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Abstract. We consider explicit conditions for all solutions to linear scalar differential
equations with several variable delays to be oscillatory. The considered conditions have
the form of inequalities bounding the upper limit of the sum of integrals of coefficients
over a subset of the real semiaxis, by the constant 1 from below. The main result is a
new oscillation condition, which sharpens several known conditions of the kind. Some
results are presented in the form of counterexamples.
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1 Introduction

It follows from results by Ladas et al. [7] and Tramov [12] that all solutions of the equation
x(t)+a(t)x(t—71)=0, t>0, (1.1)

where a(t) > 0 and T = const > 0, are oscillatory in case limsup, _, , ., fLT a(s)ds > 1.

For an equation with variable delay, Corollary 2.1 from [7] presents the following oscil-
lation condition. Suppose a € C(R;,R;), h € CY(Ry,R;), h(t) < t and K'(t) > 0O for all
t € Ry, limy_, h(t) = 00, and limsup,_, fht(t) a(s)ds > 1. Then all solutions of the equation

#(t) +a(B)x(h(t) =0, t>0, (1.2)

are oscillatory. This result is extended and sharpened in many publications. In almost all of
them the condition is imposed that the delay function / is nondecreasing.
The present paper is devoted to conditions for all solution of the equation

x(t) + i ar(H)x(he(t)) =0, +>0, (1.3)
k=1

where a(t) > 0, h(t) < t, and h(t) — oo as t — oo, to be oscillatory. All new obtained
oscillation conditions are generalizations of the results formulated above. We do not suppose
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that the functions hj are necessarily nondecreasing and accompany the obtained results by a
number of counterexamples in order to compare the new oscillation conditions with known
ones.

In Section 2 we discuss published results concerning oscillation conditions of the consid-
ered kind. In Section 3 our main result is obtained, and it is shown that known results are its
corollaries. In Section 4 equation (1.2) is discussed. In Section 5 some ideas from the previous
section are extended to the case of equation (1.3). Some results in the last three sections are
represented in the form of counterexamples.

2 Known oscillation conditions

Theorem 2.1.3 from the book [9] by Ladde et al. represents an oscillation condition for (1.2)
that sharpens slightly the cited result from [7], as it is supposed that # € C(Ry, Ry ), and the
nonnegativity of /' is replaced by the nondecrease of h.

This result is extended to the case of equation (1.3) in Theorem 3.4.3 from the book [5] by
Gyori and Ladas. The basic oscillatory condition in the theorem is the inequality

limsup/max i Zuk s)ds > 1.
kk

I—o00
It is not stated explicitly that the functions /iy are supposed to be nondecreasing, however, the
authors did not mention anything to replace this condition. It is shown in Section 4 of this

paper that the nondecrease is actually essential.
In [1, p. 36], there is an example showing that the inequality

lim sup Z ag(s)ds <1,
t—oo  Jming hi(t)
in contrast to that containing max in place of min, is not necessary for a nonoscillating solution
to exist. In Section 3 of the present work we sharpen this result.
Tang [11] obtained an oscillation condition for the case of several constant delays

—|— Z Elk t - Tk =0, (2.1)
which is not a consequence of the above conditions for (1.3). The basic inequality

m t+T

lim sup Z/ ag(s)ds > 1
[ =R

is derived from an oscillation condition obtained for an equation with distributed delay. It is

shown in Section 3 that the above inequality cannot be replaced by

m

t
lim sup Z/ ax(s)ds > 1.
t—1

t—oo  [=1

There are few published extensions of the considered oscillation conditions for the case of
nondecreasing delay. The following result is by Tramov [12]. If a(t) > 0, t — h(t) > hy > 0,

limy o0 h(t) = o0, and
t+ho
lim sup a(s)ds > 1,

t—o0 t
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then every solution of (1.2) oscillates. In [12] the author also presented an example showing
the sharpness of the constant 1: if it is diminished by arbitrary ¢ > 0, then the condition does
not guarantee oscillation.

Koplatadze and Kvinikadze [6] obtained another oscillation condition for the case of non-
monotone delay. Suppose a(t) > 0, h € C(Ry,Ry), h(t) < t, and lim;_,o h(t) = co. Define
d(t) = max{h(s) | s € [0,t]}. Then the inequality

t
lim sup a(s)ds > 1
t—o0 5(t)
is sufficient for all solutions of (1.2) to be oscillatory.

Note that the nature of the considered oscillation conditions differs from that of the os-
cillation conditions of 1/e-type. This is expressed, in particular, in the possibility to extend
the above oscillation condition to equations with oscillating coefficients. Such extension was
apparently first made by Ladas at al. [8], their results sharpened by Fukagai and Kusano [4].
Below we do not consider 1/e-type theorems and the problem of ‘filling the gap” between
1/e and 1. A detailed discussion of this subject is found in the monographs [1-3] and the
review [10].

