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OSCILLATION CRITERIA FOR A CERTAIN SECOND-ORDER

NONLINEAR DIFFERENTIAL EQUATIONS WITH DEVIATING

ARGUMENTS

AYDIN TIRYAKI

Abstract. In this paper, by using the generalized Riccati technique and the
integral averaging technique, some new oscillation criteria for certain second
order retarded differential equation of the form

“

r (t)
˛

˛u′ (t)
˛

˛

α−1
u′ (t)

”

′

+ p (t) f (u (τ (t))) = 0

are established. The results obtained essentially improve known results in the
literature and can be applied to the well known half-linear and Emden-Fowler
type equations.

1. Introduction

This paper is concerned with the problem of oscillatory behavior of the retarded
functional differential equation

(

r (t) |u′ (t)|
α−1

u′ (t)
)′

+ p (t) f (u (τ (t))) = 0, t ≥ t0 ≥ 0. (1.1)

We suppose throughout the paper that the following conditions hold.
(H1) α is a positive number,

(H2) r ∈ C ([t0, ∞)) , r (t) > 0, R (t) =
∫ t

t0
r−1/α (s) ds → ∞ as t → ∞,

(H3) p ∈ C ([t0, ∞)) , p (t) > 0,
(H4) τ ∈ C1 ([t0, ∞)) , τ (t) ≤ t, τ ′ (t) > 0, τ (t) → ∞ as t → ∞,
(H5) f ∈ C ((−∞, ∞)) , xf (x) > 0 for x 6= 0, f ∈ C1 (RD) , where RD =

(−∞, −D) ∪ (D, ∞) , D > 0.
By a solution of (1.1), we mean a function u ∈ C1 ([Tu, ∞)) , Tu ≥ t0, which has

the property r (t) |u′ (t)|α−1 u′ (t) ∈ C1 ([Tu, ∞)) and satisfies (1.1) on [Tu, ∞). We
consider only those solutions u (t) of (1.1) which satisfy sup {|u (t)| : t ≥ Tu} > 0
for all Tu ≥ t0. We assume that (1.1) possesses such a solution. A nontrivial
solution of (1.1) is said to be oscillatory if it has a sequence of zeros tending to
infinity, otherwise it is called nonoscillatory. An equation is said to be oscillatory
if all its solutions are oscillatory.

The oscillatory behavior of functional differential equations with deviating ar-
guments has been the subject of intensive study in the last three decades, see for
example the monographs Agarwal et al [2], Dosly and Rehak [9], Gyori and Ladas
[13], and Ladde et al [20].

The study of oscillation of second order differential equations is of great interest.
Many criteria have been found which involve the behavior of the integral of a

1991 Mathematics Subject Classification. 34C10, 34K11.
Key words and phrases. Oscillatory solution; Integral averaging technique; Second order re-

tarded differential equation; Half-linear equation; Emden-Fowler equation.

EJQTDE, 2009 No. 61, p. 1



combination of the coefficients. Recently Agarwal et al [4], Chern et al [8], Elbert
[11], Kusano et al [16, 17, 18, 19], and Mirzov [23, 24] have observed some similar
properties between the half-linear equation

(

r (t) |u′ (t)|
α−1

u′ (t)
)′

+ p (t) |u (τ (t))|
α−1

u (τ (t)) = 0 (1.2)

and the corresponding linear equation

(r (t)u′ (t))
′
+ p (t)u (τ (t)) = 0. (1.3)

Some of the above results are improved by Dzurina and Stavroulakis [10]. On the
other hand Ladde et al [20] presented the following oscillatory criteria for Eq. (1.3)

∫

∞

R1−ǫ (τ (t)) p (t) dt = ∞, 0 < ǫ < 1. (1.4)

In this paper, we shall continue in this direction the study of oscillatory properties
of (1.1). By using the generalized Riccati technique and the integral averaging
technique, we shall establish some new oscillatory criteria. The first our purpose
is to improve the above mentioned results. The second aim is to show that many
others known criteria are included in the our obtained results. The third intention of
paper, is to apply obtained results for investigation of oscillation of the generalized
Emden-Fowler equation

(

r (t) |u′ (t)|
α−1

u′ (t)
)′

+ p (t) |u (τ (t))|
β−1

u (τ (t)) = 0. (1.5)

Note that, in this direction, although there is an extensive literature on the oscil-
latory behavior of Eq. (1.2) and (1.3), there is not much done for Eq. (1.5). We
refer to the reader, see [1, 2, 3, 4, 26, 30] in delay case and [15, 29] in ordinary case.

