
Electronic Journal of Qualitative Theory of Differential Equations
Proc. 10th Coll. Qualitative Theory of Diff. Equ. (July 1–4, 2015, Szeged, Hungary)
2016, No. 13, 1–7; doi: 10.14232/ejqtde.2016.8.13 http://www.math.u-szeged.hu/ejqtde/

Necessary conditions for a reaction–diffusion system
with delay to preserve positivity

Lirui Feng1, Xue Zhang2, Jianhong WuB 3 and Messoud Efendiev4

1School of Mathematical Sciences, University of Science and Technology of China,
96 Jinzhai Rd, Hefei, Anhui, 230026, China

2College of Science, Northeastern University, Shenyang, Liaoning, 110819, China.
3Department of Mathematics and Statistics, York University,

4700 Keele Street, Toronto, Ontario M3J 1P3
4Helmholtz Center Munich, Institute of Computational Biology,

Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany

Appeared 11 August 2016

Communicated by Tibor Krisztin

Abstract. We consider the reaction–diffusion system with delay
∂u
∂t

= A(t, x)∆u−
k

∑
i=1

γi(t, x)∂xi u + f (t, ut), x ∈ Ω;

B(u)|∂Ω = 0.

We show that this system with delay preserves positivity if and only if its diffusion ma-
trix A and convection matrix γi are diagonal with non-negative elements and nonlinear
delay term f satisfies the normal tangential condition.
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1 Introduction

Consider the following initial-boundary value problem (IBVP) of reaction–diffusion equations
with delay 

∂u
∂t

= A(t, x)∆u−
k

∑
i=1

γi(t, x)∂xi u + f (t, ut), x ∈ Ω;

B(u)|∂Ω = 0;

ut0(θ, x) = ϕ(θ, x), ϕ ∈ C([−τ, 0]×Ω, Rn)

(1.1)

where we assume:
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(A.1). A(t, x) and γi(t, x) are n× n matrices, with each element in C(R×Ω, R) and Ω ⊆ Rk

is an open bounded domain;

(A.2). ut is defined by ut(θ, x) = u(t + θ, x) for any t ≥ t0 and θ ∈ [−τ, 0], where t0 is the
initial time, τ is a positive number and u(t, x) is a solution of (1.1);

(A.3). f is a continuous and locally Lipschitz mapping from R× C([−τ, 0], Rn) to Rn;

(A.4). The boundary condition is given by B(u)(t, x) = a(x)u(t, x) + b(x) ∂u
∂n (t, x) for any

t > t0, where

a(x) = diag(a1(x), . . . , an(x)), b(x) = diag(b1(x), . . . , bn(x))

with each element ai, bi ∈ C(Ω, Rn+).

It is well known that solutions of IBVP (1.1) starting from nonnegative initial conditions
remain nonnegative under the assumptions that the diffusion matrix is diagonal and the ki-
netics f satisfies a certain sub-tangential condition with respect to a cone of nonnegative func-
tions. See, for example, results for ordinary delay differential equations (Smith [11] and Seifert
[12]), for parabolic equations (Weinberger [13]), and for abstract functional differential equa-
tions including delayed reaction–diffusion equations (Martin and Smith [7, 8], Ruess [9] and
Summers [10]). Nonnegative properties are of course one of the fundamental behaviours of
any dynamical model arising from biological systems if the state variables u represent the den-
sities of the biological species involved. On the other hand, sufficient conditions for solutions
to preserve nonnegative property can easily be extended to generate a certain monotonicity
(order-preserving property) of the solutions which turns out to have significant implications
for the global dynamics of the generated solution semiflows (Hirsch [2–6]).

It is natural to ask if these commonly used sufficient conditions are necessary as well, and
to our best knowledge very little has been done in the literature except the work reported
in Efendiev [1]. Here we confirm that these conditions are indeed necessary by constructing
explicitly negative solutions with nonnegative initial conditions when these conditions are not
met. This confirmation obviously provides a convenient first step to disprove any proposed
mathematical model arising from population dynamics if the state variables are population
densities. We also show how to use this necessary condition to identify primitive state vari-
ables, through a standard linear transformation, of any correct mathematical models when
they fail to meet the necessary conditions.