3 Main result

Let parameters of equation (1.3) satisfy the following conditions for all k = 1,...,m:
* the functions a;: R4 — R are locally integrable;
¢ the functions h;: Ry — R are Lebesgue measurable;
* a;(t) > 0and h(t) < tforallt € Ry.

We say that a locally absolutely continuous function x: Ry — R is a solution to the equa-
tion

£+ Y ae(Dx(h(D) =0, t>0, (1.3)
k=1

if there exists a Borel initial function ¢: (—o0,0] — R such that the equality (1.3) takes place
for almost all ¢t > 0, where x(&) = ¢(¢) for all ¢ <O0.
Let us define a family of sets

Ex(t) ={s | h(s) <t<s}, t>0, k=1,...,m.
It follows from the stated above that all the sets of the family are Lebesgue measurable.

Theorem 3.1. Suppose lim;_,o hy(t) = oo forallk =1,...,m, and
lim sup Z/ ag(s) ds > 1.
Ex(t)

t—oo k=1

Then every solution of equation (1.3) is oscillatory.
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Proof. Suppose the conditions of the theorem are fulfilled and consider an arbitrary solution
x of equation (1.3).

Assume that x is not oscillatory. Without loss of generality, suppose that there exists tp > 0
such that x(t) > 0 for all t > ty. Then there exists t; > ty such that h(t) > to for all t > #; and
k=1,...,m. Itis obvious that x(t) is nonincreasing for all t > ;. Further, there exists t, > t;
such that x(hy(t)) > x(¢) forallt > tpand k=1,...,m,and Y} J' ; fE k(s)ds > 1.

There also exists f3 > t; such that for all the sets Sk Ex(t2) N [t, t3] k =1,...,m, we have
Y1 Js, ax(s) ds > 1. Therefore,

x(ts) = x(b) + [ %(s) ds = x(ts) — /tt?’ f a(s)x (i (s)) ds

ta

/Zak ds<xt2< i/uk ><0,

which contradicts the assumption. O

Corollary 3.2. Suppose the functions hy are continuous and strictly increasing, limy_, hy(t) = o0
fork=1,...,m,and

mo e ()
limsupZ/ ’ ar(s)ds > 1. (3.1)
k=1"1

t—o0

Then every solution of equation (1.3) is oscillatory.

Proof. For eachk=1,...,m there exists the inverse function h,_ 1 which is defined on [1(0), c0)
and is strictly increasing. Hence Ei(t) = [t,h, '(t)]. O

Corollary 3.3 ([11]). Suppose hy(t) =t — T, where T > 0, and

m 7
lim sup Z/ ar(s)ds > 1. (3.2)
t

t—oo  f=1
Then every solution of equation (1.3) is oscillatory.
Proof. We have b '(t) = t + 7 and Ei(t) = [t,t + 1] O

Corollary 3.4 ([5]). Suppose the functions hy is nondecreasing, im oo hy(t) = 0o fork =1,...,m
and

lim sup Z ax(s)ds > 1. (3.3)

t—oo  Jmaxy I (t)

Then every solution of equation (1.3) is oscillatory.

Proof. By virtue of the nondecrease of h; we have that [maxy hy (t ) ] C Ex(maxy hy(t)). Since
lim¢co B (t) = o0, it follows from (3.3) that limsup, ., Y3ty [ () ax(s) ds > 1. O

The following example supplements Corollaries 3.2, 3.3 and 3.4.

Example 3.5. Consider the equation

2() +ay()x(t=3)+a(Hx(t—1) =0, t>0, (3.4)
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where forn =0,1,2,... we put

0, te6n6n+3),
0, t € [6n,6n+5),
Ell(t): 3/4, te [6n+3,6n+4), 2(t): 3/4 te [6 5 6( +1)>
, n+>5,6(n .
0, telon+4,6(n+1));
We see that
t t 6(n+1) -6(n+1)
lim sup (/ a1(s) ds + ax(s) ds) = / a1(s) ds + ax(s)ds =3/2 > 1.
t—o0 -3 t—1 6n+3 6n+5

However, every solution x of equation (3.4) is nonincreasing on Ry, and x(6(n +1)) =
x(6n)/16,n=0,1,2,..., thatis x(¢t) > 0 for all t > 0.