2. Main Results

In this section we prove our main result.

Theorem 1. Let there exist a constant k > 0 such that

f ′ (x) / |f (x)|
1− 1

α ≥ k for all x ∈ RD. (2.1)

If

lim
t→∞

∫ t

t0

(

1

r (s)

∫

∞

s

p (z)dz

)1/α

ds = ∞ (2.2)

and there exists a differentiable function ρ : [t0, ∞) → (0,∞) such that

ρ′ (s) ≥ 0 and lim sup
t→∞

∫ t

t0

{

p (s) ρα (s) − µ
r (τ (s)) ρ′

α+1

(s)

τ ′α (s) ρ (s)

}

ds = ∞, (2.3)

where µ :=

(

α

α + 1

)α+1
(

α
k

)α
, then Eq. (1.1) is oscillatory.
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Proof. Assume the theorem false. Let u (t) be a nonoscillatory solution of (1.1).
Without loss of generality we may assume that u (t) > 0. This implies that

(

r (t) |u′ (t)|
α−1

u′ (t)
)′

= −p (t) f (u (τ (t))) < 0.

Hence the function r (t) |u′ (t)|
α−1

u′ (t) is decreasing and therefore there are two
cases u′ (t) > 0 and u′ (t) < 0. The case u′ (t) < 0, by the hypothesis (H2) , is
impossible and we see that u′ (t) > 0 on [t, ∞) for some t1 ≥ t0. Define

w (t) := r (t)
(ρ (t) u′ (t))

α

f (u (τ (t)))
, t ∈ [t1, ∞). (2.4)

Then w (t) > 0. Differentiating w (t) and using Eq. (1.1), since r (t)u′
α

(t) is de-
creasing, we have Riccati type inequality

w′ (t) ≤
αρ′ (t)

ρ (t)
w (t) − ρα (t) p (t) −

(w (t))
1+1/α

τ ′ (t) f ′ (u (τ (t)))

(r (τ (t)))
1/α

ρ (t) f (u (τ (t)))
1−1/α

. (2.5)

Let us assume that u (t) is bounded. Then there exist some positive constants c1

and c2 such that for all t ≥ t0

c2 ≤ u (t) ≤ c1 and c2 ≤ u (τ (t)) ≤ c1.

Integrating Eq. (1.1) from t to ∞, we obtain

r (t)u′
α

(t)
∣

∣

∣

∞

t
= −

∫

∞

t

p (s) f (u (τ (s))) ds.

Since r (t)u′
α

(t) is positive and decreasing, we have

r (t)u′
α

(t) ≥

∫

∞

t

p (s) f (u (τ (s))) ds.

Integrating this inequality again from t0 to t, we have

u (t) ≥

∫ t

t0

(

1

r (s)

∫

∞

s

p (z) f (u (z)) dz

)1/α

ds.

Denote f0 = min
u∈[c1, c2]

f (u). Then from this inequality

c1 ≥ u (t) ≥ f
1/α
0

∫ t

t0

(

1

r (s)

∫

∞

s

p (z)dz

)1/α

ds. (2.6)

Letting t → ∞ the last inequality contradicts to (2.2). Therefore, we conclude
u (t) → ∞ as t → ∞. Thus u (τ (t)) ∈ RD for all t large enough. Now it is easy to

see that condition f ′ (u (τ (t))) / (f (u (τ (t))))1−1/α ≥ k implies

w′ (t) ≤
αρ′ (t)

ρ (t)
w (t) − ρα (t) p (t) − k

(w (t))
1+1/α

τ ′ (t)

(r (τ (t)))
1/α

ρ (t)
, t ≥ t1. (2.7)

