—La BO]

Then, we derive after the change of variable () in (24) and (25), that

(ﬁO - ﬁmaxu—L) + (amaxu—L - aO) S

maxu—L
QCp/ ~ d~£ ~ p—1_°* (27)
0 vy (=267 [ Hlloo + (G (maxu) — G4 (€))7 |
Arguing in a similar way, one can show that
(B0 = Brainutz) + (Cminarr, — @) <
0
2, [ ke
minu+L o1 [=26,P [ H|oo + (G (minu) — G4 (€)) 7]
Now, let us set
s—sgn(s)L d
T.(s) = 20psgn(s)/ ) - : . 1
0 oy 'K+ (Gy(s) = GA(8)) 7]
with |s| > LandK > 0.
7,(s) = 2c¢,sgn(s) /S de
v - D ~ ~ 1
0 [Gy(s) = Gy (&)

with |s| > 0.
One can easily see that according to (21), (22)

(Bo — ap) > Ty(maxwu) for maxu > L (29)
By — ap) > Ty(minw) for minu < —L (30)
with K = 2||H||

On the other hand, the following lemma shows that) is a good approximation
of T, (s) for s large enough.

Lemma 3.2. Assume that lim g¢(s,y) = +oo uniformly with respect tg.. As-

|s| =00

sume that at least one of the functidhigs) andr, (s) is uniformly bounded with
respect toy. Then

lim [7,(s) — 7,(s)] = 0 uniformly with respect tg.

s—Foo
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Proof Without loss of generality, we can suppose that ifi$s) which is
bounded uniformly with respect tg. Furthermore the proof will be given only
for the cases — +o0, the cases — +oo can be dealed similarly. So, let us
consider

s—L df
T.(s) = 2¢ — — —
/0 ‘P;l[K + (G, (s) = GL(§)) 7 ]
fors > L
S dé’
Ty(S = 2Cp = = 1
) /0 [G’Y(S) - Gv(&)]g
fors > 0.

We observe thak” > 0 implies

p—1

90;1[K + (év(s) - év(g))%l] > ‘P;:l[év(s) - év(g))T] = [év(s) - év(g)]

for 0 < ¢ < s, and thusr,(s) > T, (s) for s > L.
So, it suffices to show that for ary> 0, 7, (s) — 7,(s) < e for s large enough.

B =

Since 1i1+n g(s,7) = +oo uniformly with respect toy, for any A > 0 there
exists a real numbet > 0 such that

g&,v)>A for ¢>d andye|0,1] (31)
and
G (d) > G, (&) for 0<¢<d andyelo1]. (32)

Chooses such thats > d + L with L > 0,

7 (s)=T,

(5)> I =2, / L gy 1K+ (Go(s) = Ga(€) 7]

Let us split the integral | as follows

d s—L
]ZQCp |:/ +/ :| ZQCp[Il+]2].
0 d

Dealing with the first term of this decomposition, we get bingghe monotonic-
ity of ¢ *

d df d dg
Il S ~ ~ 1 S ~ ~ 1
/ Gols) — G ()] / Go(s) — Gl
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Tendings to infinity, we notice that the right-hand side integral ted zero. So

for s large enough we have

2Cp]1 < ‘

To deal with the second teri,we write it as follows

12:2%/ P+ (Go(39) = Ga() 7 ] = (G (s) = <>3p]

p

P K+ (G (s) = G (€))7 1[G (s) = G4(©))

In order to estimaté, the following inequalities will be useful.

Claim 1.
(i) A positive constan® exists such that for any real number$

la —b]P < D(|al’2a — [bJ"?b)(a —b) for p>2
(i) If a, b are non negative reals numbers then
(a+ b)Y =0 <pa(a+bP*t for p>1

and
(a+Db)P — b <pab’' for 0<p<1

Proof.
For the case (i), on can refer to [9].
In order to prove (ii), let us consider the function

r(y)=(y+b?P for 0<y<a.

