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Abstract

We consider the nonlinear Sturm-Liouville problem

−u′′(t) + f(u(t), u′(t)) = λu(t), u(t) > 0, t ∈ I := (−1/2, 1/2), u(±1/2) = 0,

where f(x, y) = |x|p−1x − |y|m, p > 1, 1 ≤ m < 2 are constants and λ > 0 is an

eigenvalue parameter. To understand well the global structure of the bifurcation branch

of positive solutions in R+ ×Lq(I) (1 ≤ q < ∞) from a viewpoint of inverse problems,

we establish the precise asymptotic formulas for the eigenvalue λ = λq(α) as α :=

‖uλ‖q → ∞, where uλ is a solution associated with given λ > π2.

1 Introduction

We consider the following nonlinear Sturm-Liouville problem

−u′′(t) + f(u(t), u′(t)) = λu(t), t ∈ I := (−1/2, 1/2), (1.1)

u(t) > 0, t ∈ I, (1.2)

u(−1/2) = u(1/2) = 0, (1.3)
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where f(x, y) = |x|p−1x − |y|m, p > 1, 1 ≤ m < 2 are constants and λ > 0 is an eigenvalue

parameter. Let 1 ≤ q < ∞ be fixed. Then we know from [1] that for each given λ > π2,

there exists a solution (λ, u) = (λ, uλ) ∈ R+ × C2(Ī) of (1.1)–(1.3) with ‖uλ‖∞ < λ1/(p−1).

We denote by α = αλ = ‖uλ‖q and λ = λq(α). Here, ‖ · ‖q denotes the usual Lq-norm.

The purpose of this paper is to study precisely how the damping term |u′(t)|m gives effect

on the global behavior of the bifurcation branch λq(α) from a viewpoint of inverse eigenvalue

problems. To this end, we establish the precise asymptotic formulas for λq(α) as α → ∞.

To explain the background and the motivation of our problem here, we recall the known

and related facts of our problems. The equation (1.1)–(1.3) without damping term (e.g.

f(u(t), u′(t)) = |u(t)|p−1u(t)) is well known as the diffusive equation of population dynamics

(the solution is denoted by u0,λ), and has been studied extensively by many authors by

local and global L∞ bifurcation theory. We refer to [2] and [7–10]. In particular, as a basic

asymptotic behavior of u0,λ as λ → ∞, the following formula is well known.

‖u0,λ‖p−1
∞ = λ − λe−

√
(p−1)λ(1+o(1))/2. (1.4)

We also mention that relationship between nonlinear term and the property of eigenvalues has

been studied in [14] with emphasis on the uniqueness of f(u). Furthermore, since (1.1)–(1.3)

without damping term is regarded as a nonlinear eigenvalue problem, it is quite important

to study (1.1)–(1.3) from a viewpoint of L2-theory, that is the case where q = 2. For the

works in this direction, we refer to [4–6] and the references therein. It should be mentioned

that one of the chief concern in this field is to investigate the local and global shape of

the L2-bifurcation branch λ2(α), and the asymptotic behavior of λ2(α) as α → 0 has been

studied in [4], [5]. Besides, it seems important to study the asymptotic behavior of λq(α)

as α → ∞ for general 1 ≤ q < ∞ (q 6= 2). In particular, it is meaningful to consider this

problem in L1-framework, since (1.1)–(1.3) without damping term comes from the equation

of population dynamics.

The leading term of λq(α) without damping term in (1.1) can be obtained easily as

follows. Since it is known from [2] that

u0,λ(t)

λ1/(p−1)
→ 1 (1.5)
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locally uniformly on I as λ → ∞, we obtain that for λ ≫ 1 (i.e. α ≫ 1),

λq(α) = αp−1 + o(αp−1).

Recently, more precise asymptotic formula for λq(α) has been obtained in [11].

Theorem 1.1 ([11]). Consider (1.1)–(1.3) with f(u, u′) = |u|p−1u. Then as α → ∞

λq(α) = αp−1 + C1α
(p−1)/2 + a0 + o(1), (1.6)

where

C1 =
p − 1

q
C(q), C(q) := 2

∫ 1

0

1 − sq

√

1 − s2 − 2(1 − sp+1)/(p + 1)
ds, a0 =

p − 1

2q
C(q)2.

Since such a quite precise asymptotic formula for λq(α) as (1.6) has been obtained, from

the standpoint of the better understanding of the global structure of the bifurcation branch

of the positive solutions, the following problem from a view point of inverse problem was

proposed in [12]. Let f(u, u′) = f(u) in (1.1). We assume that f(u) is an unknown function,

but it is known that it satisfies the following conditions (A.1) and (A.2).

(A.1) f(u) is a positive function of C1 for u ≥ 0 satisfying f(0) = f ′(0) = 0.

(A.2) pf(u) ≥ uf ′(u) ≥ pup for u ≥ 0.

The inverse problem here means whether we can reconstruct the unknown nonlinear term

f(u) from the information of the asymptotic behavior of λq(α) as α → ∞ or not.