By using the inequality

Ax − Bx1+1/α ≤
αα

(α + 1)
α+1 Aα+1B−α, B > 0, A ≥ 0, x ≥ 0 (2.8)
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we get

w′ (t) ≤ −

{

p (t) ρα (t) − µ
r (τ (t)) ρ′

α+1

(t)

ρ (t) τ ′α (t)

}

, t ≥ t1. (2.9)

Integrating this inequality from t1 to t, we get

w (t) ≤ w (t1) −

∫ t

t1

{

ρα (s) p (s) − µ
r (τ (s)) ρ′

α+1

(s)

ρ (s) τ ′α (s)

}

ds.

Letting lim supt→∞
, we get in view of (2.3) that w (t) → −∞, which contradicts

w (t) > 0 and the proof is complete.

The conclusions of Theorem 1 leads to the following.

Corollary 1. Let the condition (2.3) in Theorem 1 be replaced by

∫

∞

t0

ρα (s) p (s) ds = ∞, and

∫

∞

t0

r (τ (s)) ρ′
α+1

(s)

ρ (s) τ ′α (s)
ds < ∞, (2.10)

then the conclusion of Theorem 1 holds.

Next we state the following result.

Corollary 2. Assume that (2.1) and (2.2) are satisfied. If there exists a differen-
tiable positive function ρ such that

ρ′ (t) > 0 for all t ≥ t0, (2.11)

∫

∞

t0

r (τ (s)) ρ′
α+1

(s)

ρ (s) τ ′α (s)
ds = ∞, (2.12)

and

lim inf
t→∞

ρα+1 (t) p (t) (τ ′ (t))
α

r (τ (t)) (ρ′ (t))α+1 > µ, (2.13)

then Eq. (1.1) is oscillatory.

Proof. It is enough to show that (2.12) and (2.13) together implies (2.3). From
(2.13), it follows that there exist ǫ > 0 such that for all large t

ρα+1 (t) p (t) (τ ′ (t))
α

r (τ (t)) (ρ′ (t))α+1 > µ + ǫ.

This means that

ρα (t) p (t) − µ
r (τ (t)) (ρ′ (t))

α+1

ρ (t) (τ ′ (t))
α > ǫ

r (τ (t)) (ρ′ (t))
α+1

ρ (t) (τ ′ (t))
α .

Now, it is obvious that from (2.11), this inequality implies (2.3) and the assertion
of this corollary follows from Theorem 1.

If we choose ρ (t) = R (τ (t)) in Theorem 1, Corollary 1 and Corollary 2, we have
the following oscillation criteria.
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Theorem 2. Assume that (2.1) and (2.2) hold. If

lim sup
t→∞

∫ t

t0

{

Rα (τ (s)) p (s) − µ
τ ′ (s)

R (τ (s)) r1/α (τ (s))

}

ds = ∞, (2.14)

then Eq. (1.1) is oscillatory.

Corollary 3. Assume that (2.1) and (2.2) hold. If there exists a positive constant
ǫ such that

∫

∞

t0

Rαǫ (τ (s)) p (s) ds = ∞, 0 < ǫ < 1, (2.15)

then Eq. (1.1) is oscillatory.

Corollary 4. Assume that (2.1) and (2.2) hold. If

lim inf
t→∞

Rα+1 (τ (t)) r1/α (τ (t)) p (t)

τ ′ (t)
> µ, (2.16)

then Eq. (1.1) is oscillatory.

If we take ρ (t) = τ (t) , the conclusions of Theorem 1, Corollary 1 and Corollary
2 lead to the following oscillation criteria.

Theorem 3. Assume that (2.1) and (2.2) hold. If

lim sup
t→∞

∫ t

t0

{

τα (s) p (s) − µ
r (τ (s)) τ ′ (s)

τ (s)

}

ds = ∞, (2.17)

then Eq. (1.1) is oscillatory.

Corollary 5. Assume that (2.1) and (2.2) hold. If there exists a positive constant
ǫ such that

∫

∞

t0

ταǫ (s) p (s) ds = ∞, 0 < ǫ < 1, (2.18)

then Eq. (1.1) with r (t) ≡ 1 is oscillatory.