Obviouslyr is derivable and its derivative functiof(y) = p(y + b)?~! is increas-
ing on [0,a]. So,

r(a) —r(0) = ar'(¢) < pala+b)P' for 0<é<a

Thus(a + b)? — b < pa(a + b)P~L.
The second inequality in (ii) follows similarly and thusioha(1) is proved

Now, let's go ahead with the proof of the Lemma (3.2). Usingficlaim (1)

with a = ¢, '[K + (G, (s) = G,(€))"7 ] andb = o, (G (s) = G1(§) " | we
have

oy [ + (G (5) = G )T | = ¢, (G4 (s) — G4(6)) ] < (D)7
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forp > 2.
1 . - - - -
Forl <p <2, we haveﬁ > 1 and then we can apply the first inequality in (ii)

~ ~ P

of claim (1) with -1 playing the role of, a = I, b = (G, (s) — G, (€))7 .
Thus, we have

that is

In conclusion:
For p> 2

dg
UK + (Gyls) = G (€))7 1[Gy (5) = Gy ()]

s—L
2,1, < 2c,(DK)7 T /
i g

(DK)r (DK)7T

< 75 X T,(s) < LA T.(s).

 [Lming(&,v)eefs—1,1)
SinceT’, is uniformly bounded with respect tg by choosing A large enough we
have2c, I, < €/2.
For 1<p<?2

2,1 < 20, K /S_L (K :" (é'y(s) - éw(f:)l);]ﬁ d§
-1/, . G,

p

Z 2K [ [K/(G(s) = Go(€)'F + 1]+ de

TP la K 4 (Gy(s) — GA(€) T NG (s) — G

S2cpK K 71+1]%x _ 1 "
P =1 [Lmin (&, Yeets-r.] 7 (L min G, V)eepur,o] 7"

/‘S—L df

4 o K+ (Gy(s) = Gy (&) 7 ]

-1
p

[un

EJQTDE, 2009 No. 57, p. 18



il L a1
(LA)T (LA

Here again, forA large enough, we ha, I, < ¢/2 and finally, we get
2¢,(I1+15) < efor s large enough, thatis,(s) —7,(s) < e for s large enoughill

K
e

An analogous of Lemma (3.2) holds whénis a negative real number. In
order to state it let us start define

S s—sgn(s)L d§
7.(5) = 2e,500(5) | 1+ (Cos) — GO

with |s| > L(33)

and K a negative real number.

dg
A(8) = G, (&)
It is worth noticing that according to (27) and (28)

s—sgn(s)L
7(s) = 20psgn(s)/ % with |s| > L (34)
0 G

(maxu — L) (35)

(BO - Bmaxu7L> + (amaxqu - Oéo) S ~7
ap) < T, (minu + L) (36)

(5(,) - ﬁr,ninquL) + (a;ninquL - 6)

with K = —2||H|| .

Lemma 3.3. Assume that lim ¢(s,~y) = +oo uniformly with respect tey and

|s|—=+o00
that at least one of the functiofi3(s) and,(s) is uniformly bounded with respect
to v. Moreover, suppose that the following condition is satikfie

p—1

(¢1) K+ (G (s) =G, (€))7 >0 foréec0,s— L], withs >0
or
&) K+ (G(s) — G ()7 >0 for¢e s+ L,0], withs < 0.
Then respectively .
ETOO[T”(S)_%”(S)] =0 or SEI_HOO[TV(S)—%W(S)] =0 uniformly with respect to.

Proof. The proof is not too different of that of Lemma (3.2).We veKetch it
below. Suppose that,(s) is uniformly bounded with respect tpand let’s give
the proof whens — +oo (the other cases being similar).
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SinceT (s) > 7,(s) for s > L, we shall just have to prove that for any> 0,

T, (s) — 7,(s) < e for s sufficiently large.

oy =2, [ (A= GO = K+ Gl =G Pk
S 1(5) = GOy K + (Go() — G (€))7

0 [G4(s) — vy
:2Cp [ / :| p[f1+i2]
with d as in (31)and (32). And then

722"

SN—
m»—

.—\

i < / de .
"o UK+ (Gy(s) — G (d) 7]

So fors large enough, we ha\m:pfl < €/2.
To estimatel, in the case > 2, we proceed similarly as in the proof of Lemma
(3.2) by using (i)of claim (1) to yield

o (G (s) = G () 7

and next

p—1

= 1K+ (Gy(s) = Go(9)7 ] < (-DK) 7

2,15 < oAl 7(8).

