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Abstract

In this paper, we deal with the order of growth and the hyper order of solutions
of higher order linear differential equations

f
(k) + Bk−1f

(k−1) + · · · + B1f
′ + B0f = F

where Bj(z) (j = 0, 1, . . . , k − 1) and F are entire functions or polynomials. Some
results are obtained which improve and extend previous results given by Z.-X. Chen,
J. Wang, T.-B. Cao and C.-H. Li.
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1 Introduction and Main Results

We shall assume that reader is familiar with the fundamental results and the stan-
dard notations of the Nevanlinna value distribution theory of meromorphic functions(see
[11,14]). In addition, we will use the notation σ(f) to denote the order of growth of
entire function f(z), σ2(f) to denote the hyper-order of f(z), λ(f)(λ2(f)) to denote the
exponent(hyper-exponent) of convergence of the zero-sequence of f(z) and λ(f)(λ2(f))
to denote exponent(hyper-exponent) of convergence of distinct zero sequence of mero-
morphic function f(z). We also define

λ(f − ϕ) = lim sup
r→∞

log N(r, 1
f−ϕ

)

log r
, and λ2(f − ϕ) = lim sup

r→∞

log log N(r, 1
f−ϕ

)

log r
,

for any meromorphic function ϕ(z).
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For a set E ⊂ R+, let m(E), respectively ml(E), denote the linear measure, respec-
tively the logarithmic measure of E. By χE(t), we denote the characteristic function of
E. Moreover, the upper logarithmic density and the lower logarithmic density of E are
defined by

log dens(E) = lim sup
r→∞

ml(E ∩ [1, r])

log r
, log dens(E) = lim inf

r→∞

ml(E ∩ [1, r])

log r
.

Observe that E may have a different meaning at different occurrences in what follows.
We now recall some previous results concerning linear differential equations

f ′′ + e−zf ′ + Q(z)f = 0,(1)

where Q(z) is an entire function of finite order. It is well known that each solution
f of (1) is an entire function and that if f1 and f2 are any two linearly independent
solutions of (1), then at least one of f1, f2 must have infinitely order(see [13, P167-
168]). Hence, ”most” solutions of (1) will have infinite order. But the equation (1) with
Q(z) = −(1 + e−z) possesses a solution f = ez of finite order.

Thus a natural question is: what condition on Q(z) will guarantee that every solu-
tion f 6≡ 0 of (1) has infinite order? Many authors, such as Amemiya and Ozawa [1],
Gundersen [10] and Langley [15], Frei [6], Ozawa [20] have studied the problem. They
proved that when Q(z) is a nonconstant polynomial or Q(z) is a transcendental entire
function with order σ(Q) 6= 1, then every solution f 6≡ 0 of (1) has infinite order.

For the above question, some mathematicians investigated the second order linear
differential equations and obtained many results (see REF.[2,3,5,6,10,15,16,20,24]). In
2002, Chen [3] considered the question: what condition on Q(z) when σ(Q) = 1 will guar-
antee every nontrivial solution of (1) has infinite order? He proved the following result,
which greatly extended and improved results of Frei, Ozawa, Langley and Gundersen.

Theorem A(see. [3]) Let Aj(z)(6≡ 0)(j = 0, 1) be an entire function with σ(Aj) < 1.
Suppose a, b are complex constants such that ab 6= 0 and a = cb(c > 1). Then every
nontrivial solution f of

f ′′ + A1(z)eazf ′ + A0(z)ebzf = 0(2)

has infinite order.
Recently, some mathematicians investigate the non-homogeneous equations of second

order and higher order linear equations such as Li and Wang [18], Cao [5], Wang and
Laine [22] and proved that every solution of these equation has infinite order.

In 2008, Li and Wang [18] investigated the non-homogeneous equation related to (1)
in the case when Q(z) = h(z)ebz, where h(z) is a transcendental entire function of order
σ(h) < 1

2 , and b is a real constant and obtained the following results.
Theorem B(see. [18]) If Q(z) = h(z)ebz, where h(z) is a transcendental entire

function of order σ(h) < 1
2 , and b is a real constant. Then all nontrivial solutions f of

equation
f ′′ + e−zf ′ + Q(z)f = H(z)

satisfies σ(f) = λ(f − z) = ∞, provided that σ(H) < 1.
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In 2008, Wang and Laine [22] investigated the non-homogeneous equation related to
(2) and obtained the following result.

Theorem C(see. [22, Theorem 1.1]) Suppose that Aj 6≡ 0(j = 0, 1), H are entire
functions of order less than one, and the complex constants a, b satisfy ab 6= 0 and a 6= b.
Then every nontrivial solution f of equation

f ′′ + A1(z)eazf ′ + A0(z)ebzf = H(z)

is of infinite order.
For equation (2), Li and Huang [17], Tu and Yi [21], Chen and Shon [4] and Gan

and Sun [7] investigated the higher order homogeneous and non-homogeneous linear
differential equations and obtained many results. In 2009, Chen and Xu [23] investigated
the higher order non-homogeneous linear differential equations and obtained the following
result.

Theorem D(see. [23, Theorem 1.5]) Let k ≥ 2, s ∈ {1, . . . , k−1}, h0 6≡ 0, h1, . . . , hk−1

be meromorphic functions and σ = max{σ(hj) : j = 1, . . . , k − 1} < n; P (z) =
anzn + an−1z

n−1 + · · · + a1z + a0 and Q(z) = bnzn + bn−1z
n−1 + · · · + b1z + b0 be

two nonconstant polynomials, where ai, bi(i = 0, 1, 2, . . . , n) with an 6= 0, bn 6= 0; F 6≡ 0
be an meromorphic function of finite order. Suppose all poles of f are of uniformly
bounded multiplicity and if at least one of the following statements hold

1. If an = bn, and deg(P − Q) = m ≥ 1, σ < m;

2. If an = cbn with c > 1, and deg(P − Q) = m > 1, σ < m;

3. If σ < σ(h0) < 1/2, an = cbn with c ≥ 1 and P (z) − cQ(z) is a constant,

then all solutions f of non-homogeneous linear differential equation

f (k) + hk−1f
(k−1) + · · · + hse

P (z)f (s) + · · · + h1f
′ + h0e

Q(z)f = F,(3)

with at most one exceptional solution f0 of finite order, satisfy

λ(f) = λ(f) = σ(f) = ∞, λ2(f) = λ2(f) = σ2(f).