Theorem 1.2 ([12]). Let f(u, u′) = f(u) in (1.1) and consider the problem (1.1)–(1.3),

where f(u) is known to satisfy (A.1)–(A.2), and suppose

λq(α) = αp−1 + C1α
(p−1)/2 + r1(α) + O(1) as α → ∞, (1.7)

where

lim
α→∞

∣

∣

∣

∣

∣

r1(α)

α(p−1)/2

∣

∣

∣

∣

∣

= 0, lim
α→∞

r1(α) = ∞. (1.8)

Furthermore, assume that r1 satisfies
∣

∣

∣

∣

∣

r1(u) − r1(v)

u − v

∣

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∣

r1(u)

u

∣

∣

∣

∣

∣

(1.9)
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for sufficiently large u > v. Then,

f(u) = up + r1(u)u + O(u) as u → ∞. (1.10)

Roughly speaking, Theorem 1.2 implies that if f = f(x, y) does not depend on y and

satisfies the positivity and growth conditions (A.1) and (A.2), then the inverse problem is

solved successfully.

Motivated by Theorem 1.2, it is natural to extend the result of Theorem 1.2 to two

directions, the first one is as follows.

Problem A: Under some suitable conditions on f , Theorem 1.2 holds even if r1(u) in (1.7)

is negative function like r1(u) = −uβ (0 < β < (p − 1)/2).

To consider Problem A, we note the results obtained recently.

Theorem 1.3 ([13, Corollary 1.5]). Let f(u) = up − uβ with 1 < β < (p + 1)/2. Then as

α → ∞

λq(α) = αp−1 +
p − 1

q
C(q)α(p−1)/2 − αβ−1 + a0 + O(α(2β−p−1)/2). (1.11)

Therefore, from a viewpoint of Theorem 1.2, it is reasonable to expect that the results

like Theorem 1.2 holds for Problem A.

Another direction we would like to consider is:

Problem B: Treat the case where f = f(u, u′), and consider the inverse problem.

The best way for us is to consider Problems A and B in the same framework and establish

unified results for the inverse problems. The results in this paper, however, gives us the

difficulty how to treat Problems A and B at the same time.

Now we state our result. We put

η :=
2p − (p + 1)m

2(p − 1)
. (1.12)

We note that 0 < η < 1/2 if 1 ≤ m < 2p/(p + 1). Furthermore, let

C2 := 2
∫ 1

0

(1 − sq)
∫ 1
s [(1 − x2) − 2(1 − xp+1)/(p + 1)]m/2dx

[(1 − s2) − 2(1 − sp+1)/(p + 1)]3/2
ds.
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Theorem 1.4. Assume that 1 ≤ m < 2p/(p+1). Let m0 := (−1+
√

1 + 2(p + 1)2)/(p+1).

Then as α → ∞, the following asymptotic formulas for λq(α) hold:

(i) If 1 ≤ m < m0, then

λq(α) = αp−1 + C1α
(p−1)/2 − p − 1

q
C2α

(p−1)(1/2−η) + a0 + o(1). (1.13)

(ii) If m = m0, then

λq(α) = αp−1 + C1α
(p−1)/2 − p − 1

q
C2α

(p−1)(1/2−η) + O(1). (1.14)

(iii) If m0 < m < 2p/(p + 1), then

λq(α) = αp−1 + C1α
(p−1)/2 − p − 1

q
C2α

(p−1)(1/2−η) + O(α(p−1)(1/2−(m+2)η/2)). (1.15)

We see from (1.11) and (1.13) that we should be careful to treat the Problem A and B at

the same time, since we may not determine the unknown nonlinear term from the third term

of λq(α) if β − 1 = (p − 1)(1/2 − η). Therefore, as a next step of this work, before treating

the Problem A and B simultaneously, we should find reasonable conditions for f(u, u′) to

reconstruct f(u, u′) from the asymptotic formula for λq(α).

Remark 1.5. (i) m = m0 is uniquely determined by the equation

h(m) :=
1

2
− (m + 1)η

2
= 0,

which implies that the exponent of α of the fourth term in (1.15) is equal to 0. In this case,

we obtain (1.14). Clearly, 1 ≤ m < m0 (resp. m0 < m < 2p/(p + 1) implies h(m) < 0 (resp.

h(m) > 0), and according to these two cases, we obtain (1.13) and (1.15), respectively.

(ii) The case 2p/(p + 1) ≤ m < 2 is worth considering by the methods developed here.

However, for instance, the case 2p/((p+1) = m should be handled more carefully, and quite

a long and complicated calculation will be necessary. From this point of view, we may go on

to an more detailed study of the case 2p/(p + 1) ≤ m < 2.

2 Proof of Theorem 1.4

We begin with notations and the fundamental properties of uλ. In what follows, C and k

denote various positive constants independent of λ ≫ 1 for simplicity. We write λ = λq(α).
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Since U := λ1/(p−1) and u0,λ are super-solution and sub-solution of (1.1)–(1.3) with u0,λ(t) <

λ1/p−1, respectively, we know from [1] and [3] that

uλ(t) = uλ(−t), t ∈ I, (2.1)

uλ(0) = max
t∈Ī

uλ(t) = ‖uλ‖∞, (2.2)

u′
λ(t) > 0, −1/2 < t < 0, (2.3)

u0,λ(t) < uλ(t) < λ1/(p−1). (2.4)

By (1.5) and (2.4), we see that λ → ∞ is equivalent to α → ∞. By (1.4) and (2.4), we see

that for λ ≫ 1,

0 < ηλ := λ − ‖uλ‖p−1
∞ = O(λe−k

√
λ), (2.5)

where k > 0 is a constant.

