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Abstract. In this paper, we consider the multiplicity of solutions for a class of Kirch-
hoff type problems with concave and convex nonlinearities on an unbounded domain.
With the aid of Ekeland’s variational principle, Jeanjean’s monotone method and the
Pohožaev identity we prove that the Kirchhoff problem has at least two solutions.
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1 Introduction

This paper concerns the multiplicity of solutions for the following Kirchhoff type problem

−
(

a + b
∫

R3
|∇u|2dx

)
4u + u = f (u) + g(x)|u|q−2u, x ∈ R3, (1.1)

where a, b are positive constants, 1 < q < 2, g(x) is a continuous function and f is a superlin-
ear, subcritical nonlinearity.

Kirchhoff type problems were proposed by Kirchhoff in 1883 [14] as an extension of the
classical D’Alembert’s wave equation for free vibration of elastic strings. Kirchhoff’s model
takes into account the changes in the length of the string produced by transverse vibrations.
It is related to the stationary analogue of the equation{

utt − (a + b
∫

Ω |∇u|2dx)4u = h(x, u) in Ω,

u = 0 on ∂Ω,
(1.2)

where u denotes the displacement, h(x, u) the external force and b the initial tension while a
is related to the intrinsic properties of the string (such as Young’s modulus). Such problems
are often viewed as nonlocal because the presence of the integral term

∫
Ω |∇u|2dx which

implies that the problem (1.2) is no longer a pointwise identity. This phenomenon causes
some mathematical difficulties making the study of such problems particularly interesting.
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Besides, a similar nonlocal problem also appears in other fields such as physical and biological
systems, where u describes a process that depends on its average, for example, the population
density.

The case of Kirchhoff problems where the nonlinear term is super-triple or super-linear
has been investigated in the last decades by many authors, for example [4–10, 13, 17–20] and
references therein. Here, we are interested in the case of Kirchhoff problems where the non-
linearity includes super-linear and sub-linear terms. Recently, Chen and Li [3] considered the
following nonhomogeneous Kirchhoff equation

−
(

a + b
∫

RN
|∇u|2dx

)
4u + V(x)u = f (u) + g(x) in RN , (1.3)

where a, b > 0, N ≤ 3. Under the conditions g(x) ∈ L2(RN) and

(V) V(x) ∈ C(RN , R), infRN V(x) ≥ C1 > 0 and for each M > 0, meas({x ∈ RN :
V(x) ≤ M}) < ∞, where C1 is a positive constant and “meas” denotes the abbrevia-
tion of Lebesgue measure in RN ;

( f1)
f (s)

s → 0 as s→ 0;

( f ′2) f ∈ C(RN , R) and for some 2 < p < 2∗ = 2N
N−2 , C2 > 0, | f (s)| ≤ C2(1 + |s|p−1);

( f ′3) there exists µ > 4 such that s f (s) ≥ µF(s) := µ
∫ s

0 f (z)dz;

( f ′4) infx∈RN ,|s|=1 F(x, s) > 0,

they proved that (1.3) has at least two solutions when ‖g‖L2(RN) is small.
Jiang, Wang and Zhou [12] studied the following nonhomogeneous Schrödinger–Maxwell

system {
−4u + u + λφ(x)u = |u|p−2u + g(x) in R3,

−4φ = u2 in R3,
(1.4)

where λ > 0, p ∈ (2, 6) and 0 ≤ g(x) = g(|x|) ∈ L2(R3). By using a cut-off functional
to obtain a bounded Palais–Smale sequence ((PS) sequence in short), they proved that there
is a constant Cp > 0 such that (1.4) has at least two solutions for p ∈ (2, 6) provided that
‖g‖L2 ≤ Cp; however, for p ∈ (2, 3) they needed to assume in addition that λ > 0 is small.

Li, Li and Shi [15] considered the following Kirchhoff type problem(
a + λ

∫
RN

(|∇u|2 + bu2)dx
)
(−4u + bu) = f (u) in RN , (1.5)

where N ≥ 3, a, b > 0 and the parameter λ ≥ 0. Under the conditions ( f1) and

( f ) f ∈ C(RN , R) and for some 2 < p < 2∗ = 2N
N−2 , C > 0, | f (s)| ≤ C(|s|+ |s|p−1);

( f2)
f (s)

s → +∞ as s→ +∞,

they proved that there exists λ0 > 0 such that for any λ ∈ [0, λ0), (1.5) has at least one positive
solution. Moreover, they pointed out that it is not clear whether (1.5) has a solution for large
λ > 0.