Furthermore, if such an exceptional solution f0 of finite order of (1.3) exists, then we
have

σ(f0) ≤ max{n, σ(F ), λ(f0)}.

We find that there is an exceptional possible solution with finite order for equation
(3). It is natural to ask the following question: what condition on the coefficients of
equation

f (k) + Bk−1(z)f (k−1) + · · · + B1(z)f ′ + B0(z)f = F(4)

when F 6≡ 0 will guarantee every nontrivial solution has infinite order?
The main purpose of this paper is to study the above problem and the relation between

small functions and solutions of higher order linear differential equation related to (4).
We will prove the following results.
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Theorem 1.1 Let P (z) and Q(z) be a nonconstant polynomials as above, for some
complex numbers ai, bi, (i = 0, 1, . . . , n) with anbn 6= 0 and an 6= bn. Suppose that
hi−1(2 ≤ i ≤ k − 1) are polynomials of degree no more n − 1 in z, Aj(z) 6≡ 0 (j = 0, 1)
and H(z) are entire functions satisfying σ := max{σ(Aj), j = 0, 1} < n and σ(H) < n,
and ϕ(z) is an entire function of finite order. Then every nontrivial solution f of equation

f (k) + hk−1f
(k−1) + · · · + h2f

′′ + A1e
P (z)f ′ + A0e

Q(z)f = H(5)

satisfies σ(f) = ∞ , σ(f) = λ(f) = λ(f) = λ(f − ϕ) = ∞ and σ2(f) = λ2(f) = λ2(f) =
λ2(f − ϕ) ≤ n.

Remark 1.1 We can see that the conclusions of Theorem 1.1 improve Theorem D and
extend Theorem B and Theorem C.

Theorem 1.2 Suppose that Aj(z) 6≡ 0, Dj(z)(j = 0, 1), and H(z) are entire functions
satisfying σ(Aj) < n, σ(Dj) < n(j = 0, 1), and σ(H) < n, and P (z), Q(z), hi−1(2 ≤ i ≤
k − 1) are as in Theorem 1.1 satisfying anbn 6= 0 and anbn < 0. Then every nontrivial
solution f of equation

f (k) + hk−1f
(k−1) + · · · + h2f

′′ + (A1e
P (z) + D1)f

′ + (A0e
Q(z) + D0)f = H(6)

is of infinite order.

Remark 1.2 From Theorem 1.1 and Theorem 1.2, we give an answer to the above ques-
tion.

2 Some Lemmas

To prove the theorems, we need the following lemmas:

Lemma 2.1 (see. [24, Lemma 1.10]) Let f1(z) and f2(z) be nonconstant meromorphic
functions in the complex plane and c1, c2, c3 be nonzero constants. If c1f1 + c2f2 ≡ c3,
then

T (r, f1) < N

(

r,
1

f1

)

+ N

(

r,
1

f2

)

+ N(r, f1) + S(r, f1).

Lemma 2.2 (see. [3,19]) Suppose that P (z) = (α + βi)zn + · · · (α, β are real numbers,
|α| + |β| 6= 0) is a polynomial with degree n ≥ 1, that A(z)(6≡ 0) is an entire function
with σ(A) < n. Set g(z) = A(z)eP (z), z = reiθ, δ(P, θ) = α cosnθ − β sinnθ. Then for
any given ε > 0, there exists a set H1 ⊂ [0, 2π) that has the linear measure zero, such
that for any θ ∈ [0, 2π)\(H1 ∪ H2), there is R > 0 such that for |z| = r > R, we have:

(i) If δ(P, θ) > 0, then

exp{(1 − ε)δ(P, θ)rn} < |g(reiθ)| < exp{(1 + ε)δ(P, θ)rn};

(ii) If δ(P, θ) < 0, then

exp{(1 + ε)δ(P, θ)rn} < |g(reiθ)| < exp{(1 − ε)δ(P, θ)rn},

where H2 = {θ ∈ [0, 2π); δ(P, θ) = 0} is a finite set.
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Lemma 2.3 (see. [9]) Let f(z) be a transcendental meromorphic function of finite order
σ(f) = σ < ∞, and let ε > 0 be a given constant. Then there exists a set H ⊂ (1,∞)
that has finite logarithmic measure, such that for all z satisfying |z| 6∈ H ∪ [0, 1] and for
all k, j, 0 ≤ j < k, we have

∣

∣

∣

∣

f (k)(z)

f (j)(z)

∣

∣

∣

∣

≤ |z|(k−j)(σ−1+ε).

Similarly, there exists a set E ⊂ [0, 2π) of linear measure zero such that for all z =
reiθwith |z| sufficiently large and θ ∈ [0, 2π) \ E, and for all k, j, 0 ≤ j < k, we have

∣

∣

∣

∣

f (k)(z)

f (j)(z)

∣

∣

∣

∣

≤ |z|(k−j)(σ−1+ε).

Lemma 2.4 (see. [22, Lemma 2.4]) Let f(z) be an entire function of finite order σ, and
M(r, f) = f(reiθr ) for every r. Given ζ > 0 and 0 < C(σ, ζ) < 1, there exists a constant
0 < l0 < 1

2 and a set Eζ of lower logarithmic density greater than 1 − ζ such that

e−5πM(r, f)1−C(σ,ζ) ≤ |f(reiθ)|

for all r ∈ Eζ large enough and all θ such that |θ − θr| ≤ l0.