Corollary 6. Assume that (2.1) and (2.2) hold. If

lim inf
t→∞

τα+1 (t) p (t)

τ ′ (t)
> µ, (2.19)

then Eq. (1.1) with r (t) ≡ 1 is oscillatory.

From Theorem 2, we get the following oscillation criterion.

Corollary 7. Assume that (2.1) and (2.2) hold. If

lim inf
t→∞

Rα (τ (t))

∫

∞

t

p (s) ds > µ
1

α
, (2.20)

then Eq. (1.1) is oscillatory.
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Proof. It is sufficient to prove that (2.20) implies (2.14). Suppose that (2.14) fails,
that is for all ǫ > 0 there exists a t1 such that for all t ≥ t1

∫

∞

t

Rα (τ (s))

(

p (s) − µ
τ ′ (s)

Rα+1 (τ (s)) r1/α (τ (s))

)

ds < ǫ.

Since Rα (τ (t)) is nondecreasing, this inequality implies

Rα (τ (t))

∫

∞

t

(

p (s) − µ
τ ′ (s)

Rα+1 (τ (s)) r1/α (τ (s))

)

ds < ǫ.

Therefore

Rα (τ (t))

∫

∞

t

p (s) ds < ǫ +
µ

α

for all ǫ > 0 which contradicts to (2.20).

Similarly, we have the following result from Theorem 3.

Corollary 8. Assume that (2.1) and (2.2) hold. If

lim inf
t→∞

τα (t)

∫

∞

t

p (s) ds >
µ

α
, (2.21)

then Eq. (1.1) with r (t) ≡ 1 is oscillatory.

Remark 1. When α = 1 and r (t) ≡ 1, Theorem 1 and Corollary 2 with ρ (t) = t,
Theorem 3, Corollary 6 reduce to Theorem 2.1, Corollary 2.1, Theorem 2.2, and
Corollary 2.5 in [7], respectively.

3. Philos, Kamenev- type oscillation criteria for Equation (1.1)

In this section, by using the generalized Riccatti technique (2.4) and the in-
tegral averaging technique, similar to that Grace [12], Kamenev [14], Philos [25],
Rogovchenko [27], Tiryaki [28], and Wong [31], we give new oscillation criteria for
Eq. (1.1) thereby improving our main results.

For this purpose, we first define the sets

D0 = {(t, s) : t > s ≥ t0} and D = {(t, s) : t ≥ s ≥ t0} .

We introduce a general class of parameter functions H : D → R which have con-
tinuous partial derivative on D with respect to the second variable and satisfy

H1 : H (t, t) = 0 for t ≥ t0 and H (t, s) > 0 for all (t, s) ∈ D0,

H2 : −
∂H (t, s)

∂s
≥ 0 for all (t, s) ∈ D.

Suppose that h : D0 → R is a continuous function such that

α
ρ′ (s)

ρ (s)
H (t, s) −

∂H (t, s)

∂s
= h (t, s) (H (t, s))

α/α+1
for all (t, s) ∈ D0.

Note that, by choosing specific functions H , it is possible to derive several oscillation
criteria for a wide range of differential equations, see [5, 6, 21, 22, 27]. More general
types of such functions have been constructed in [28, 31].
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Theorem 4. Assume that (2.1) and (2.2) hold. If there exist a positive differen-
tiable function ρ ∈ C1 ([t0, ∞), R+) and H such that (H1) and (H2) hold, and

lim sup
t→∞

1

H (t, t0)

∫ t

t0

H (t, s)

{

p (s) ρα (s) − µ
r (τ (s)) ρ′

α+1

(s)

τ ′α (s) ρ (s)

}

ds = ∞, (3.1)

then Eq. (1.1) is oscillatory.

Proof. Using the function w (t) defined in (2.4) and proceeding similarly as in the
proof of Theorem 1, we have inequality (2.9).

w′ (t) +

{

p (t) ρα (t) − µ
r (τ (t)) ρ′

α+1

(t)

ρ (t) τ ′α (t)

}

≤ 0, t ≥ t1.