Example 3.5 shows that inequality (3.1) cannot be replaced by
moot
lim sup Z/ ag(s)ds > 1. (3.5)
t—oo =1 e (t)
In particular, this means that inequality (3.2) cannot be replaced by
moot
lim sup 2/ ar(s)ds > 1.
t—oo =17t Tk

Inequality (3.3) also cannot be replaced by (3.5). This strengthens the result from [1, p. 36]
cited in Section 2, since

m t t m
asdsg/ ar(s) ds.
k;/hkm (s) L)

mink /’lk(t

4 Equation with single delay
Consider the equation with single delay
2(t) +a(t)x(h(t)) =0, >0, (12),

which is a special case of equation (1.3).

Define E(t) = {s | h(s) <t <s}.

By Theorem 2.1.3 from [9], if h is nondecreasing, lim;_,« h(t) = oo and

t
lim sup a(s)ds > 1,
t—ro0 h(t)

then all solutions of (1.2) are oscillatory. The monotonicity of / is here essential. This fact can
be shown by a very simple example in case the measure y {t | || p(r) 4(s)ds > 1} = 0. The last
is not assumed in the following example.

Example 4.1. Consider equation (1.2), where a(t) = a > 1. Pute € (0,1) and

n(t) = {t, temnn+1—ce),

n temn+l—en+1),
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forn =0,1,2,... Consider the solution of (1.2) determined by an initial value x(0) = x¢ > 0.
One may choose ¢ so that the solution is positive. Indeed, fix an arbitrary positive integer
n and consider x(t) for t € [n,n+1). We have

@.1)
x(n)e=*1=89) —gx(n)(t— (n+1—¢)), t€n+1—en+1).

x(t) = {xm)e-w-”% e bnnt1—e)
Thus, x(n+1) = x(n)(e~*(17%) — xe). To provide that x(n) is positive for all # it is sufficient
to choose ¢ so that e < (e~%(1-9)) /a. Obviously, for some gy > 0 the inequality is valid for all
e € (0,&9). Further, it follows from (4.1) that x(n + 1) < x(t) < x(n) for t € (n,n+ 1), hence
for the chosen € we have x(t) > 0 for all t € R.
On the other hand, limsup, fht(t) a(s)ds = f"“ a(s)ds =wa > 1.

n

It is obvious that Example 4.1 may be modified for the case that / is continuous.
Consider Theorem 3.1 for the case m = 1.

Corollary 4.2. Suppose lim_,o h(t) = co and limsup, ., | E(t) a(s)ds > 1. Then every solution of
equation (1.2) is oscillatory.

The function h is not supposed to be nondecreasing in Corollary 4.2. The following corol-
laries represent an idea that to prove that all solutions to equation (1.2) are oscillatory it may
be sufficient to consider an auxiliary equation with nondecreasing delay. In particular, this
allows to establish oscillation in case the function # is not defined precisely.

Corollary 4.3. Let hyg = 0, hyy1 > hy for n =0,1,2,..., and limy,_,e hy, = co. Suppose h(t) < h,,
fort € [hy, hyy1) and

hn+1
lim sup a(s)ds > 1.

n—oo hy

Then every solution of (1.2) is oscillatory.

Proof. Tt is readily seen that for n = 0,1,2... and t € [hy, h,11) we have [t, h,+1) C E(t).

Therefore,
hn+1 d < d
/hn a(s) s_/E(hn)tz(s) s.

Hence limsup;, |, fE(t) a(s)ds > limsup, ., fh}:”“ a(s)ds.
It remains to apply Corollary 4.2. O

Corollary 4.4 ([6]). Put g(t) = sup{h(s) | s < t}. Suppose lim;_o h(t) = co and
t
lim sup a(s)ds > 1.
t—oo g(t)

Then every solution of (1.2) is oscillatory.

Proof. We have [g(t),t) C E(g(t)). Indeed, if r € [g(t), ), then

h(r) < sup{h(s) | s <t} =g(t),

and hence,

re{s=g(t) [ h(s) <g(t)} = E(g(t)).
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Obviously, g(t) — oo as t — oo, therefore,
t
limsup/ a(s)ds < limsup a(s)ds.
t—oo  Jg(t) oo JE(t)

It remains to apply Corollary 4.2. O
Corollary 4.5. Put G(t) = inf{s | h(s) > t}. Suppose lim;_, h(t) = o0 and

G(t)
lim sup a(s)ds > 1.

t—o0 t
Then every solution of (1.2) is oscillatory.

Proof. It is not hard to see that [t, G(t)) C E(t). Hence the result follows from Corollary 4.2.
O

Note that both the functions ¢ and G defined in Corollaries 4.4 and 4.5, respectively are
nondecreasing. In Figure 4.1 the graphs of some delay / and the corresponding ¢ and G are
represented. The sections of the graph of ¢(t), where it differs from that of h(t), are coloured
red. The set E(T) is marked green in the axis Ot.