Lemma 2.5 (see. [8,12]) Let f(z) be a transcendental entire function, νf (r) be the
central index of f(z) and δ be a constant satisfying 0 < δ < 1

8 . Suppose z lying in the

circle |z| = r satisfies |f(z)| > M(r, f)νf (r)−
1
8+δ. Then except a set of r with finite

logarithmic measure, we have

f (j)(z)

f(z)
=

{

νf (r)

z

}j

(1 + ηj(z)),

where ηj(z) = O(νf (r)−
1
8+δ), j ∈ N .

Lemma 2.6 (see. [22, Lemma 2.5]) Let f(z) and g(z) be two nonconstant entire func-
tions with σ(g) < σ(f) < +∞. Given ε with 0 < 4ε < σ(f) − σ(g) and 0 < δ < 1

8 , there

exists a set E with log dens(E) > 0 and a positive constant r0 such that

∣

∣

∣

∣

g(z)

f(z)

∣

∣

∣

∣

≤ exp{−rσ(f)−2ε}

for all z such that r ∈ E is sufficiently large and that |f(z)| ≥ M(r, f)νf(r)−
1
8+δ.

Lemma 2.7 (see. [12]) Let f(z) be an entire function of finite order σ(f) = σ < ∞,
and let νf (r) be the central index of f . Then for any ε(> 0), we have

lim sup
r→∞

log νf (r)

log r
= σ.
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Lemma 2.8 (see. [16]) Let f(z) be an entire function of infinite order. Denote M(r, f) =
max{|f(z)| : |z| = r}, then for any sufficiently large number λ > 0, and any r ∈ E ⊂
(1,∞)

M(r, f) > c1 exp{c2r
λ},

where mlE = ∞ and c1, c2 are positive constants.

Lemma 2.9 Suppose B0, B1, . . . , Bk−1 and F (6≡ 0) are all entire functions of finite order
and let ̺ := max{σ(Bj), σ(F ), j = 0, 1, . . . , k − 1}, k ≥ 2. Then every solution f of
infinite order of equation

f (k) + Bk−1f
(k−1) + · · · + B0f = F

satisfies σ2(f) ≤ ̺.

Proof: We rewrite the equation as

f (k)

f
=

F

f
−

k−1
∑

j=1

Bj

f (j)

f
− B0.

Since ̺ := max{σ(Bj), σ(F ), j = 0, 1, . . . , k−1}, by virtue of [2], for any positive number
ε(0 < ε < σ(F ) + 1) and r 6∈ [0, 1] ∪ E1, we have

|Bj(z)| ≤ exp{r̺+ε}, |F (z)| ≤ exp{rσ(F )+ε}, j = 0, 1, . . . , k − 1.

By Lemma 2.5, there exists a set E2 ⊂ (1, +∞) satisfying mlE2 < ∞, taking z satisfying

f (j)(z)

f(z)
=

(

νf (r)

z

)j

(1 + o(1)) (j = 0, 1, . . . , k).

Since σ(f) = ∞ , from Lemma 2.8 there exists |z| = r ∈ H1 \ ([0, 1]∪E1 ∪E2) satisfying
|f(z)| = M(r, f), for λ > 2σ(F ) + 1, we have

(

νf (r)

|z|

)k

(1+o(1)) ≤
1

c1
exp{rσ(F )+ε−c2r

λ}+exp{r̺+ε}





k−1
∑

j=1

(

νf (r)

|z|

)j

(1 + o(1)) + 1



 .

Thus, we have

lim sup
r→∞,r∈H1\([0,1]∪E1∪E2)

log log νf (r)

log r
≤ ̺ + ε.

By the definition of hyper-order, we can get σ2(f) ≤ ̺.
Therefore, we complete the proof of this lemma. 2
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3 The Proof of Theorem 1.1

Proof: The growth of solutions We first point out that σ(f) ≥ n.
We rewrite (5) as

A1e
P (z)f ′ + A0e

Q(z)f = H −
(

f (k) + hk−1f
(k−1) + · · · + h2f

′′
)

.(7)

If H −
(

f (k) + hk−1f
(k−1) + · · · + h2f

′′
)

≡ 0, by an 6= bn, we have

f = K exp

{∫

A0

A1
eQ(z)−P (z)dz

}

,

where K is a nonzero constant. If H −
(

f (k) + hk−1f
(k−1) + · · · + h2f

′′
)

6≡ 0, rewrite (7)
as

A1e
P (z)f ′ + A0e

Q(z)f

H −
(

f (k) + hk−1f (k−1) + · · · + h2f ′′
) ≡ 1.

Suppose σ(f) < n, then by Lemma 2.1, we can get T (r, eP (z)) = S(r, eP (z)), which is a
contradiction.

By Lemma 2.5, for any given 0 < δ < 1
8 , there exists a set E1 of finite logarithmic

measure such that

f (j)(z)

f(z)
=

(

νf (r)

z

)j

(1 + o(1)), j = 1, 2, . . . , k,(8)

where |f(z)| ≥ M(r, f)νf (r)−
1
8+δ, r 6∈ E1. Furthermore, from the definition of the central

index, we know that νf (r) → ∞ as r → ∞. By Lemma 2.7, we have

νf (r) ≤ rσ(f)+1,(9)

for all r sufficiently large. By Lemma 2.3, we have

∣

∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣

∣

≤ |z|j(σ(f)−1+ε), j = 1, 2, . . . , k,(10)

for all z satisfying |z| = r 6∈ E2 where ml(E2) < ∞, and ε is any given constant with
0 < 4ε < min{1, n− σ(H), n − σ, n − t}, where t = max{tj = deg(hi(z)), 2 ≤ i ≤ k − 1}.
By Lemma 2.6, there is a set E3 with ζ = log densE3 > 0 such that

νf (r)
1
8−δ|H(z)|

M(r, f)
≤ exp{−rn−2ε},(11)

when r ∈ E3 is large enough. We may take θp such that M(r, f) = |f(reiθp)| for every
p. By Lemma 2.4, given a constant 0 < C < 1, there exists a constant l0 and a set E4

with 1 − ζ
2 ≤ log dens(E4) such that

e−5πM(r, f)1−C ≤ |f(reiθ)|(12)
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for all r ∈ E4 and |θ − θp| ≤ l0. Since the characteristic functions of E3 and E4 satisfy
the relation

χE3∩E4(t) = χE3(t) + χE4(t) − χE3∪E4(t).