The proof of Theorem 1.4 is based on the following Proposition 2.1.

Proposition 2.1. For λ ≫ 1

‖uλ‖q
∞ − ‖uλ‖q

q = C(q)‖uλ‖q−(p−1)/2
∞ − C2‖uλ‖q−(p−1)/2−(p−1)η

∞ (2.6)

+ O(‖uλ‖q−(p−1)/2−(m+2)(p−1)η/2
∞ )(1 + o(1)).

We accept Proposition 2.1 here tentatively. The proof will be given in Section 3. Once

it is obtained, Theorem 1.4 is proved by direct calculation as follows.

Proof of Theorem 1.4. We have only to consider the case 1 ≤ m < m0 and show (1.13),

since the other cases can be treated by the same calculation as that of the case 1 ≤ m < m0.

Note that, in this case, −1/2 − (m + 2)η/2 < −1 by Remark 1.5 (i).

Step 1: We calculate the second term of λq(α). We put r(α) := λ−αp−1. By (1.5) and (2.4),

r(α) = o(αp−1) for α ≫ 1. By this and (2.6), for λ ≫ 1

‖uλ‖p−1
q = ‖uλ‖p−1

∞
{

1 − C(q)‖uλ‖−(p−1)/2
∞ + C2‖uλ‖−(p−1)/2−(p−1)η

∞ (2.7)

+O(‖uλ‖−(p−1)/2−(m+2)(p−1)η/2
∞ )(1 + o(1))

}(p−1)/q
.

This along with (2.5) and Taylor expansion implies that

αp−1 =
(

λ − O(λe−k
√

λ)
)

(

1 − p − 1

q
C(q)λ−1/2 + o(λ−1/2)

)
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= λ − C1λ
1/2 + o(λ1/2)

= αp−1 + r(α) − C1α
(p−1)/2(1 + o(1)).

By this, for α ≫ 1,

r(α) = C1α
(p−1)/2 + o(α(p−1)/2).

Step 2: We calculate the third and fourth terms. Let

R(α) := λ − αp−1 − C1α
(p−1)/2. (2.8)

By Step 1, R(α) = o(α(p−1)/2) for α ≫ 1. By (2.5), (2.7), Remark 1.5 (i) and Taylor

expansion, for λ ≫ 1

αp−1 =
(

λ − O(λe−k
√

λ)
)

(2.9)

×
{

1 +
p − 1

q

(

−C(q)λ−1/2 + C2λ
−1/2−η + o(λ−1)

)

+
(p − 1)(p − 1 − q)

2q2

(

−C(q)λ−1/2 + C2λ
−1/2−η

)2
(1 + o(1))

}

= λ − C1λ
1/2 +

p − 1

q
C2λ

1/2−η +
(p − 1)(p − 1 − q)

2q2
C(q)2 + o(1).

By this, (2.8) and Taylor expansion,

αp−1 = αp−1 + C1α
(p−1)/2 + R(α) − C1(α

p−1 + C1α
(p−1)/2 + R(α))1/2

+
p − 1

q
C2(α

p−1 + C1α
(p−1)/2 + R(α))1/2−η +

(p − 1)(p − 1 − q)

2q2
C(q)2 + o(1)

= αp−1 + C1α
(p−1)/2 + R(α)

− C1α
(p−1)/2

(

1 +
1

2

(

C1α
−(p−1)/2 + R(α)α−(p−1)

)

+ O(α−(p−1))
)

+
p − 1

q
C2α

(p−1)(1/2−η)(1 + C1α
−(p−1)/2 + R(α)α−(p−1))1/2−η

+
(p − 1)(p − 1 − q)

2q2
C(q)2 + o(1).

This along with direct calculation implies that

R(α) = −p − 1

q
C2α

(p−1)(1/2−η) +
1

2
C2

1 − (p − 1)(p − 1 − q)

2q2
C(q)2 + o(1) (2.10)

= −p − 1

q
C2α

(p−1)(1/2−η) + a0 + o(1).

By this, we obtain (1.13). Thus the proof is complete.
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3 Proof of Proposition 2.1

We start with the fundamental equality. By (1.1) and (2.3), for −1/2 ≤ t ≤ 0,

{u′′
λ(t) + λuλ(t) − uλ(t)

p + u′
λ(t)

m} u′
λ(t) = 0.

By this, for −1/2 ≤ t ≤ 0,

1

2
u′

λ(t)
2 +

1

2
λuλ(t)

2 − 1

p + 1
uλ(t)

p+1 +
∫ t

−1/2
u′

λ(s)
m+1ds = constant (3.1)

=
1

2
λ‖uλ‖2

∞ − 1

p + 1
‖uλ‖p+1

∞ +
∫ 0

−1/2
u′

λ(s)
m+1ds

=
1

2
u′

λ

(

−1

2

)2

.