2 Main results

We start with recalling a few notations and notions.

Definition 2.1. A set K+ ⊆ X is called a positive cone if

1. K+ is closed;

2. αx ∈ C for all x ∈ C and α ∈ R+;

3. K+ ⋂(−K+) = {0}.

We will write x ≥ 0 if x ∈ K+.
In this paper, we will use various cones as follows.
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1. If X = Rn, we choose Rn+ := {x = (x1, . . . , xn) ∈ Rn, xi ≥ 0, 1 ≤ i ≤ n} as a positive
cone.

2. If X = C(Ω) := C(Ω, R) is equipped with the maximal norm, where Ω is a bounded
domain in Rk, then we choose C+(Ω) = C(Ω, R+) as a positive cone of X.

3. If X = C([−τ, 0]×Ω, Rn) with the norm

‖u‖max = maxn
i=1 max

θ∈[−τ,0],x∈Ω
{ui(θ, x)},

where Ω is a bounded domain in Rk and τ ≥ 0, then a positive cone is C+([−τ, 0] ×
Ω, Rn+). Similarly, we define C+[−τ, 0].

In what follows, we will say that a closed subset S in a chosen phase space X for IBVP
(1.1) is totally positively invariant set if the solution ut ∈ S for all t ≥ t0 as long as ut0 ∈ S and
the solution is defined at t ≥ t0. The positivity property of IBVP (1.1) refers to the property that
the positive cone is a totally positively invariant set.

We can now state our main result.

Theorem 2.2. The IBVP (1.1) satisfies the positivity property if and only if the following conditions
hold:

(i) A(t, x) = diag{a1(t, x), a2(t, x), . . . , an(t, x)} with ai(t, x) ≥ 0 for all t ∈ R and x ∈ Ω,
i ∈ {1, 2, . . . , n};

(ii) γl(t, x) = diag{γ1
l (t, x), γ2

l (t, x), . . . , γn
l (t, x)}, l ∈ {1, 2, . . . , k};

(iii) for all t ∈ R and ψ ∈ C+[−τ, 0] with ψi(0) = 0, fi(t, ψ(θ)) ≥ 0.

Proof. We only prove the necessity and refer to the aforementioned references for the proof of
sufficiency. Assume that an initial data ut0 ∈ C+([−τ, 0]×Ω, Rn) with t0 ∈ R is given so that
the solution u(t, x, ut0) ≥ 0 as long as it exists.

We can see that ut0(0, ·) ∈ C+(Ω, Rn) ⊂ L2(Ω, Rn). Define the inner product of the function
space L2(Ω, Rn) by

〈ũ, ṽ〉L2(Ω,Rn) =
n

∑
i=1

∫
Ω

ũiṽidx,

where ui, vi are the i-th component of the vector ũ, ṽ. Then,

〈ut0(0, ·), v(·)〉L2(Ω,Rn) =
n

∑
i=1

∫
Ω

ui
t0
(0, x)vi(x)dx,

for any vector v ∈ L2
+(Ω, Rn). Consequently, 〈·, v〉L2(Ω,Rn) is a positive linear functional of

L2(Ω, Rn). Consider the action of this functional on the derivative of solution u(t, x, ut0), we
have 〈

∂u(t,·,ut0 )

∂t

∣∣
t=t0

, v
〉

L2
= lim

t→t+0

〈
u(t,·,ut0 )−u(t0,·,ut0 )

t , v
〉

L2

= lim
t→t+0

〈
u(t,·,ut0 )

t , v
〉

L2
−
〈

u(t0,·,ut0 )

t , v
〉

L2
.