Multiplying this inequality by H (t, s) , t > s, and next integrating from t1 to t
after simple computation we have

∫ t

t1

H (t, s)

{

p (s) ρα (s) − µ
r (τ (s)) ρ′

α+1

(s)

ρ (s) τ ′α (s)

}

ds ≤ H (t, t1)w (t1)

≤ H (t, t0)w (t1) .

Therefore
∫ t

t0

H (t, s)

{

p (s) ρα (s) − µ
r (τ (s)) ρ′

α+1

(s)

ρ (s) τ ′α (s)

}

ds

=

∫ t1

t0

H (t, s)

{

p (s) ρα (s) − µ
r (τ (s)) ρ′

α+1

(s)

ρ (s) τ ′α (s)

}

ds

+

∫ t

t1

H (t, s)

{

p (s) ρα (s) − µ
r (τ (s)) ρ′

α+1

(s)

ρ (s) τ ′α (s)

}

ds

≤ H (t, t0)

∫ t1

t0

p (s) ρα (s) ds + H (t, t0) w (t1) for all t ≥ t0. (3.2)

This gives

lim sup
t→∞

1

H (t, t0)

∫ t

t0

H (t, s)

{

p (s) ρα (s) − µ
r (τ (s)) ρ′

α+1

(s)

ρ (s) τ ′α (s)

}

ds

≤

∫ t1

t0

p (s) ρα (s) ds + w (t1)

which contradicts (3.1). This completes the proof of the theorem.

Theorem 5. Assume that (2.1) and (2.2) hold. If there exist a positive differen-
tiable function ρ ∈ C1 ([t0, ∞), R+) and H such that (H1) , (H2) and (H3) hold,
and

lim sup
t→∞

1

H (t, t0)

∫ t

t0

{

H (t, s) p (s) ρα (s) − µ1
r (τ (s)) ρα (s)

τ ′α (s)
(h (t, s))

α+1

}

ds = ∞,

(3.3)
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where µ1 :=
1

(α + 1)
α+1

(α

k

)
α

, then Eq. (1.1) is oscillatory.

Proof. Using the function w (t) defined in (2.4) and proceeding similarly as in the
proof of Theorem 1, we obtain inequality (2.7).

w′ (t) ≤ α
ρ′ (t)

ρ (t)
w (t) − ρα (t) p (t) − k

(w (t))
1+1/α

τ ′ (t)

r (τ (t))
1/α

ρ (t)
, t ≥ t1. (2.7)

Multiplying this inequality by H and next integrating from t1 to t we have
∫ t

t1

H (t, s) ρα (s) p (s) ds ≤ H (t, t1)w (t1)

−

∫ t

t1

[(

∂H (t, s)

∂s
− α

ρ′ (s)

ρ (s)
H (t, s)

)

w (s)

+H (t, s)
τ ′ (s) k

r (τ (s))
1/α

ρ (s)
(w (s))1+1/α

]

ds.

By using the inequality (2.8), we get

∫ t

t1

H (t, s) ρα (s) p (s) ds ≤ H (t, t1)w (t1) − µ1

∫ t

t1

ρα (s)
r (τ (s))

(τ ′ (s))
α (h (t, s))α+1 ds

Next proceeding similarly as in the inequality (3.2) we obtain

∫ t

t0

{

H (t, s) ρα (s) p (s) − µ1ρ
α (s)

r (τ (s))

(τ ′ (s))
α (h (t, s))

α+1

}

ds

≤ H (t, t0)

(
∫ t1

t0

ρα (s) p (s) ds + w (t1)

)

which contradicts (3.3). Thus, the proof is complete.

Corollary 9. The conclusion of Theorem 5 remains valid , if assumption (3.3) is
replaced by

lim sup
t→∞

1

H (t, t0)

∫ t

t0

H (t, s) p (s) ρα (s) ds = ∞ (3.4)

and

lim sup
t→∞

1

H (t, t0)

∫ t

t0

r (τ (s)) ρα (s)

(τ ′ (s))
α (h (t, s))

α+1
ds < ∞. (3.5)

Note that, by choosing specific functions ρ and H , it is possible to derive several
oscillation criteria for Eq. (1.1) and its special cases Half-linear Eq. (1.2) and
generalized Emden-Fowler Eq. (1.5) with β ≥ α.