We put

Aλ(θ) := λ(‖uλ‖2
∞ − θ2) − 2

p + 1
(‖uλ‖p+1

∞ − θp+1), (3.2)

A0,λ(θ) := ‖uλ‖p−1
∞ ‖(‖uλ‖2

∞ − θ2) − 2

p + 1
(‖uλ‖p+1

∞ − θp+1), (3.3)

Bλ(t) := 2
∫ 0

t
u′

λ(s)
m+1ds, (3.4)

Rλ(s) :=
λ

‖uλ‖p−1
∞

(1 − s2) − 2

p + 1
(1 − sp+1), (3.5)

Sλ(s) := 1 − s2 − 2

p + 1
(1 − sp+1). (3.6)

We note that if we put uλ(t) = ‖uλ‖∞s, then

A0,λ(uλ(t)) = ‖uλ‖p+1
∞ Sλ(s), Aλ(uλ(t)) = ‖uλ‖p+1

∞ Rλ(s). (3.7)

Further, by (2.5), (3.2) and (3.3), Aλ(θ) > A0,λ(θ) for θ > 0. By (2.3), (3.1), (3.2) and (3.4),

for −1/2 ≤ t ≤ 0

u′
λ(t) =

√

Aλ(uλ(t)) + Bλ(t). (3.8)

By this and (2.1), we obtain

‖uλ‖q
∞ − ‖uλ‖q

q = 2
∫ 0

−1/2
(‖uλ‖q

∞ − uq
λ(t))

u′
λ(t)

√

Aλ(uλ(t)) + Bλ(t)
dt (3.9)

= 2
∫ 0

−1/2
(‖uλ‖q

∞ − uq
λ(t))

u′
λ(t)

√

Aλ(uλ(t))
dt
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+



2
∫ 0

−1/2
(‖uλ‖q

∞ − uq
λ(t))

u′
λ(t)

√

Aλ(uλ(t)) + Bλ(t)
dt

−2
∫ 0

−1/2
(‖uλ‖q

∞ − uq
λ(t))

u′
λ(t)

√

Aλ(uλ(t))
dt





= I + II.

By direct calculation, we obtain

II = −2
∫ 0

−1/2

Bλ(t)(‖uλ‖q
∞ − uq

λ(t))u
′
λ(t)dt

√

Aλ(uλ(t)) + Bλ(t)
√

Aλ(uλ(t))(
√

Aλ(uλ(t)) + Bλ(t) +
√

Aλ(uλ(t)))
. (3.10)

Proposition 2.1 is obtained directly from the following Lemma 3.1, and Lemmas 3.2–3.3.

Lemma 3.1. As λ → ∞,

I = C(q)‖uλ‖q−(p−1)/2
∞ + O(λq/(p−1)e−k

√
λ). (3.11)

Lemma 3.2. As λ → ∞,

|II| ≤ C2‖uλ‖q−(p−1)/2−(2p−(p+1)m)/2
∞ + O(‖uλ‖q−(p−1)/2−(m+2)(2p−(p+1)m)/4

∞ ). (3.12)

Lemma 3.3. As λ → ∞,

|II| ≥ C2‖uλ‖q−(p−1)/2−(2p−(p+1)m)/2
∞ − O(‖uλ‖q−(p−1)/2−(2p−(p+1)m)

∞ ). (3.13)

If we do not have the term Bλ(t), then the situation here is the same as that of [11].

Therefore, to prove Proposition 2.1, the most important part is to calculate II in Lemmas

3.2 and 3.3 precisely. Clearly, the calculation in Lemmas 3.2 and 3.3 deeply depend on the

estimates of Bλ(t) as λ → ∞, which is the main part of the calculation of this paper. Since

it is accomplished by long and tedious calculations, we fulfill it in the next section.

On the contrary, Lemma 3.1 can be proved by applying the argument in [11] to our case.

This is rather an easy part, so the proof will be given in Appendix.
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4 Proof of Lemmas 3.2 and 3.3

It is clear from (3.10) that the estimate of Bλ(t) plays an crucial role for the proofs of Lemmas

3.2 and 3.3. We put

Dλ(θ) = 2
∫ 1

θ/‖uλ‖∞

[

1 − x2 − 2

p + 1
(1 − xp+1)

]m/2

dx, (4.1)

ξλ = ‖uλ‖mp/2
∞ exp

(

−mk
√

λ

2

)

. (4.2)

Lemma 4.1. For −1/2 < t < 0 and λ ≫ 1

Bλ(t) ≥ Dλ(uλ(t))‖uλ‖1+m(p+1)/2
∞ − Cξλ(‖uλ‖∞ − uλ(t))

m/2+1. (4.3)

Proof. Since 1/2 ≤ m/2 < 1, we know that for 0 ≤ b ≤ a,

0 ≤ am/2 − bm/2 ≤ C(a − b)m/2. (4.4)

By this, (2.5), (3.2) and (3.3), we have

0 <
∫ ‖uλ‖∞

uλ(t)

(

Aλ(θ)
m/2 − A0,λ(θ)

m/2
)

dθ (4.5)

≤ C
∫ ‖uλ‖∞

uλ(t)

[

(λ − ‖uλ‖p−1
∞ )(‖uλ‖2

∞ − θ2)
]m/2

dθ

≤ C‖uλ‖m+1
∞ (λ exp(−k

√
λ))m/2

∫ 1

uλ(t)/‖uλ‖∞
(1 − s2)m/2ds

≤ C‖uλ‖m+1
∞ (λ exp(−k

√
λ))m/2

∫ 1

uλ(t)/‖uλ‖∞
(1 − s)m/2ds

≤ Cξλ(‖uλ‖∞ − uλ(t))
1+m/2.