Then log dens(E3 ∪ E4) ≤ 1. Thus, we can get

ζ

2
≤ log densE3 + log dens(E4) − log dens(E3 ∪ E4) ≤ log dens(E3 ∩ E4).

Since ml(E1 ∪ E2) < ∞, we have log dens((E3 ∩ E4) \ (E1 ∪ E2)) > 0. Thus, there
exists a sequence of points zq = rqe

iθq with rq ↑ ∞ and

|f(zq)| = M(rq, f), rq ∈ (E3 ∩ E4) \ (E1 ∪ E2).

Passing to a sequence of {θq}, we may assume that limq→∞ θq = θ0 in this paper.
We now take the three cases as follows into consideration.
Case 1. δ(P, θ0) > 0. From the continuity of δ(P, θ), we have

1

3
δ(P, θ0) < δ(P, θq) <

4

3
δ(P, θ0)(13)

for sufficiently large q. By Lemma 2.2, we can get

exp

{

1 − ε

3
δ(P, θ0)r

n
q

}

< |A1(zq)e
P (zq)| < exp

{

4(1 + ε)

3
δ(P, θ0)r

n
q

}

(14)

for all q sufficiently large. From (7) we can get

∣

∣

∣

f ′(zq)
f(zq) +

A0(zq)
A1(zq)e

Q(zq)−P (zq)
∣

∣

∣
≤

∣

∣

∣

e−P (zq)

A1(zq)

∣

∣

∣

(∣

∣

∣

f(k)(zq)
f(zq)

∣

∣

∣
+
∑k−1

j=2

∣

∣

∣
hj

f(j)(zq)
f(zq)

∣

∣

∣

+
|H(zq)|
M(rq,f)

)(15)

We divide the proof in Case 1 in three subcases in the following.
Subcase 1.1. We first assume that θ0 satisfies ξ := δ(Q − P, θ0) > 0. From the

continuity of δ(Q − P, θ0) and Lemma 2.2, we have

1

3
δ(Q − P, θ0) ≤ δ(Q − P, θq) ≤

4

3
δ(Q − P, θ0)(16)

for sufficiently large q. Similar to (14), we have

exp

{

1 − ε

3
ξrn

q

}

<

∣

∣

∣

∣

A0(zq)

A1(zq)
eQ(zq)−P (zq)

∣

∣

∣

∣

< exp

{

4(1 + ε)

3
ξrn

q

}

,(17)

for sufficiently large q. Substituting (8)-(11) to (15), for sufficiently large q, we can get

∣

∣

∣

νf (rq)
zq

(1 + o(1)) +
A0(zq)
A1(zq)e

Q(zq)−P (zq)
∣

∣

∣

≤
∣

∣

∣

e−P (zq)

A1(zq)

∣

∣

∣

(

2r
kσ(f)
q + Σk

j=2|zq|
j(σ(f)−1+ε)r

tj+ε
q + exp{−rn−2ε

q }
)

≤
∣

∣

∣

e−P (zq)

A1(zq)

∣

∣

∣ r
kσ(f)+t+ε
q .

(18)
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By (14) and 0 < 4ε < min{1, n− σ, n − σ(H), n − t}, we have
∣

∣

∣

∣

e−P (zq)

A1(zq)

∣

∣

∣

∣

rkσ+t+ε
q ≤

rkσ+t+ε
q

exp{ (1−ε)
3 δ(P, θ0)rn

q }
≤ exp{−

(1 − 2ε)

3
δ(P, θ0)r

n
q }.(19)

From (17)-(19) and (9), we can obtain

exp
{

(1−ε)
3 ξrn

q

}

≤
∣

∣

∣

νf (rq)
zq

(1 + o(1)) +
A0(zq)
A1(zq)e

Q(zq)−P (zq) −
νf (rq)

zq
(1 + o(1))

∣

∣

∣

≤ exp{− (1−2ε)
3 δ(P, θ0)r

n
q } + 2r

σ(f)
q ≤ 3r

σ(f)
q .

(20)

Thus, we can get a contradiction.
Subcase 1.2. ξ := δ(Q − P, θ0) < 0. Then from Lemma 2.2, for sufficiently large q,

we have

exp

{

4(1 + ε)

3
ξrn

q

}

≤

∣

∣

∣

∣

A0(zq)

A1(zq)
eQ(zq)−P (zq)

∣

∣

∣

∣

≤ exp

{

(1 − ε)

3
ξrn

q

}

.(21)

From (21) and similar to (20), we can get

νf (rq)

rq

(1 + o(1)) ≤ exp

{

(1 − ε)

3
ξrn

q

}

+ exp

{

−
(1 − 2ε)

3
δ(P, θ0)r

n
q

}

,

when q is large enough. Thus, we can get that νf (rq) → 0 as q → ∞, which is impossible.
Subcase 1.3. ξ := δ(Q−P, θ0) = 0. From (12), we may construct another sequence

of points z∗q = rqe
iθ∗

q with limq→∞ θ∗q = θ∗0 such that ξ1 := δ(Q − P, θ∗0) > 0. Without
loss of generality, we may suppose that

δ(Q − P, θ) > 0, θ ∈ (θ0 + 2kπ, θ0 + (2k + 1)π),

δ(Q − P, θ) < 0, θ ∈ (θ0 + (2k − 1)π, θ0 + 2kπ),

which k ∈ Z. When q is large enough, we have |θ0 − θq| ≤ l0. Choose θ∗q such that
l0
2 ≤ θ∗q − θq ≤ l0, i.e., θq + l0

2 ≤ θ∗q ≤ θq + l0, then

θ0 +
l0
2

≤ θ∗0 ≤ θ0 + l0.(22)

For sufficiently large q, we can get (12) for z∗q , and ξ1 := δ(Q−P, θ∗0) > 0. Hence we can
get

∣

∣

∣

∣

H(z∗q )

f(z∗q )