Motivated by these papers [3, 8, 12, 15, 17], we consider the Kirchhoff problem (1.1) with
super-linear and sub-linear terms on the whole space R3. By the fact that the nonlocal term
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(
∫

R3 |∇u|2dx)2 is homogeneous of degree 4 and that the nonlinearity is a combination of
super-linearity and sub-linearity, we are unable to use the method in [3] to obtain a bounded
(PS) sequence. Here, we overcome the difficulties with the aid of Jeanjean’s monotone method
and the Pohožaev identity.

Theorem 1.1. Assume that in the problem (1.1), f (u) = |u|p−2u with 2 < p < 6 and g(x) is a
nonnegative function with the following property:

(g1) 0 ≤ g(x) = g(|x|) 6= 0 and g(x) ∈ C1(R3) ∩ Lq∗(R3), where q∗ = 2
2−q ;

(g2) 〈∇g(x), x〉 ∈ Lq∗(R3).

There exists σ > 0 such that if |g|q∗ ∈ (0, σ), the problem (1.1) has two positive solutions, one of which
has a positive energy and the other a negative energy.

Theorem 1.2. Assume that in the problem (1.1), f ∈ C(R3, R) satisfies the conditions ( f1), ( f2) and

( f3) there exists C1, C2 > 0 such that | f (s)
s5 | < C1 if |s| ≥ C2;

( f4) there exists µ > 2 such that f (s)s ≥ µF(s) > 0, ∀s 6= 0, where F(s) =
∫ s

0 f (z)dz.

Moreover, assume that g(x) is a nonnegative function satisfying the conditions (g1), (g2) and

(g3) g(x)− 〈∇g(x), x〉 ∈ Lq(R3), where q = µ
µ−q ∈ (2, 6) .

There exists σ > 0, which depends on f , such that if |g|q∗ ∈ (0, σ), the problem (1.1) has two solutions,
one of which has a positive energy and the other a negative energy. Moreover, if, in addition, f (u) is
odd, then the solutions are positive.

Remark 1.3. For example, f (u) = |u|p−2u (2 < p < 6) satisfies the conditions ( f1)–( f4) and
g(x) ∈ C∞

0 (R3) satisfies the conditions (g1)–(g3).

Remark 1.4. In the previous papers, because of the nonlocal term (
∫

R3 |∇u|2dx)2 with 4-
degrees, the Kirchhoff problem (1.1) is usually considered under the condition ( f ′3), which
implies that f (u) is super-triple. In other way, the nonlinear condition ( f ′3) demands N ≤ 3,
thus the corresponding Kirchhoff type problem is usually studied in RN with N ≤ 3. In the
spirit of [3,8,12,15,17], we consider the Kirchhoff problem (1.1) under the condition ( f4), which
implies the nonlinearity f (u) is a super-linear term. This nonlinear condition ( f4) can allow
the dimension N ≥ 3. However, in this paper, for simplicity, we still consider the problem
(1.1) in R3.

Remark 1.5. Consider the problem (1.1) with q = 1:

− (a + b
∫

R3
|∇u|2dx)4u + u = f (u) + g(x), x ∈ R3, (1.6)

where 0 ≤ g(x) = g(|x|) ∈ L2(R3) and f satisfies the conditions ( f1)–( f4). By a similar
method we can prove that there is a constant Cp > 0 such that if ‖g‖L2 ≤ Cp, (1.6) has two
solutions with different signs of the energies.

Remark 1.6. We can also consider the following Kirchhoff problem:

−
(

a + b
∫

R3
|∇u|2dx

)
4u + V(x)u = f (u) + g(x)|u|q−2u, x ∈ R3, (1.7)
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where 1 ≤ q < 2. Suppose that V(x) satisfies the condition (V) and V(x) + 〈∇V(x), x〉 satis-
fies suitable condition; g(x) is a continuous function and satisfies the conditions (g1)–(g2) or
(g1)–(g3); f is a superlinear and subcritical nonlinearity, which satisfies the conditions
( f1)–( f4). With a similar method we can obtain similar results for (1.7).