By this, (3.4), (3.8) and (4.1), for −1/2 < t < 0,

1

2
Bλ(t) =

∫ 0

t
u′

λ(s)
m+1ds ≥

∫ 0

t
Aλ(uλ(s))

m/2u′
λ(s)ds (4.6)

=
∫ ‖uλ‖∞

uλ(t)

[

λ(‖uλ‖2
∞ − θ2) − 2

p + 1
(‖uλ‖p+1

∞ − θp+1)

]m/2

dθ

=
∫ ‖uλ‖∞

uλ(t)
A0,λ(θ)

m/2dθ +
∫ ‖uλ‖∞

uλ(t)

(

Aλ(θ)
m/2 − A0,λ(θ)

m/2
)

dθ

≥ ‖uλ‖1+m(p+1)/2
∞

∫ 1

uλ(t)/‖uλ‖∞

[

1 − x2 − 2

p + 1
(1 − xp+1)

]m/2

dx

− Cξλ(‖uλ‖∞ − uλ(t))
1+m/2

=
1

2
Dλ(uλ(t))‖uλ‖1+m(p+1)/2

∞ − Cξλ(‖uλ‖∞ − uλ(t))
1+m/2.
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Thus the proof is complete.

We next calculate the estimate of Bλ(t) from above.

Lemma 4.2. For −1/2 < t < 0 and λ ≫ 1

B(t) ≤ Dλ(uλ(t))‖uλ‖m(p+1)/2+1
∞ + C‖uλ‖m2(p+1)/4

∞ (‖uλ‖∞ − uλ(t))
m/2+1 (4.7)

+ Cξλ(‖uλ‖∞ − uλ(t))
1+m/2.

Proof. We first show that for λ ≫ 1,

u′
λ

(

−1

2

)2

=
p − 1

p + 1
‖uλ‖p+1

∞ (1 + o(1)). (4.8)

To do this, we assume that there exists a subsequence of {λ}, which is denoted by {λ} again,

such that as λ → ∞

u′
λ(−1

2
)2

‖uλ‖p+1
∞

→ ∞. (4.9)

By (1.1), (2.3) and (2.4), u′′
λ(t) < 0 for t ∈ I. Therefore, u′

λ(−1
2
) = maxt∈Ī |u′

λ(t)|. Then by

(2.5), (3.1) and (4.9), we have

1

2
u′

λ

(

−1

2

)2

(1 − o(1)) =
∫ 0

−1/2
u′

λ(s)
m+1ds ≤ u′

λ

(

−1

2

)m ∫ 0

−1/2
u′

λ(s)ds (4.10)

= u′
λ

(

−1

2

)m

‖uλ‖∞.

This implies that

u′
λ

(

−1

2

)

≤ C‖uλ‖1/(2−m)
∞ . (4.11)

Since m < 2p/(p + 1), as λ → ∞

u′
λ(−1

2
)2

‖uλ‖p+1
∞

≤ C‖uλ‖2/(2−m)−(p+1)
∞ = C‖uλ‖−(2p−(p+1)m)/(2−m)

∞ → 0. (4.12)

This contradicts to (4.9). Therefore, for λ ≫ 1,

u′
λ(−1

2
)2

‖uλ‖p+1
∞

≤ C. (4.13)

By this, we obtain

∫ 0

−1/2
u′

λ(s)
m+1ds ≤ u′

λ

(

−1

2

)m

‖uλ‖∞ ≤ C‖uλ‖m(p+1)/2+1
∞ (4.14)

= o(‖uλ‖p+1
∞ ).
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By this, (2.5) and (3.1), we easily obtain (4.8). Then by (4.8), we obtain

Bλ(t) = 2
∫ 0

t
u′

λ(s)
m+1ds ≤ 2u′

λ(t)
m
∫ 0

t
u′

λ(s)ds

≤ Cu′
λ

(

−1

2

)m

(‖uλ‖∞ − uλ(t)) ≤ C‖uλ‖m(p+1)/2
∞ (‖uλ‖∞ − uλ(t)).

By this, (3.8), (4.4) and (4.6), for λ ≫ 1,

1

2
Bλ(t) =

∫ 0

t
u′

λ(s)
m+1ds =

∫ 0

t
(Aλ(uλ(s)) + Bλ(s))

m/2u′
λ(s)ds (4.15)

≤
∫ 0

t
Aλ(uλ(s))

m/2u′
λ(s)ds + Cm/2

∫ 0

t
Bλ(s)

m/2u′
λ(s)ds

≤
∫ 0

t
Aλ(uλ(s))

m/2u′
λ(s)ds + C‖uλ‖m2(p+1)/4

∞ (‖uλ‖∞ − uλ(t))
m/2+1

=
1

2
Dλ(uλ(t))‖uλ‖m(p+1)/2+1

∞ + Cξλ(‖uλ‖∞ − uλ(t))
m/2+1

+ C‖uλ‖m2(p+1)/4
∞ (‖uλ‖∞ − uλ(t))

m/2+1.

Thus the proof is complete.