∣

∣

∣

∣

≤
νf (r)

1
8−δM(rq, H)

e−5πM(rq, f)1−C
,(23)

and

exp

{

(1 − ε)

3
ξ1r

n
q

}

≤

∣

∣

∣

∣

A0(z
∗
q )

A1(z∗q )
eQ(z∗

q )−P (z∗

q )

∣

∣

∣

∣

≤ exp

{

4(1 + ε)

3
ξ1r

n
q

}

.(24)

By virtue of [22], we may assume that M(rq, f) ≥ exp{r
σ(f)−ε
q }. From the above

argument, we can know that z∗q = rqe
iθ∗

q satisfies (9). Then from (23) and for all large
enough q, we have

∣

∣

∣

∣

H(z∗q )

f(z∗q )

∣

∣

∣

∣

≤ r
(σ(f)+1)( 1

8−δ)
q

exp{r
σ(H)+ε
q }

exp{r
σ(f)− 3

2 ε
q }

≤ exp{−rn−2ε
q }.(25)
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Taking now l0 small enough, we have δ(P, θ∗0) > 0 by the continuity of δ(P, θ). Thus, we
have

exp

{

1 − ε

3
δ(P, θ∗0)rn

q

}

< |A1(z
∗
q )eP (z∗

q )| < exp

{

4(1 + ε)

3
δ(P, θ∗0)rn

q

}

.(26)

Substituting (10) and (25) into (15) and by (26), we have

∣

∣

∣

∣

A0(z
∗
q )

A1(z∗q )
eQ(z∗

q )−P (z∗

q )

∣

∣

∣

∣

≤ exp

{

−
(1 − 3ε)

3
δ(P, θ∗0)rn

q

}

+ 2rσ(f)
q ≤ 3rσ(f)

q .(27)

Combining (27) with (24), for large enough q, we can get a contradiction easily.
Case 2. Suppose that δ(P, θ0) < 0. Then from the continuity of δ(P, θ) and Lemma

2.2, we have

exp

{

4(1 + ε)

3
δ(P, θ0)r

n
q

}

≤ |A1(zq)e
P (zq)| ≤ exp

{

(1 − ε)

3
δ(P, θ0)r

n
q

}

(28)

for all sufficiently large q. From (5), we can get

∣

∣

∣

f(k)(zq)
f(zq) +

∑k−1
j=2 hj(zq)

f(j)(zq)
f(zq) + A0(zq)e

Q(zq)
∣

∣

≤
∣

∣A1(zq)e
P (zq)

∣

∣

∣

∣

∣

f ′(zq)
f(zq)

∣

∣

∣+
|H(zq)|
M(rq,f)

(29)

as q → ∞. Again, we divide the proof in Case 2 in three subcases in the following.
Subcase 2.1. δ(Q, θ0) > 0. From the continuity of δ(Q, θ) and Lemma 2.2, for large

enough q, we have

exp

{

(1 − ε)

3
δ(q, θ0)r

n
q

}

≤
∣

∣

∣A0(zq)e
Q(zq)

∣

∣

∣ ≤ exp

{

4(1 + ε)

3
δ(Q, θ0)r

n
q

}

.(30)

Substituting (8)-(11) and (28) into (29), we get

∣

∣

∣

∣

∣

∣

f (k)(zq)

f(zq)
+

k−1
∑

j=2

hj(zq)
f (j)(zq)

f(zq)
+ A0(zq)e

Q(zq)

∣

∣

∣

∣

∣

∣

≤ exp
{

−rn−3ε
q

}

.(31)

From (8)-(11),(30),(31) and enough large q, we have

exp

{

(1 − ε)

3
δ(Q, θ0)r

n
q

}

≤

∣

∣

∣

∣

∣

∣

f (k)(zq)

f(zq)
+

k−1
∑

j=2

hj(zq)
f (j)(zq)

f(zq)
+ A0(zq)e

Q(zq)

−





f (k)(zq)

f(zq)
+

k−1
∑

j=2

hj(zq)
f (j)(zq)

f(zq)





∣

∣

∣

∣

∣

∣

i.e.,

exp

{

(1 − ε)

3
δ(Q, θ0)r

n
q

}

≤ exp
{

−rn−3ε
q

}

+ rkσ(f)+t+ε
q .
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Thus, we can get a contradiction.
Subcase 2.2. δ(Q, θ0) < 0. By the continuity of δ(Q, θ) and Lemma 2.2, for all

sufficiently large q, we have

exp

{

4(1 + ε)

3
δ(Q, θ0)r

n
q

}

≤ |A0(zq)e
Q(zq)| ≤ exp

{

(1 − ε)

3
δ(Q, θ0)r

n
q

}

.(32)

From (28), (29) and (32), we can get

2

(

νf (rq)

zq

)k

≤ exp{−rn−2ε
q } +

∣

∣

∣

∣

∣

(

νf (rq)

zq

)k−1
∣

∣

∣

∣

∣

rt+ε
q + exp

{

(1 − ε)

3
δ(Q, θ0)r

n
q

}

.

Since 0 < 4ε < min{1, n− σ, n − σ(H), n − t}, we can get a contradiction as q → ∞.
Subcase 2.3. δ(Q, θ0) = 0. Using the same argument as in Subcase 1.3, we can

construct another sequence of points z∗q = rqe
iθ∗

q satisfying l0
2 ≤ |θ∗q − θq| ≤ l0 such that

δ(P, θ∗0) < 0 < δ(Q, θ∗0) where θ∗0 = limq→∞ θ∗q . Then, we have (28) for δ(P, θ∗0) and
(30) for δ(Q, θ∗0). Using the same argument as in Subcase 1.3, we also have (25) for the
sequence of points z∗q . From (29) and sufficiently large q, we have

|A0(z
∗
q )eQ(z∗

q )| ≤ |A1(z
∗
q )eP (z∗

q )|rσ(f)+ε
q + exp{−rn−2ε

q } + rkσ(f)+t+ε
q .