Hence2cpf2 < ¢/2 for s large enough angd > 2.
In the casd < p < 2, following the same way as in Lemma (3.2), we apply the
(i) of claim(1) by writing the numerator of; in the form

1 p—1

ey (K 4 K+ (Go(s) = G1(0) 7 ] = o, [ + (Gy(s) = G (€))7 ]

and by settingi = —K,b= K + (G(s) — Gv(g))%l; and then we obtain

sy <20, [ ([ + (Gos) = Cu(e) T v
P=2Ja o K+ (Gy(s) — Gy (€))7 ][G4(s) = G (8]
2, K _ /S‘L _dE 1
(P — (e, ' [K + (Lmin §(&, V)ees—z,0) 7 P [Gy(s) = Gy (€]
So
2T, < — k ()

(p = 1), [K + (Lmin §(&, Vectsr,0) 7 )P~
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K -
< - 7 (s

p—1 2l
(p — (g, '[K + (LA) » )
where A is as in (31). Since€ (s) is uniformly bounded with respect tp, we

have2c,I, < ¢/2 for s large enough and theh, (s) — 7, (s) < ¢ for s sufficiently
large.®

4 Proof of the Theorem.
Let us consider the following parametrized problem
—(pp(u)) = (1 = 1)0py(w) +9[f(w) + h(z)]  in  (a,b)
{ u=0 on {ab}

wherey € [0, 1] andé is such that\; < 6 < min(u_, py).

Notice that the function defined by(s,v) — (1 — v)0y,(s) + vf(s) is a partic-
ular case of the functiorf and accordingly under the assumptions of Lemma
(2.1)(respectively Lemma (2.2)), the conclusions of Lem{@4)(respectively
Lemma (2.2)) are also valid fd@iS, ) as well.

Under the assumptiorig, ), (h3) of the theorem the following lemmas hold.

Lemma 4.1. Under assumptioiii; ) and the first part of assumptign;), that is

lim sgn(s)f(s) = +o0

|s|—+o0

F F
lim inf £ () =, limsupp () =
I Tl P Tl

with )
1/p? 41/ > ¢

p

(i) there exists a sequen®s — +oo such that ifu solvegS.,) for somey € [0, 1]
andu changes sign, themax u # S, for everyn and everyy € [0, 1].

(i) When(h, ) and the second part ¢h3) hold, there exists a sequerite — —oo
such that ifu solves(.S,) for somey € [0, 1] andu changes sign, themin u # T,
for everyn and everyy € [0, 1].

Proof.
We prove only the first statement, the proof of the second engglsimilar. First
let us denote by the function (s,~) — (1 — v)0p,(s) + vf(s). According to
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(hy) ‘ |lim sgn(s)g(s,7y) = +oo uniformly with respect toy and hence there is
S|—+00

a positive constantsuch thakgn(s)g(s,y) > —cforall s € Rand ally € [0, 1].
Let G, be the primitive such that

G (s) fo (t) dt fors>0
N0 t dt fors <.

For such a7, we associate the functiati defined by

() = J7(h(t) —¢)dt = €[a,b] when G, operates off), +oof
L [F(h() 4+ ¢)dt x€la,b] when G, operates of— oo, 0].

From the first part ofhs), we have

- pé'y(s)
lim inf S]P < u (37)
lim sup PGy (5) v (38)
I e

Chooseu’ > 1 such that the paind, v) still lies below(', that is

—a

S VA
For such g/ we have

lim sup(,u'g —G4(s)) = +o0

s——+00

Hence, there exists an increasing sequence: +oo so that for each

p(G(sa) = G(s)) < 4 (sh — s") (39)

forall s € [0,s,[with s, > L = (b—a)p, L(2||H||s)

ChooseS,, as a tail sequence of the sequen,gand suppose that with such a
Sp, Lemma 4.1 is false. Then, one can find a subsequengg stfll denoted by
sy, and solutions.,, of (S,) for v = v,, € [0, 1] satisfyingmax u,, = s, — 400,
and hence according of Lemma (2.2)inu,, — —oo. Let's show below that
such a sequence solutions leads to a contradiction. So¢tatsider the real num-
bers (v, p, p, o) and @y, o', o/, 35) corresponding to the sequence solutiaps
as respectively in Lemma (2.1) and in its dual version. Fersiéike of simplicity
we will keep the notationsy, p, p, 3o anday, o', ¢/, 35, however those numbers
depend om . Recalling inequality (29), that i85, — «p) > T (maxwu,) for
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max u, > L and using Lemma 3.2, we get
Ve >0, (6o— o) > 14(S,) — efor S, large enough.
Next, combining (39) and inequality above, we get

2e,p' " [ d§
(Bo — ag) > P /0 [SE — [€[P] /P

for S,, large enough.
And finally

. . p
1;{225(50 —ap) > W

(40)
To complete the proof, we need to estimaté — o). Recalling (30), we have
(By — o) > T',(minu,) for | minwu,| large enough and using again Lemma 3.2,
we get

Ve >0, (B)—ap) > 7 (minu,) — €

for, | minu,| large enough.
But, combining condition (38) and results in Lemma (3.1),0k¢ain

» R )
lim inf(% — ) > lim fnf 7 (minwn) > 237

(41)
So, putting (40), (41) together yields
b—a> liminf(ﬁo — ) + liminf(ﬁf) — ) >b—a.