If
〈 u(t0,·,ut0 )

t , v
〉

L2 = 0, i.e, 〈ut0(0, ·), v〉L2(Ω,Rn) = 0, then〈
∂u(t,·,ut0 )

∂t

∣∣
t=t0

, v
〉

L2
= lim

t→t+0

〈
u(t,·,ut0 )

t , v
〉

L2
≥ 0,
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where we used that the solution u(t, ·, ut0) ≥ 0 due to necessary. It then follows from equation
(1.1) that〈

∂u(t,·,ut0 )

∂t

∣∣
t=t0

, v
〉

L2
=
〈

A(t0, ·)∆ut0(0, ·)− γ(t0, ·)∇ut0(0, ·) + f (t0, ut0(θ, ·)), v
〉

L2 ≥ 0. (2.1)

We now choose initial data ut0(θ, ·) = (0, . . . , ui
t0
(θ, ·), . . . , 0) and the vector v = (0, . . . ,

vj(·), . . . , 0) with j 6= i and ui
t0
(θ, ·), vj(·) ≥ 0, then

〈ut0(0, ·), v〉L2(Ω,Rn) =
∫

Ω
ui

t0
(0, ·) · 0dx +

∫
Ω

0 · vj(x)dx = 0.

From equation (2.1), we obtain〈
aji(t0, ·)∆ui

t0
(0, ·)−

n

∑
l=1

γ
ji
l (t0, ·)∂lui

t0
(0, ·) + f j(t0, 0, . . . , 0, ui

t0
(θ, ·), 0, . . . , 0), vj

〉
L2
≥ 0, (2.2)

for any vj ≥ 0. Since vj is an arbitrary non-negative function, it follows from (2.2) that the
following pointwise inequality

aji(t0, x)∆ui
t0
(0, x)−

n

∑
l=1

γ
ji
l (t0, x)∂lui

t0
(0, x) + f j(t0, 0, . . . , 0, ui

t0
(θ, x), 0, . . . , 0) ≥ 0

holds for almost all x ∈ Ω. By the continuity of the left hand of the inequality above, we know
aji(t0, x)∆ui

t0
(0, x) − ∑n

l=1 γ
ji
l (t0, x)∂lui

t0
(0, x) + f j(t0, 0, . . . , 0, ui

t0
(θ, x), 0, . . . , 0) ≥ 0 is true for

all x ∈ Ω.

In order to obtain the condition for aji, we need to choose a family of special positive
functions ui

t0
(·, ·, ε) ∈ C+([−τ, 0]×Ω, R) to take off the term ∑n

l=1 γ
ji
l (t0, x0)∂lui

t0
(0, x0) at some

point x0 ∈ Ω. We may choose the functions ui
t0
(θ, x, ε) such that:

1. they attain their maximum at θ = 0 and x0 ∈ Ω;

2. their second derivative of them can achieve an given θ = 0 and x0 as ε varies;

3. B(ui
t0
(θ, x, ε))|∂Ω = 0.

Now we begin to construct the family of functions. Firstly, let wi
t0
(θ, x, ε) = e

−1
ε (x1−x1

0)
2+θ ,

where ε ∈ R. By calculation,

∇wi
t0
(θ, x, ε) =

(−2(x1 − x1
0)

ε
e
−1
ε (x1−x1

0)
2+θ , 0, . . . , 0

)
and

∆wi
t0
(θ, x, ε) =

(
−2

ε
e−

1
ε (x1−x1

0)
2+θ +

4
ε2 (x1 − x1

0)
2e−

1
ε (x1−x1

0)
2+θ , 0, . . . , 0

)
.

Consequently, ∇wi
t0
(0, x0, ε) = (0, . . . , 0) and ∆wi

t0
(0, x0, ε) = (− 2

ε , 0, . . . , 0). Since Ω is an
open bounded domain in Rk, ∂Ω is a compact subset of Rk. Then we can define dx0 =

minx∈∂Ω ∑k
i=1(xi − xi

0)
2 for any x0 ∈ Ω. It is easy to see dx0 > 0. Next, we construct a non-

negative cut-off function g(x) ∈ C∞(Ω) such that g(x) ≡ 1 for any x ∈ Bx0

( dx0
3

)
and g(x) ≡ 0

for any x /∈ Bx0

( 2dx0
3

)
. Let

g1(t) =


exp

 1(
t−

d2
x0
9

)(
t−

4d2
x0
9

)
 , t ∈

( d2
x0
9 ,

4d2
x0

9

)
0, t /∈

( d2
x0
9 ,

4d2
x0

9

)
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and g2(t) =
∫ +∞

t g1(s)ds∫ +∞
−∞ g1(s)ds

. We can see that

g2(t) =

1, t ≤ d2
x0
9

0, t ≥ 4d2
x0

9 .