Now we are in the position to prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. Let 0 < δ ≪ 1 be fixed. By (3.6) and Taylor expansion, we see that

for 1 − δ ≤ x ≤ 1,

C−1(1 − x)2 ≤ Sλ(x) ≤ C(1 − x)2. (4.16)

Furthermore, if we choose C ≫ 1, then for 0 ≤ x ≤ 1

Sλ(x) ≤ C(1 − x)2. (4.17)

By this and (4.1), for 0 ≤ s ≤ 1,

Dλ(‖uλ‖∞s) = 2
∫ 1

s
Sλ(x)m/2dx ≤ C

∫ 1

s
(1 − x)mdx ≤ C(1 − s)m+1. (4.18)

By (3.10) and Lemma 4.2,

|II| ≤ 2
∫ 0

−1/2

Bλ(t)(‖uλ‖q
∞ − uλ(t)

q)u′
λ(t)

2Aλ(uλ(t))3/2
dt (4.19)

≤ Y1 + Y2

=
∫ 0

−1/2

Dλ(uλ(t))‖uλ‖m(p+1)/2+1
∞ (‖uλ‖q

∞ − uλ(t)
q)u′

λ(t)

A0,λ(uλ(t))3/2
dt

+
∫ 0

−1/2

C(‖uλ‖m2(p+1)/4
∞ + ξλ)(‖uλ‖∞ − uλ(t))

m/2+1(‖uλ‖q
∞ − uλ(t)

q)u′
λ(t)

A0,λ(uλ(t))3/2
dt.
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Then by (3.7), (4.2), (4.19) and putting s = uλ(t)/‖uλ‖∞, we obtain

Y1 = ‖uλ‖q−(p−1)/2−(2p−(p+1)m)/2
∞

∫ 1

0

2
(

∫ 1
s Sλ(x)m/2dx

)

(1 − sq)

Sλ(s)3/2
ds (4.20)

= C2‖uλ‖q−(p−1)/2−(2p−(p+1)m)/2
∞ ,

Y2 ≤ C‖uλ‖q−(p−1)/2−(m+2)(2p−(p+1)m)/4
∞

∫ 1

0

(1 − s)m/2+1(1 − sq)

Sλ(s)3/2
ds. (4.21)

Note that by (4.16) and (4.18), the right hand side of (4.20) and (4.21) are integrable. By

(4.19)–(4.21), we obtain Lemma 3.2. Thus the proof is complete.

Proof of Lemma 3.3. By (3.10), we have

|II| ≥ 2
∫ 0

−1/2

Bλ(t)(‖uλ‖q
∞ − uλ(t)

q)u′
λ(t)

2
√

Aλ(uλ(t))(Aλ(uλ(t)) + Bλ(t))
dt (4.22)

=
∫ 0

−1/2

Bλ(t)(‖uλ‖q
∞ − uλ(t)

q)u′
λ(t)

√

Aλ(uλ(t))Aλ(uλ(t))
dt

+





∫ 0

−1/2

Bλ(t)(‖uλ‖q
∞ − uλ(t)

q)u′
λ(t)

√

Aλ(uλ(t))(Aλ(uλ(t)) + Bλ(t))
dt −

∫ 0

−1/2

Bλ(t)(‖uλ‖q
∞ − uλ(t)

q)u′
λ(t)

√

Aλ(uλ(t))Aλ(uλ(t))
dt





= Z1 − Z2.

We first calculate Z1. By (2.5), (3.2) and (3.3),

1

Aλ(uλ(t))3/2
=

1

A0,λ(uλ(t))3/2
+

(

1

Aλ(uλ(t))3/2
− 1

A0,λ(uλ(t))3/2

)

(4.23)

=
1

A0,λ(uλ(t))3/2
− Aλ(uλ(t))

3 − A0,λ(uλ(t))
3

A0,λ(uλ(t))3/2Aλ(uλ(t))3/2(A0,λ(uλ(t))3/2 + Aλ(uλ(t))3/2)

≥ 1

A0,λ(uλ(t))3/2
− 3(Aλ(uλ(t)) − A0,λ(uλ(t)))

A0,λ(uλ(t))3/2Aλ(uλ(t))

=
1

A0,λ(uλ(t))3/2
− 3ηλ(‖uλ‖2

∞ − uλ(t)
2)

A0,λ(uλ(t))3/2Aλ(uλ(t))
.

By this, (4.22) and Lemmas 4.1 and 4.2, we obtain

Z1 ≥
∫ 0

−1/2

Dλ(uλ(t))‖uλ‖m(p+1)/2+1
∞ (‖uλ‖q

∞ − uλ(t)
q)u′

λ(t)

A0,λ(uλ(t))3/2
dt (4.24)

−
∫ 0

−1/2

Cξλ(‖uλ‖∞ − uλ(t))
m/2+1(‖uλ‖q

∞ − uλ(t)
q)u′

λ(t)

A0,λ(uλ(t))3/2
dt

−
∫ 0

−1/2

3ηλ(‖uλ‖2
∞ − uλ(t)

2)Dλ(uλ(t))‖uλ‖m(p+1)/2+1
∞ (‖uλ‖q

∞ − uλ(t)
q)u′

λ(t)

A0,λ(uλ(t))3/2Aλ(uλ(t))
dt

−
∫ 0

−1/2

3ηλ‖uλ‖m2(p+1)/4
∞ Lλ(uλ(t))(‖uλ‖q

∞ − uλ(t)
q)u′

λ(t)

A0,λ(uλ(t))3/2Aλ(uλ(t))
dt

= W1 − W2 − W3 − W4,
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where

Lλ(uλ(t)) := (‖uλ‖2
∞ − uλ(t)

2)(‖uλ‖∞ − uλ(t))
m/2+1.