In particular, by choosing α = 1, r (t) ≡ 1, H (t, s) = (t − s)n, ρ (t) = t in
Theorem 4 and by choosing α = 1, r (t) ≡ 1, ρ (t) = t and also ρ (t) = τ (t) in
Theorem 5 we obtain the corresponding results given in [7], respectively.
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Remark 2. If we take f (x) = |x|
α−1

x, then
f ′ (x)

|f (x)|
1−1/α

= k = α is satisfied

for all x 6= 0 ∈ R. Therefore the condition (2.2) is not required. That is, all above
oscillation criteria are valid for the half-linear Eq. (1.2) without using the condi-
tion (2.2). Hence, Theorem 2, Corollary 3, Theorem 3, and Corollary 5, improve
Theorem 1, Corollary 1, Theorem 3, and Corollary 2 in [10], respectively. Also
Theorem 2 improves Theorem 1 in [8] and Theorem 2.3 in [4]. Finally, Theorem
1 gives Corollary 1 in [3] by changing ρ (t) with ρ1/α (t) and Corollary 8 reduces
Theorem 3 in [17].

Remark 3. Let β ≥ α. If we take f (x) = |x|
β−1

x, then
f ′ (x)

|f (x)|1−1/α
= β |x|

β/α−1

and we can find always a positive constant k large enough such that f ′ (x) / |f (x)|
1−1/α

≥
k for all x ∈ RD. Hence, all above oscillation criteria are valid for the generalized
Emden-Fowler Eq. (1.5). We note that these conclusions, for Eq. (1.5) with β ≥ α,
complement Theorem 3.1 in [4] and they do not appear to follow from the known
oscillation criteria in the literature.

Example 1. Consider the generalized Emden-Fowler delay differential equation

(

|x′ (t)|
α−1

x′ (t)
)′

+ p (t)

∣

∣

∣

∣

x

(

t

2

)∣

∣

∣

∣

β−1

x

(

t

2

)

= 0, (3.6)

where α, β are positive constants such that β ≥ α and p ∈ C ([1, ∞), R+) . f (u) =

|u|
β−1

u and there exists a k > 0 such that f ′ (u) ≥ k for all u ∈ RD, k large enough.
Hence (2.1) holds.

Here we choose ρ (t) = tλ/α and H (t, s) = (t − s)λ, for t ≥ s ≥ 1 such that

α + 1 < λ < α2 and ρ (t) p (t) ≥
c

t
where c is a positive constant.

lim
t→∞

∫ t

1

(
∫

∞

s

p (z) dz

)1/α

ds ≥ lim
t→∞

∫ t

1

(
∫

∞

s

cz−1−λ/αdz

)1/α

ds

= lim
t→∞

α2

α2 − λ

(cα

λ

)1/α (

t1−
λ

α2 − 1
)

= ∞.

Using the inequality

(t − s)
λ
≥ tλ − λstλ−1, for t ≥ s ≥ 1

given in [21], we have

lim sup
t→∞

1

tλ

∫ t

1

(t − s)
λ

ρ (s) p (s) ds ≥ lim sup
t→∞

c

tλ

∫ t

1

tλ − λstλ−1

s
ds = ∞.

On the other hand, observing that H (t, s) = λ (t − s)
λ−α−1

α+1 ts−1, we obtain

lim sup
t→∞

1

tλ

∫ t

1

sλ

2−α

[

λ (t − s)
λ−α−1

α+1 ts−1
]α+1

ds

≤ lim sup
t→∞

2αtλ+1

λ − α

(

1 −
t0
t

)λ−α−1
(

tλ−α − tλ−α
0

)

< ∞.
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Consequently, all condition of Corollary 9 are satisfied and hence Eq. (3.6) is
oscillatory.

Note that criteria reported in the references do not apply to Eq. (3.6).
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