Then g(x) = g2(|x − x0|2) is the cut-off function we need. Finally, we get the family of
functions ui

t0
(θ, x, ε) = g(x)wi

t0
(θ, x, ε).

Then we have the following inequality

aji(t0, x0)∆ui
t0
(0, x0)−

n

∑
l=1

γ
ji
l (t0, x0)∂lui

t0
(0, x0) + f j(t0, 0, . . . , 0, ui

t0
(θ, x0), 0, . . . , 0)

= −2
ε

aji(t0, x0) + f j(t0, 0, . . . , 0, eθ , 0, . . . , 0) ≥ 0.

As ε can be chosen arbitrarily small for any given t0 ∈ R and x0 ∈ Ω and aji ∈ C(R×Ω, R),
equation (2.2) implies that aji(t, x) = 0, j 6= i must be satisfied.

Next, we consider the term γ
ji
l (t0, x) for j 6= i. Let ui

t0
(θ, x) = g(x)e−

1
ε (xl−xl

0)+θ , then
∇ui

t0
(0, x0) = (0, . . . , 0,− 1

ε , 0, . . . , 0). Hence,

aji(t0, x0)∆ui
t0
(0, x0)−

n

∑
l=1

γ
ji
l (t0, x0)∂lui

t0
(0, x0) + f j(t0, 0, . . . , 0, ui

t0
(θ, x0), 0, . . . , 0)

= −1
ε

γ
ji
l (t0, x0) + f j(t0, 0, . . . , 0, eθ , 0, . . . , 0) ≥ 0.

Since ε ∈ R is arbitrary for any given t0 ∈ R and x0 ∈ Ω and the continuity of γ
ji
l in the set

R×Ω, it is clear that γ
ji
l (t, x) = 0 for any i 6= j.

Now, we verify the sign of aii(t, x). If aii(t0, x0) < 0 at some time t0 and point x0 ∈ Ω, let
ut0(θ, x) = (0, . . . , ui

t0
(θ, x), . . . , 0), where

ui
t0
(θ, x) = g(x)

(
e
(x1−x1

0)
2

ε −θ − 1
)
≥ 0

with ε > 0 for θ ∈ [−τ, 0]. Then we have ∂u(t0,x0)
∂t = aii(t0, x0)

2
ε + f (t0, 0, . . . , e−θ , 0, . . . , 0). It is

easy to see that ∂u(t0,x0)
∂t < 0 if ε is small enough. Notice u(t0, x0) = ut0(0, x0) = 0, then there

exists a positive number δ > 0 such that u(t, x0) < 0 for any t ∈ [t0, t0 + δ], a contradiction.
So, by the continuity of aii(t, x), aii(t, x) ≥ 0 for any t ∈ R, x ∈ Ω.

Finally, we show fi(t, ψ(θ)) ≥ 0 for any ψ(θ) ∈ C+[−τ, 0] with ψi(0) = 0 and any time t. In-
deed, taking A(t, x) = diag(a1(t, x), a2(t, x), . . . , an(t, x)) and γl(t, x) = diag(γ1

l (t, x), γ2
l (t, x),

. . . , γn
l (t, x)), l = 1, 2, . . . , k into account, for pair ut0 = (u1

t0
, u2

t0
, . . . , ui

t0
, . . . , un

t0
) satisfying

ut0(θ, ·) ≡ ψ(θ), and v = (0, . . . , 0, vi, 0, . . . , 0) with vi ≥ 0, from (2.1) we obtain that
fi(t0, u1

t0
, . . . , ui

t0
, . . . , un

t0
) ≥ 0, i.e., for any t ∈ R and ψ(θ) ∈ C+[−τ, 0] with ψi(0) = 0,

fi(t, ψ(θ)) ≥ 0 for any t ∈ R.