It is clear that W1 = Y1 in (4.20). By (4.16),

W2 ≤ Cξλ‖uλ‖q+2+m/2−3(p+1)/2
∞

∫ 1

0

(1 − s)m/2+1(1 − sq)

Sλ(s)3/2
ds (4.25)

≤ Cξλ‖uλ‖q+2+m/2−3(p+1)/2
∞

= o(‖uλ‖q−(p−1)/2−(2p−(p+1)m)
∞ ).

Next, we calculate W3. We fix 0 < δ ≪ 1. By (4.18) and putting s = uλ(t)/‖uλ‖∞,

W3 ≤ Cηλ‖uλ‖q+3/2−5p/2+m(p+1)/2
∞

∫ 1

0

(1 − s2)(1 − sq)Dλ(‖uλ‖∞s)

Sλ(s)3/2Rλ(s)
ds (4.26)

= W3,1 + W3,2 = Cηλ‖uλ‖q+3/2−5p/2+m(p+1)/2
∞

(

∫ 1

1−δ
+
∫ 1−δ

0

)

.

For 1 − δ ≤ s ≤ 1, by Taylor expansion and Hölder’s inequality,

Rλ(s) ≥ 2ηλ

‖uλ‖p−1
∞

(1 − s) + C(p − 1)(1 − s)2 ≥ C

(

2ηλ

‖uλ‖p−1
∞

)2/3

(1 − s)4/3. (4.27)

By this, (2.5), (4.16) and (4.26),

W3,1 ≤ Cηλ‖uλ‖q+3/2−5p/2+m(p+1)/2
∞

(

2ηλ

‖uλ‖p−1
∞

)−2/3
∫ 1

1−δ

(1 − s2)(1 − sq)(1 − s)m+1

(1 − s)3(1 − s)4/3
ds

≤ Cη
1/3
λ ‖uλ‖q+3/2−5p/2+m(p+1)/2+2(p−1)/3

∞ (4.28)

= o(‖uλ‖q−(p−1)/2−(2p−(p+1)m)
∞ ).

By the same argument as that just above, we obtain

W3,2 ≤ Cηλ‖uλ‖q+3/2−5p/2+m(p+1)/2
∞ = o(‖uλ‖q−(p−1)/2−(2p−(p+1)m)

∞ ), (4.29)

W4 ≤ Cη
1/3
λ ‖uλ‖q+4+m2(p+1)/4+m/2−5(p+1)/2+2(p−1)/3

∞ (4.30)

= o(‖uλ‖q−(p−1)/2−(2p−(p+1)m)
∞ ).

By (4.20), (4.24), (4.25), (4.26) and (4.28)–(4.30), we obtain the estimate of Z1. Now we

calculate Z2. To do this, we consider the case where 1 < m < 2 and m = 1 separately.

Case 1. Let 1 < m < 2. By (3.7), Lemma 4.2 and putting s := uλ(t)/‖uλ‖∞, we obtain

Z2 =
∫ 0

−1/2

Bλ(t)
2(‖uλ‖q

∞ − uλ(t)
q)u′

λ(t)

Aλ(uλ(t))3/2(Aλ(uλ(t)) + Bλ(t))
dt (4.31)
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≤ C
∫ 0

−1/2

Dλ(uλ(t))
2‖uλ‖mp+m+2

∞ (‖uλ‖q
∞ − uλ(t)

q)u′
λ(t)

A0(uλ(t)5/2
dt

+C
∫ 0

−1/2

‖uλ‖m2(p+1)/2
∞ (‖uλ‖∞ − uλ(t))

m+2(‖uλ‖q
∞ − uλ(t)

q)u′
λ(t)

A0(uλ(t)5/2
dt

≤ C‖uλ‖q+1−5(p+1)/2
∞

×
∫ 1

1−δ

[Dλ(‖uλ‖∞s)2‖uλ‖mp+m+2
∞ + ‖uλ‖m2(p+1)/2+m+2

∞ (1 − s)m+2](1 − sq)

Sλ(s)5/2
ds

+ C‖uλ‖q+1−5(p+1)/2
∞

×
∫ 1−δ

0

[Dλ(‖uλ‖∞s)2‖uλ‖mp+m+2
∞ + ‖uλ‖m2(p+1)/2+m+2

∞ (1 − s)m+2](1 − sq)

Sλ(s)5/2
ds

≤ C‖uλ‖q−(p−1)/2−(2p−(p+1)m)
∞ .

Note that by (4.16) and (4.18), all the definite integrals in the right hand side of (4.31) are

integrable.

Case 2. Let m = 1. By (3.8),

1

2
Bλ(t) =

∫ 0

t
u′

λ(s)
2ds =

∫ 0

t
(Aλ(uλ(s)) + Bλ(s))

1/2u′
λ(s)ds (4.32)

≤
∫ 0

t
Aλ(uλ(s))

1/2u′
λ(s)ds +

∫ 0

t
Bλ(s)

1/2u′
λ(s)ds

≤
∫ 0

t
Aλ(uλ(s))

1/2u′
λ(s)ds + Bλ(t)

1/2(‖uλ‖∞ − uλ(t)).