This paper is organized as follows: Section 2 is dedicated to the abstract framework and
some preliminary results. Sections 3 and 4 are concerned with the proofs of Theorems 1.1 and
1.2, respectively.

Throughout this paper, C or Ci is used in various places to denote distinct constants.
Lp(RN) denotes the usual Lebesgue space endowed with the standard norm

|u|p =

( ∫
RN
|u|pdx

) 1
p

for 1 ≤ p < ∞. When it causes no confusion, we still denote by {un} a subsequence of the
original sequence {un}.

2 Preliminary results

In this section, we will recall some preliminaries and establish the variational setting for our
problem. Since g is radially symmetric, we consider the problem in the radial space H1

r (R
3),

whose compactness is very important to our proof. Let E = H1
r (R

3) be the subspace of H1(R3)

consisting of the radial functions and equipped with the norm

‖u‖2 =
∫

R3
(a|∇u|2 + u2)dx,

which is equivalent to the usual one for a > 0.
The energy functional corresponding to (1.1) is

I(u) =
1
2

∫
R3
(a|Ou|2 + u2)dx +

b
4

(∫
R3
|Ou|2dx

)2

−
∫

R3
F(u)dx− 1

q

∫
R3

g(x)|u|qdx,

where F(u) =
∫ u

0 f (s)ds. It is well known that a weak solution of problem (1.1) is a critical
point of the functional I. In the following, we are devoted to finding critical points of I.

First we give the following lemma.

Lemma 2.1 ([1, 22]). The embedding E ↪→ Lp(R3) is continuous for p ∈ [2, 2∗] and compact for
p ∈ (2, 2∗). Denote by Sp the best Sobolev constant for the embedding E ↪→ Lp(R3), which is given by

Sp = inf
u∈E\{0}

‖u‖2

|u|2p
> 0.

In particular,

|u|p ≤ S−
1
2

p ‖u‖, ∀u ∈ E. (2.1)

In what follows, we recall the following two lemmata, which play an important role in
obtaining a bounded (PS) sequence of I.
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Lemma 2.2 ([11]). Let (X, ‖ · ‖) be a Banach space and J ⊂ R+ be an interval. Consider the family
of C1 functionals on X of the form

Iλ(u) = A(u)− λB(u), λ ∈ J,

where B(u) ≥ 0 and either A(u)→ ∞ or B(u)→ ∞ as ‖u‖ → ∞. Assume that there are two points
v1, v2 ∈ X such that

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(v1), Iλ(v2)}, λ ∈ J,

where
Γ = {γ ∈ C([0, 1], X) | γ(0) = v1, γ(1) = v2}.

Then, for almost every λ ∈ J, there is a sequence {vn} ⊂ X such that

(i) {vn} is bounded;

(ii) Iλ(vn)→ cλ;

(iii) I′λ(vn)→ 0 in the dual X−1 of X.

Furthermore, the map λ 7→ cλ is continuous from the left and non-increasing.

Lemma 2.3 (Pohožaev identity [2,12,16]). Let u ∈ H1(R3) be a weak solution to the problem (1.1),
then we have the following Pohožaev identity:

0 =
1
2

∫
R3

a|Ou|2dx +
3
2

∫
R3

u2dx +
b
2

(∫
R3
|Ou|2dx

)2

− 3
∫

R3
F(u)dx− 3

q

∫
R3

g(x)|u|qdx

− 1
q

∫
R3
〈∇g(x), x〉|u|qdx =: P(u).

(2.2)

3 Proof of Theorem 1.1

In this section, we are devoted to the proof of Theorem 1.1, so we suppose that the assumptions
of Theorem 1.1 hold throughout this section. First, we prove some useful preliminary results.

Lemma 3.1. There exists σ > 0 such that if |g|q∗ ∈ (0, σ), then there exist α > 0 and ρ > 0 such that

I(u)|‖u‖=α ≥ ρ > 0,

where

σ = qS
q
2
2 Cp,q = qS

q
2
2

 (2− q)pS
p
2
p

2(p− q)


2−q
p−2

· p− 2
2(p− q)

.