Thus, we can also get a contradiction.
Case 3. Suppose that δ(P, θ0) = 0. We discuss three subcases according to δ(Q, θ0)

as follows.
Subcase 3.1. δ(Q, θ0) > 0. By the same argument as in Subcase 1.3, we can

also construct another sequence of points z∗q = rqe
iθ∗

q with θ∗0 = limq→∞ θ∗q and l0
2 ≤

|θ∗q − θq| ≤ l0 such that z∗q satisfies (25) and δ(P, θ∗0) < 0 < δ(Q, θ∗0). Using the same
argument as in Subcase 2.3, we can get a contradiction easily as n → ∞.

Subcase 3.2. δ(Q, θ0) < 0. By Lemma 2.2, we first define

δ′(P, θ) := −nα sin(nθ) − nβ cos(nθ)

where an = α + iβ. Since an 6= 0, we have δ′(P, θ0) 6= 0. Take z′q = rqe
iθ′

q satisfying
0 < |θ′q − θ0| ≤ l0, we have (25) for z′q and δ(P, θ′q) 6= 0. By the continuity of δ(Q, θ),
we may assume that δ(Q, θ′q) < 0 < δ(P, θ′q) for a suitable l0, 0 < θ′q − θ0 ≤ l0. For a
suitable l0, we have δ′(P, θ0) > 0 and

1

3
δ′(P, θ0) ≤ δ′(P, θ) ≤

4

3
δ′(P, θ0), θ ∈ (θ0, θ0 + l0).(33)

Since we have |f(zq)| = M(rq, f) and θq → ∞ as q → ∞ for the sequence of points zq,

we have |f(rqe
iθ0)| ≥ M(rq, f)νf (rq)

− 1
8+δ for sufficiently large q. From (7), we have

∣

∣

∣

f ′(z′

q)

f(z′

q)

∣

∣

∣ ≤
∣

∣

∣

e
−P (z′

q)

A1(z′

q)

∣

∣

∣

(∣

∣

∣

f(k)(zq)
f(zq)

∣

∣

∣+
∑k−1

j=2 |hj(zq)|
∣

∣

∣

f(j)(zq)
f(zq)

∣

∣

∣

+
∣

∣

∣

H(z′

q)

M(rq ,f)

∣

∣

∣+ |A0(z
′
q)e

Q(z′

q)|
)

.
(34)
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By Lemma 2.2, we have

exp
{

−(1 + ε)δ(P, θ′q)r
n
q

}

≤

∣

∣

∣

∣

∣

e−P (z′

q)

A1(z′q)

∣

∣

∣

∣

∣

≤ exp
{

−(1 − ε)δ(P, θ′q)r
n
q

}

(35)

and
exp{(1 + ε)δ(Q, θ′q)r

n
q } ≤ |A0(z

′
q)e

Q(z′

q)| ≤ exp{(1 − ε)δ(Q, θ′q)r
n
q }(36)

for sufficiently large q. From (9),(25),(35),(36) and (34), we can get

∣

∣

∣

∣

f ′(z′q)

f(z′q)

∣

∣

∣

∣

≤ exp{−(1 − 2ε)δ(P, θ′q)r
n
q }.

Since θ′q is arbitrary in (θ0, θ0 + l0), for sufficiently large rq, we can obtain

∣

∣

∣

∣

f ′(rqe
iθ)

f(rqeiθ)

∣

∣

∣

∣

≤ exp{−(1 − 2ε)δ(P, θ)rn
q }, θ ∈ (θ0, θ0 + l0).(37)

Therefore, for θ ∈ (θ0, θ0 + l0), we have

γ(rq, θ) = rq

∫ θ

θ0

∣

∣

∣

∣

f ′(rqe
iθ)

f(rqeiθ)

∣

∣

∣

∣

dθ ≤ rq

∫ θ

θ0

eκ1(θ)rn
q dθ =

∫ θ

θ0

−1

κ2(θ)r
n−1
q

eκ1(θ)rn
q d(κ1(θ)r

n
q ),

where κ1(θ) = −(1 − 2ε)δ(P, θ), κ2(θ) = (1 − 2ε)δ′(P, θ).
Since δ(P, θ) > 0 for all θ ∈ (θ0, θ0 + l0), we can get

0 ≤ γ(rq, θ) ≤
2

(1 − 2ε)δ′(P, θ0)r
n−1
q

(eκ1(θ0)r
n
q − eκ1(θ)rn

q ).

For sufficiently large q, we can get

0 ≤ γ(rq, θ) ≤
2

κ2(θ0)
.(38)

By the proof of Lemma 2.4 in REF.[22], we have

νf (rq)
− 1

8+δ′

M(rq, f) = exp{−2π − 2/κ2(θ0)}νf (rq)
− 1

8 +δM(rq, f) ≤ |f(rqe
iθ)|(39)

for θ ∈ (θ0, θ0 + l0), where 0 < δ′ < δ < 1
8 . Therefore, we can take the sequence of

points z∗q = rqe
iθ∗

q satisfying θ∗q = l0
2 + θ0 and (25) for z∗q . Furthermore, from (39), we

have (8) for z∗q when q is sufficiently large. Thus, from (8) and (37), we can deduce that
νf (rq) → ∞ as q → ∞, which is impossible.

When δ(Q, θ′q) < 0 < δ(P, θ′q) for −l0 < θ′q−θ0 < 0. Then, we deduce that γ(rq, θ) ≤ 0
for all θ ∈ (θ0 − l0, θ0). Similarly, we can get

νf (rq)
− 1

8+δ′

M(rq, f) = exp{−2π}νf(rq)
− 1

8+δM(rq, f) ≤ |f(rqe
iθ)|(40)

for θ ∈ (θ0 − l0, θ0), where 0 < δ′ < δ < 1
8 . Thus, we can also get a contradiction.
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Subcase 3.3. δ(Q, θ0) = 0. We have an = cbn and c ∈ R \ {0, 1}. Then we have

P (z) = cbnzn + · · · + a1z + a0, Q(z) − P (z) = (1 − c)bnzn + Rn−1(z),

where Rn−1(z) is a polynomial of degree at most n − 1.
If c < 0, we may take l0 small enough such that δ(Q, θ) < 0 < δ(P, θ), provided that

either θ ∈ (θ0, θ0 + l0) or θ ∈ (θ0− l0, θ0). Using the same argument as in Subcase 3.2, we
can get (37) and (39). Therefore, by a standard Wiman-Valiron theory, we can deduce
that νf (rq) → ∞ as q → ∞. Thus, we can get a contradiction.