S

A

s=hw

Figure 4.1: The graphs of the functions 4, ¢ and G, and the set E(T).

Let us show that the oscillation conditions of Corollaries 4.4 and 4.5 are equipotent. Indeed,

G(g(t)) =inf{s | h(s) > sup{h(r) |r <t}} >t
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and since g(t) — oo as t — oo, we have that

t Glg() G(#)

lim sup a(s)ds < limsup a(s)ds < limsup a(s)ds.
t—oo  /8(t) t—oo /8(t) tooo It
On the other hand,

2(G(t)) = sup{h(s) | s < inf{r | h(r) > t}} <*t,

and G(t) — oo as t — oo, hence,

G() G(t) t
lim sup a(s)ds < limsup/ a(s)ds < limsup/ a(s)ds.
8 8

too It 00 (G(1)) t—vco (t)

The application of Corollaries 4.4 and 4.5 is illustrated by the following example.

Example 4.6. Consider equation (1.2), where a(t) = a > 0. Suppose there exists a sequence
{t,}°°_; such that t, — o0 as n — co and h(t) < t, forall t € [t,, t, +1/a].

n=1
We have G(t,) > t, +1/a. Hence, ftf(t") a(s)ds > fti”ﬂ/“a(s) ds > 1. By Corollary 4.5
every solution is oscillatory.
We also have g(t, +1/a) < t,. Hence, fgt?tji/lo;a
solution is oscillatory.

ya(s)ds > 1, and by Corollary 4.4 every
The next example shows that Corollaries 4.4 and 4.5 are weaker than Corollary 4.2.
Example 4.7. For n =0,1,2,... put in equation (1.2)
1/4, te€2n2n+1), 2n, te2n2n+1),
a(t) = / € [2n,2n+1) n(t) = n € [2n,2n+1)
2/3, t€2n+1,2n+2); 2n—1, te2n+1,2n+2).

We have limsup, |, ftG(t) a(s)ds = fzi(zn) a(s)ds = 1/4+2/3 < 1. Therefore, Corol-
lary 4.5 (and Corollary 4.4 as well) does not allow to determine if there exists a nonoscillating
solution.

Infact E2n+1) = 2n+1,2n+2)U[2n+3,2n+4),

lim sup - a(s)ds = /E(MH) a(s)ds =4/3>1,

t—o0

and by Corollary 4.2 every solution is oscillatory.

5 Generalization

Below we extend Corollaries 4.4 and 4.5 to the case of equation (1.3).
Forallk =1,...,m put gc(t) = sup{h(s) | s < t} and Gi(t) = inf{s | hx(s) > t}.

Corollary 5.1. Suppose lim;_,e hy(t) = oo fork =1,...,m, and

) " rGr(t)
lim sup Z/ ax(s)ds > 1. (5.1)

t—oo  f=1

Then every solution of equation (1.3) is oscillatory.
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Proof. It is not hard to see that [t, G¢(t)) C Ei(t). O

Corollary 5.2. Suppose lim;_,c, hy(t) = oo fork =1,...,m, and
t m

lim sup Z s)ds > 1. (5.2)

t—o0 maXg gk =

Then every solution of equation (1.3) is oscillatory.

Proof. Analogously to the case m = 1 considered in section 4, we have Gi(gx(t)) > t. So,

o rGi(t) o rGi(gk(E)) t il
lim sup Z/ ax(s) ds > lim sup Z/ ai(s) ds > limsup/ Y ak(s) ds.
8

t—oo  f—1 t—oo =17 8&k(t) t—oo  Jmaxg gk(t) p—1

Thus, Corollary 5.2 follows from Corollary 5.1. O

The following example shows that in case m > 1 Corollary 5.1 is sharper than Corollary 5.2.

Example 5.3. Consider the equation

() + %x(t 1)+ %x(t _2)=0, t>0. (53)

We have ¢1(f) =t —1, go(t) =t —2, G1(t) =t + 1, Go(t) = t + 2. Further,

t t
lim sup Zak /t 1(511(5)—|—L12(s))ds:1/2+1/3<1;

t—o0 maxj g (¢

and

m Gy(t) t+1 t+2
limsupz/ uk(s)ds:/ ds+/ ))ds=1/24+2/3 > 1.
t t

t—co  f=1

Thus, Corollary 5.1 does allow to establish that all solutions of (5.3) are oscillatory, while
Corollary 5.2 does not.

At last, note that Example 3.5 shows that inequality (5.2) cannot be replaced by

moot
lim sup Z/ ag(s)ds > 1.

t—oo  j—1 7 8&(t)
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