This is a contradiction so Lemma 4.1 is provil.

The following lemma provides a-priori bounds for solutiaigS,) having a
constant sign.

Lemma 4.2. Assume that

lim sgn(s)f(s) = +oo

|s| =00

and that conditior(h,) holds, that iim inf 25 > ),

5|00 1517
Then, there are two constanis > 0, K’ < 0 such that there is no nonnegative
solution or respectively no non-positive solutioof (S,) for somey € [0, 1] such
thatmax u > K or respectivelynin u < K’.
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Proof.
We give the proof only in the case of non negative solutiomctiise of non positive
solution being similar.
Condition(hy) gives

limint P _ g oy (42)
s
and accordingly from Lemma (3.1)
I <2y
Imsupm(s) < o <b e

But sincer, (s) < 7,(s) for s > L we also have

b (43)

limsup 7, (s) < PRI

s§——+400

Suppose now that Lemma (4.2) is false, then we can find a sequémon nega-
tive solutiongu,,) for somey € [0, 1] such thainax u,, — +occ. Let us show that
such an assertion is absurd. So let us write the lehgtla = 3, — o, as follows:

b —a= (BO - ﬁmaxun—L) + (amaxu—L - Oéo) + (ﬁmaxun—L - amaxu—L) (44)

Since lim sgn(s)g(s,7) = +oo uniformly with respect tey, we have according

s§— 400

to Lemma 2.1

lim (ﬁmaxun—L - amaxu—L) =0 (45)

n—-400
In order to use (35) for estimatin@, — Bmaxw,—1) + (Vmaxu—1 — 0), We will
prove here that inequality (26) previously admitted, tlat i

1 ~ -1

—2||H|oot+(p") 7 (G (maxu)—G,(u(@)) T >0 on  [ag, dmaxu—r]UBnaxu—r, o]

is effectively achieved under (42).
Indeed, under (42) we have the following: fer> 0, there is a positive real
numbers, > 0 such that fors > s,

G, (s) = G () = Uplhy — (" —€7) for 0<&<s.

So forn sufficiently large we havenax u,, — L > sq and then

Gy (maxu,) — Gy (un(2)) 2 1/p(ky — €)((maxu,)? — (uq(2))?)
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for 0 < wu,(z) < maxu, — L.
So, fore sufficiently small, we get

Gy (maxu,) — G (un(2)) > 1/pAy(maxu, )’ — (u,(2))?) (46)

for 0 <u,(r) < maxu, — L.
But0 < u,(z) < maxu, — L, implies

(maxu, )’ — u,P(x) > LP with L = (b — a)e, " (2]| H||) (47)
Then, taking into account (46) and (47) we have

~2|| || + (77)F (G (max ) — G, (u(x))) 7>

*

2| Hoo + (5) TN T 17! =
p
~ 1 p—1 T ~
“9llH ~ 5 P \p—1 bh— p—1y —1 2N H - p—1 _
il + A5 G2~ 0= 'l ClI AL

2l (*@T‘”f);__l - 1) -

1
T, = 2(p — 1)1/p __ds > 2(p — 1)1/p
’ o (1= sl =

Noticing that

forp > 1, we get

2| H|| (% — 1) > 2||H||o (27 = 1) >0

forp > 1.
In conclusion, it is proved that

—2||ﬁ||oo + (p*)%(éy(maxu) — év(u(:p)))%l >0
on [ao’ amaXu—L] U [ﬁmaxu—La ﬁO]

which is of course inequality (26).