If 0 < c < 1, for small enough l0, we also obtain δ(Q − P, θ) > 0 and δ(P, θ) > 0,
provided that either θ ∈ (θ0, θ0 + l0) or θ ∈ (θ0 − l0, θ0). Using the same argument as in
Subcase 1.3, we can get a contradiction easily.

If c > 1, from the above argument, we can obtain δ(Q − P, θ) < 0 < δ(P, θ) provided
that either θ ∈ (θ0, θ0 + l0) or θ ∈ (θ0 − l0, θ0). Furthermore, we can take the sequence of

points z′q = rqe
iθ′

q satisfying (25), provided that either θ′q ∈ (θ0, θ0+l0) or θ′q ∈ (θ0−l0, θ0).
Therefore, from (7), we have

∣

∣

∣

∣

f ′(z′q)

f(z′q)

∣

∣

∣

∣

≤

∣

∣

∣

∣

A0(z
′
q)

A1(z′q)
e(1−c)bn(z′

q)n+Rn−1(z
′

q)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

e−P (z′

q)

A1(z′q)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

H(z′q)

f(z′q)

∣

∣

∣

∣

+





∣

∣

∣

∣

f (k)(zq)

f(zq)

∣

∣

∣

∣

+

k−1
∑

j=2

|hj(zq)|

∣

∣

∣

∣

f (j)(zq)

f(zq)

∣

∣

∣

∣



 .

Similarly as in Subcase 3.2, we get (37) and (39). By the Wiman-Valiron theory, we
can also get a contradiction.

Thus,from the above argument, we can prove that every solution f of equation (4)
satisfies σ(f) = ∞.

The exponent of convergence of the zero points

Rewrite (4) as

1

f
=

1

H





f (k)

f
+

k−1
∑

j=2

hj

f (j)

f
+ A1e

P (z) f
′

f
+ A0e

Q(z)



 .(41)

If f has z0 as its zeros with multiplicity of s(> k), then z0 is the zeros of H with
order s − k. Therefore, we have

N

(

r,
1

f

)

≤ kN

(

r,
1

f

)

+ N

(

r,
1

H

)

.(42)

On the other hand, from (41), we have

m

(

r,
1

f

)

≤ m

(

r,
1

H

)

+

k−1
∑

j=2

m(r, hj) + m(r, A1e
P ) + m(r, A0e

Q) + S(r, f).(43)
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Since σ(f) = ∞, σ := max{σ(Aj), j = 0, 1} < n and σ(H) < n, and from (42) and
(43), we have

T (r, f) = T

(

r,
1

f

)

+ O(1) ≤ (k + 4)kN

(

r,
1

f

)

+ S(r, f).

Thus, by Lemma 2.9, we can get σ(f) = λ(f) = λ(f) = ∞ and σ2(f) = λ2(f) =
λ2(f) ≤ n.

Next, we will prove that σ(f) = λ(f − ϕ) = ∞ and σ2(f) = λ2(f − ϕ) ≤ n.
First, setting ω0 = f − ϕ. Since σ(ϕ) < ∞, then we have σ(ω0) = σ(f). From (4),

we have

ω
(k)
0 +

k−1
∑

j=2

hjω
′′
0 + A1e

P ω′
0 + A0e

Qω0 = H − (A0e
Qϕ + A1e

P ϕ′ +

k−1
∑

j=2

hjϕ
(j) + ϕ(k)).

Since σ(H) < n, σ < n, σ(ϕ) < ∞ and an 6= bn, we have H − (A0e
Qϕ + A1e

P ϕ′ +
∑k−1

j=2 hjϕ
(j) + ϕ(k)) 6≡ 0 whether H 6≡ 0 or H ≡ 0. Thus,

1
ω0

=

1

H−(A0eQϕ+A1eP ϕ′+
Pk−1

j=2 hjϕ(j)+ϕ(k))

(

ω
(k)
0

ω0
+
∑k−1

j=2 hj
ω

(j)
0

ω0
+ A1e

P ω′

0

ω0
+ A0e

Q

)

.
(44)

If ω0 has z1 as its zero with multiplicity of l(> k), then z1 is the zeros of H − (A0e
Qϕ +

A1e
P ϕ′ +

∑k−1
j=2 hjϕ

(j) + ϕ(k)) with multiplicity l − k. Then, we have

N

(

r,
1

ω0

)

≤ kN

(

r,
1

ω0

)

+ N

(

r,
1

H − (A0eQϕ + A1eP ϕ′ +
∑k−1

j=2 hjϕ(j) + ϕ(k))

)

.

On the other hand, from (44), we have

m

(

r,
1

ω0

)

≤ m

(

r,
1

H − (A0eQϕ + A1eP ϕ′ +
∑k−1

j=2 hjϕ(j) + ϕ(k))

)

+ m(r, A1e
P )

+m(r, A0e
Q) +

k−1
∑

j=2

m(r, hj) + S(r, f).