By this, we obtain

Bλ(t)
1/2 ≤ C(‖uλ‖∞ − uλ(t)) +

(

2
∫ 0

t
Aλ(uλ(s))

1/2u′
λ(s)ds

)1/2

(4.33)

This along with (4.6) implies

Bλ(t)
2 ≤ CDλ(uλ(t))

2‖uλ‖p+3
∞ + Cξ2

λ(‖uλ‖∞ − uλ(t))
3 + C(‖uλ‖∞ − uλ(t))

4.

By (4.2), (4.27) and putting s := uλ(t)/‖uλ‖∞, we obtain

Z2 ≤
∫ 0

−1/2

Bλ(t)
2(‖uλ‖q

∞ − uλ(t)
q)u′

λ(t)

A0,λ(uλ(t))5/2
dt (4.34)

≤ C
∫ 0

−1/2

(Dλ(uλ(t))
2‖uλ‖p+3

∞ (‖uλ‖q
∞ − uλ(t)

q)u′
λ(t)

A0,λ(uλ(t))5/2
dt

+ Cξ2
λ

∫ 0

−1/2

(‖uλ‖∞ − uλ(t))
3(‖uλ‖q

∞ − uλ(t)
q)u′

λ(t)

A0,λ(uλ(t))3/2Aλ(uλ(t))
dt

+ C
∫ 0

−1/2

(‖uλ‖∞ − uλ(t))
4(‖uλ‖q

∞ − uλ(t)
q)u′

λ(t)

A0,λ(uλ(t))5/2
dt
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≤ C‖uλ‖q+1−5(p+1)/2+p+3
∞

∫ 1

0

(1 − sq)Dλ(‖uλ‖∞s)2

Sλ(s)5/2
ds

+ Ce−k
√

λ/3‖uλ‖p+q+4−5(p+1)/2−2(p−1)/3
∞

∫ 1

0

(1 − s)3(1 − sq)

Sλ(s)3/2(1 − s)4/3
ds

+ C‖uλ‖q+1−5(p+1)/2+4
∞

∫ 1

0

(1 − sq)(1 − s)4

Sλ(s)5/2
ds

≤ C‖uλ‖q−(p−1)/2−p+1
∞ .

Note that by (4.16) and (4.18), all the integrals in the right hand side of (4.34) is integrable,

and (4.34) coincides with (4.31) with m = 1. Thus the proof is complete.

5 Appendix

Proof of Lemma 3.1. By (3.7), (3.9) and putting s = uλ(t)/‖uλ‖∞, we obtain

I = 2
∫ 1

0

‖uλ‖q+1
∞ (1 − sq)

√

‖uλ‖p+1
∞ Rλ(s)

ds (5.1)

= 2‖uλ‖q−(p−1)/2
∞

∫ 1

0

1 − sq

√

Sλ(s)
ds + 2‖uλ‖q−(p−1)/2

∞





∫ 1

0

1 − sq

√

Rλ(s)
ds −

∫ 1

0

1 − sq

√

Sλ(s)
ds





:= ‖uλ‖q−(p−1)/2
∞ (C(q) + 2X),

where

X :=
∫ 1

0





1 − sq

√

Rλ(s)
− 1 − sq

√

Sλ(s)



 ds (5.2)

=

(

1 − λ

‖uλ‖p−1
∞

)

∫ 1

0

(1 − s2)(1 − sq)
√

Rλ(s)
√

Sλ(s)(
√

Rλ(s) +
√

Sλ(s))
ds

= −(X1 + X2)

:= − ηλ

‖uλ‖p−1
∞

∫ 1

1−δ

(1 − s2)(1 − sq)
√

Rλ(s)
√

Sλ(s)(
√

Rλ(s) +
√

Sλ(s))
ds

− ηλ

‖uλ‖p−1
∞

∫ 1−δ

0

(1 − s2)(1 − sq)
√

Rλ(s)
√

Sλ(s)(
√

Rλ(s) +
√

Sλ(s))
ds.

Here, 0 < δ ≪ 1 is a constant. Then we apply the argument in [11, Lemma 3.2] to our case

and obtain that for λ ≫ 1,

0 ≤ X1 ≤ C
√

λe−k
√

λ, (5.3)

0 ≤ X2 ≤ Ce−k
√

λ. (5.4)
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By (5.1)–(5.4), we obtain Lemma 3.1. Thus the proof is complete.
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(i) Let f(β, x, y) = |x|p−1x−β|y|m, where β ≥ 0 is a parameter. Our nonlinear term is given

by f = f(1, x, y). In the referee’s report of the first version of this paper, it is suggested

that it is interesting to analyze the transitions between the asymptotic formulas from the

case when β = 0 to the case β > 0. This analysis gives us the good information how the

asymptotic behavior of λq(α) depends on the damped term. By following the argument in

Section 3 carefully, we find that the asymptotic formula corresponding to (1.13) is obtained

by C2 replaced with βC2. Therefore, if β → 0, then the formula (1.13) for the case f(β, x, y)

converges to (1.6), which is the asymptotic formula for the case f(0, x, y), namely, the case

without damped term. In this way, by introducing a new parameter β, we understand well

how the asymptotic behavior of λq(α) depends on the damped term.

(ii) It is also suggested in the referee’s report that it seems interesting to consider the case

β = −1. To treat this case, more precise observation than above (i) will be necessary. From

this point we might go on to an extension of the results here to the case β = −1.
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