Remark 2.3. The case where τ = 0, the diffusion and convection matrix of (1.1) and mapping
f of (1.1) are all independent on time t, we get a reaction–diffusion equation. Theorem 2.2
is obtained in [1] when we further assume that the matrices γl , A are (n× n)-matrices with
constant coefficients.
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Remark 2.4. If the boundary value condition of (1.1) is that B(u)|∂Ω = g(x), where g ∈ C(∂Ω),
then the necessary and sufficient condition satisfies to keep positiveness is that same as the
one in Theorem 2.2 in addition to the following condition: g(x) ≥ 0 for x ∈ ∂Ω. To prove
this, in the argument for Theorem 2.2, we need to use the cut-off function to find the special
initial data ut0 such that B(ut0)(0, ·)|∂Ω = g(x) and ut0(0, ·)|Bx0 (2ε)\Bx0 (ε)

≡ 0, where the open
ball Bx0(2ε) is a proper subset of Ω and ε > 0.

Remark 2.5. For equations (1.1) with non-homogeneous boundary conditions in Remark 2.4,
we assume that the diffusion matrix A(t, x) can be diagonalized, that means there exists a
reversible matrix P(t, x) such that P−1AP = J for any t ∈ R, x ∈ Ω, where J is a diago-
nal matrix. Then the necessary and sufficient conditions for the set PC+([−τ, 0]×Ω, Rn) =

{φ ∈ C([−τ, 0] ×Ω, Rn) | φ(θ, x) ∈ PRn+, for any θ ∈ [−τ, 0], x ∈ Ω} totally positively in-
variant are that :

(1’) each element of J is equal to or greater than 0;

(2’) P−1γl P = diag{γ1
l (t, x), γ2

l (t, x), . . . , γn
l (t, x)}, l ∈ {1, 2, . . . , k};

(3’) for any t ∈ R and ψ ∈ C+[−τ, 0] with ψi(0) = 0, the mapping Fi(t, ψ) = P−1 fi(t, Pψ) ≥ 0.

Therefore, we conclude that Pu rather than u should be the “prime” variable.

Remark 2.6. Assume that u1(t, x), u2(t, x) are solutions of equations (1.1) satisfying that
u1(t0 + θ, x) ≥ u2(t0 + θ, x) for any x ∈ Ω and θ ∈ [−τ, 0]. Let w(t, x) = u1(t, x)− u2(t, x), it
then follows from (1.1) that

∂w
∂t

= A(t, x)∆w−
k

∑
i=1

γi(t, x)∂xi w + f (t, u1t)− f (t, u2t), x ∈ Ω,

B(w)|∂Ω = 0.

If mapping f is smooth enough, then f (t, u1t)− f (t, u2t) =
∫ 1

0 D f (t, su1t + (1− s)u2t)ds · w.
Consider the following system

∂v
∂t

= A(t, x)∆v−
k

∑
i=1

γi(t, x)∂xi v +
∫ 1

0
D f (t, su1t + (1− s)u2t)ds · v,

B(v)|∂Ω = 0,

v0 = ϕ ∈ C([−τ, 0]×Ω, Rn).

(2.3)

Then equations (2.3) preserving positivity if only if

(a). A = diag{a1(t, x), a2(t, x), . . . , an(t, x)} with ai(t, x) ≥ 0 for any t ∈ R and x ∈ Ω,
i ∈ {1, 2, . . . , n};

(b). γl = diag{γl
1(t, x), γl

2(t, x), . . . , γl
n(t, x)}, l ∈ {1, 2, . . . , k};

(c). for any t ∈ R and ψ ∈ C+[−τ, 0] with ψi(0) = 0,
∫ 1

0 D fi(t, su1t + (1− s)u2t)ds · ψ ≥ 0.

Since w(t, x) = u1(t, x)− u2(t, x) is a special solution of (2.3) satisfying w(t0 + θ, x) ≥ 0 for any
θ ∈ [−τ, 0], u1(t, x) ≥ u2(t, x) for any t ≥ t0 if (a), (b), (c) holds. In fact, if we just require that
the special solution w(t, x) remains non-negative for t > 0, the condition (c) can be replaced
by (c’) below:

(c’) for any t ∈ R and u1t ≥ u2t with u1t(0) = u2t(0),
∫ 1

0 D fi(t, su1t + (1− s)u2t)ds · w =

fi(t, u1t)− fi(t, u2t) ≥ 0. Therefore, we are naturally led to (c”), for any t ∈ R and φ ≥ ψ with
φ(0) = ψ(0), fi(t, φ)− fi(t, ψ) ≥ 0.
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