Hence, we can estimat®, — Omaxw, 1) + (maxu—1. — o) by using (35) and
then we havé 3y — Bumaxu, 1) + (Omaxw, -1 — @) < T (max u,) with K equals
—2||H|| in T,,. Since inequality (26) implies conditida, ) of Lemma (4.1) with
K = —2||H||~, we have
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(ﬁO - ﬁmaxun—L) + (amaxu"—L - aO) S %v(max un) + €

for all ¢ > 0 and formax u,, large enough. Thus, combining (43),(44),(45) with
the above inequality, one obtains

b—a <limsup7,(maxu,) +e<b—a+e
n—-+00
forall e > 0.
This is a contradiction and then Lemma (4.2) is provlid.

We are now ready to introduce the functional analysis fraarkvin which
invariance of topological degree property will be used toatode the proof of the
theorem.

So, let us denote by
L: L'(a,b) — C'[a,b]

the operator which sendse L!(a, b) on the unique solution of
—(pp(u)) =1 in(a,b)
(£1) =
u(a) = u(b) =0

It is known thatL is an odd and continuous operator (see [6]) and due to the
compact embedding

J: C*a,b] — C°a,b], JolL:L'a,b) — C°a,b]

is completely continuous. Moreover, for eagle [0, 1], denote by

K, : C°a,b] — L'(a,b) the operator defined by, (u) = g(., u,v) with K, (u)(z) =
g(x,u,y) = (1 —7)0py(u) + v[f(u) + h(zx)]. Clearly K, is continuous and map
bounded sets into bounded sets, hence for ea€ho, 1], the operator

T,=JoLoK,:C"a,b — C%a,b]

is completely continuous and its fixed points are exactlysbietions of(.S,).
Moreover,fory = 0, K, is an odd operator . Now let us built a suitable open
bounded subse® of C°[a, b] on which the degree df,, v € [0,1] is different

of zero. The construction @ involves some constants provided by the different
Lemmas (2.2), (4.1) (4.2). We consider first our theorem endase that condi-
tions (h,), (he) and the first part ofh;) are satisfied. So, choose a constant
according to Lemma (4.2). Next, fer large enough, choose an eleméptde-
notedS of the sequencés,,) such thatS > K. For any possible changing sign

EJQTDE, 2009 No. 57, p. 26



solutionu of (.S,,) for somey € [0, 1] such thainax v < S, Lemma (2.2) provides
with positive real numbers such thain v > —M. Take —R = min(—M, K’)
for a fixed M whereK’ < 0 is chosen according to Lemma (4.2).

Q = {u e C%a,b],—R < u(z) < S,V € [a,b]}
The sef? is such thafl’, (u) # u for everyu € 02 andy € [0, 1]. Hence, by
the homotopy invariance of the topological degree

deg(j - T17 Q7 O) = deg([ - T07 Qa 0)
wherel is the identity operator i0°[a, b].
Claim 2. deg(I — Ty,9,0) # 0

Proof
By definition of 7, v € [0,1], u — Tou = 0 if only if w is a solution of

(By) = —(p(u))" = bpp(u) —in - (a,b)
2 u(a) =u(b) =0

But since\; < 6 < min(u, ), u = 0 is the unique solution ofFE;). MoreoverTj,

is odd, therefore by the Borsuk theorem

deg(I — Ty, B,,0) #0

where B, is the open ball of centep and raduis- in C°[a, b]. Taker such that
B, C Q, then0 ¢ (I —Ty)"*(Q ~ B,) and from the excision property of the
degree, we havéeg(I — T),2,0) = deg(I — Tp, B,,0) # 0. R

Consequentlyleg(I — T1,9,0) # 0 and by the existence property of the
topological degre@’ has a fixed point irf2 which in turn is precisely a solution
of (P). In the context that it is the conditiof¥s, ), (h2) and the second part ¢f3)
which are satisfied, we construct damwith parameters andR as follow: we fix
—R =T, withT,, < K’ < 0 for n large enough, wherg, is as in Lemma (4.1).
Next, we choos& = max (M, K) for a fixed M whereM is as in Lemma (2.2).
A similar argument of topological degree as above yieldsrathee solvability of
(P) in this latter case. This completes the proof of the theol

Remark 4.1. It is worth noticing that the establishment of Lemma (2.19sdoot
involve the boundary conditions so that Lemma (2.1) can b&ullg employed in
dealing with other boundary conditions. The time-mappisgneates in Lemma
(3.1) and the auxiliary functions estimates in Lemma (3r&) kemma (3.3) are
many tools which can be combined with others in order to ektenthe one-
dimensional p- Laplaciarip > 1), many others results previously obtained for
the Laplacian.
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