Using the above argument, we obtain

T (r, ω0) = T (r, f) + S(r, f) ≤ K1N

(

r,
1

ω0

)

+ S(r, f) = K1N

(

r,
1

f − ϕ

)

+ S(r, f),

where K1 is a constant.
Thus, by Lemma 2.9, we can get σ(f) = σ(ω0) = λ(f − ϕ) = ∞ and σ2(f) =

λ2(f − ϕ) ≤ n.
Hence, we can get σ(f) = λ(f) = λ(f) = λ(f −ϕ) = ∞ and σ2(f) = λ2(f) = λ2(f) =

λ2(f − ϕ) ≤ n.
Thus, we can complete the proof of Theorem 1.1. 2
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4 The proof of Theorem 1.2

Proof: Let f be a nontrivial solution of (5) with finite order. By [19], similar to Theorem
1.1, we can get σ(f) ≥ n. Now rewrite (5) as

f (k)

f
+

k−1
∑

j=2

hj

f (j)

f
+
(

A1(z)eP (z) + D1(z)
) f ′

f
+
(

A0(z)eQ(z) + D0(z)
)

=
H(z)

f
.(45)

Since D = max{σ(Dj), j = 0, 1} < n, then for any ε(0 < 4ε < min{1, n − σ, n −
σ(H), n − t, n − D}), we have

|Dj(z)| ≤ exp{rD+ε}, j = 0, 1.(46)

Similarly as in the proof of Theorem 1.1, we can take a sequence of points zq =
rqe

iθq , rq → ∞, such that limq→∞ θq = θ0 and

|f(zq)| = M(rq, f), rq ∈ (E3 ∩ E4) \ (E1 ∪ E2),

and the sequence of points satisfies (8)-(12).
Suppose that an/bn = c < 0, we will discuss three cases according to the signs of

δ(P, θ0) and δ(Q, θ0) as follows.
Case 1. Suppose that δ(P, θ0) < 0 < δ(Q, θ0). By Lemma 2.2 and the continuity of

δ(P, θ), δ(Q, θ), we have

exp

{

4(1 + ε)

3
δ(P, θ0)r

n
q

}

≤ |A1(zq)e
P (zq)| ≤ exp

{

(1 − ε)

3
δ(P, θ0)r

n
q

}

(47)

and

exp

{

(1 − ε)

3
δ(Q, θ0)r

n
q

}

≤ |A0(zq)e
Q(zq)| ≤ exp

{

4(1 + ε)

3
δ(Q, θ0)r

n
q

}

(48)

for all sufficiently large q. From (45), we have

|A0(zq)e
Q(zq) + D0(zq)| ≤

∣

∣

∣

f(k)(zq)
f(zq)

∣

∣

∣+
∑k−1

j=2 |hj(zq)|
∣

∣

∣

f(j)(zq)
f(zq)

∣

∣

∣+
|H(zq)|
M(rq,f)

+
∣

∣

∣
(|A1(zq)e

P (zq) + D1(zq)|)
f ′(zq)
f(zq)

∣

∣

∣
.

(49)

From (46),(47) and (48), we have

|A1(zq)e
P (zq) + D1(zq)| ≤ exp{rD+2ε}(50)

and

|A0(zq)e
Q(zq) + D0(zq)| ≥ exp

{

(1 − 2ε)

3
δ(Q, θ0)r

n
q

}

(51)

for large enough q.
Substituting (10),(11),(47) and (48) into (49), we can obtain

exp

{

(1 − ε)

3
δ(Q, θ0)r

n
q

}

≤ rkσ(f)+ε
q + exp{rD+2ε

q } + (k − 2)r(k−1)σ(f)+t+ε
q + exp{−rn−2ε

q }

≤ exp{rD+3ε
q }.
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Since D < n, we can obtain a contradiction.
Case 2. Suppose that δ(Q, θ0) < 0 < δ(P, θ0). By Lemma 2.2 and the continuity of

δ(P, θ), δ(Q, θ), we have

exp

{

(1 − ε)

3
δ(P, θ0)r

n
q

}

≤ |A1(zq)e
P (zq)| ≤ exp

{

4(1 + ε)

3
δ(P, θ0)r

n
q

}

(52)

and

exp

{

4(1 + ε)

3
δ(Q, θ0)r

n
q

}

≤ |A0(zq)e
Q(zq)| ≤ exp

{

(1 − ε)

3
δ(Q, θ0)r

n
q

}

(53)

for all sufficiently large q. From (45), we have

∣

∣

∣(A1(zq)e
P (zq) + D1(zq))

f ′(zq)
f(zq)

∣

∣

∣ ≤
∣

∣

∣

f(k)(zq)
f(zq)

∣

∣

∣+
∑k−1

j=2 |hj(zq)|
∣

∣

∣

f(j)(zq)
f(zq)

∣

∣

∣+
|H(zq)|
M(rq,f)

+|A0(zq)e
Q(zq) + D0(zq)|.

(54)

From (46), (52) and (53), we have

|A0(zq)e
Q(zq) + D0(zq)| ≤ exp{rD+2ε}(55)

and

|A1(zq)e
P (zq) + D1(zq)| ≥ exp

{

(1 − 2ε)

3
δ(P, θ0)r

n
q

}

(56)

for large enough q.
Substituting (10),(11),(55) and (56) into (54), we obtain

νf (rq) ≤ 2rq exp

{

−
(1 − 2ε)

3
δ(P, θ0)r

n
q

}

(

2Krkσ(f)+t+ε
q + exp{rD+2ε

q }
)

(57)

for sufficiently large q, where K is a constant. From (9), (57) and D < n, we can deduce
that νf (rq) → 0 as q → ∞, which is a contradiction.

Case 3. Suppose that δ(Q, θ0) = 0 = δ(P, θ0). Similarly as in Subcase 1.3 of the
proof of Theorem 1.1, from (12), we can construct a sequence of points z∗q = rqe

iθ∗

q with
limq→∞ θ∗q = θ0 such that δ(P, θ∗0) < 0 and (25) holds for z∗q .

Without loss of generality, we can assume that

δ(P, θ) > 0, θ ∈ (θ0 + 2mπ, θ0 + (2m + 1)π)

and
δ(P, θ) < 0, θ ∈ (θ0 + (2m − 1)π, θ0 + 2mπ)

for all m ∈ Z.
For sufficiently large q, we can have |θ0−θq| ≤ l0. Taking θ∗0 such that l0

2 ≤ θq −θ∗q ≤

l0, then θ0 − l0 ≤ θ∗0 ≤ θ0 −
l0
2 and δ(P, θ∗0) < 0. Since δ(Q, θ∗0) > 0, by using the same

argument as in Case 2, we can get a contradiction easily.
2
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