Proof. By (g1), the Hölder inequality and Lemma 2.1, we have

I(u) =
1
2
‖u‖2 +

b
4

(∫
R3
|Ou|2dx

)2

− 1
p

∫
R3
|u|pdx− 1

q

∫
R3

g(x)|u|qdx

≥ 1
2
‖u‖2 − 1

p
S−

p
2

p ‖u‖p − 1
q
|g|q∗S

− q
2

2 ‖u‖
q

= ‖u‖q
(

1
2
‖u‖2−q − 1

p
S−

p
2

p ‖u‖p−q − 1
q
|g|q∗S

− q
2

2

)
.

(3.1)
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Set l(t) = 1
2 t2−q − 1

p S−
p
2

p tp−q for t > 0. Direct calculations yield that

max
t>0

l(t) = l(α) =

 (2− q)pS
p
2
p

2(p− q)


2−q
p−2

· p− 2
2(p− q)

=: Cp,q,

where

α =

 (2− q)pS
p
2
p

2(p− q)

 1
p−2

.

Then it follows from (3.1) that, if |g|q∗ < σ, I(u)|‖u‖=α ≥ ρ > 0, where σ = qSq/2
2 Cp,q and

ρ = αq(l(α)− 1
q |g|q∗S

−q/2
2

)
> 0.

Lemma 3.2. If {un} ⊂ E is a bounded (PS) sequence of I, then {un} has a strongly convergent
subsequence in E.

Proof. By Lemma 2.1, going if necessary to a subsequence, we have

un ⇀ u in E,

un → u in Lp(R3), p ∈ (2, 2∗).

Note that

(I′(un)− I′(u), un − u) = (I′(un), un − u)− (I′(u), un − u)

=

(
a + b

∫
R3
|Oun|2dx

) ∫
R3
|O(un − u)|2dx +

∫
R3
|un − u|2dx

− b
(∫

R3
|Ou|2dx−

∫
R3
|Oun|2dx

) ∫
R3

OuO(un − u)dx

−
∫

R3
g(x)(|un|q−2un − |u|q−2u)(un − u)dx

−
∫

R3
(|un|p−2un − |u|p−2u)(un − u)dx,

then

‖un − u‖2 ≤ (I′(un)− I′(u), un − u)

+ b
(∫

R3
|Ou|2dx−

∫
R3
|Oun|2dx

) ∫
R3

OuO(un − u)dx

+
∫

R3
g(x)(|un|q−2un − |u|q−2u)(un − u)dx

+
∫

R3
(|un|p−2un − |u|p−2u)(un − u)dx.

From the boundedness of {un} in E and Lemma 2.1, {un} is bounded in Lp(R3), p ∈ [2, 6).
By twice using the Hölder inequality we obtain∣∣∣∣∫

R3
g(x)(|un|q−2un − |u|q−2u)(un − u)dx

∣∣∣∣
≤
(∫

R3
|g|q∗dx

) 1
q∗
(∫

R3
||un|q−2un − |u|q−2u|

p
q |un − u|

p
q dx
) q

p

≤ C|g|q∗
(
|un|q−1

p + |u|q−1
p

)
|un − u|p → 0 as n→ ∞,
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where C is a positive constant. Similarly, we have∣∣∣∣∫
R3
(|un|p−2un − |u|p−2u)(un − u)dx

∣∣∣∣→ 0 as n→ ∞,

Combining with

b
(∫

R3
|Ou|2dx−

∫
R3
|Oun|2dx

) ∫
R3

OuO(un − u)dx → 0 as n→ ∞,

and
(I′(un)− I′(u), un − u)→ 0 as n→ ∞,

we have ‖un − u‖ → 0 as n→ ∞. This completes the proof.

Lemma 3.3. There exists u1 ∈ E such that

I(u1) = inf{I(u) : u ∈ Bα} < 0,

where Bα = {u ∈ E : ‖u‖ ≤ α} and α is given in Lemma 3.1.

Proof. We choose a function v ∈ E such that g(x)v(x) 6= 0, then for t > 0 small enough, we
have

I(tv) ≤ a
2

t2
∫

R3
|Ov|2dx +

b
4

t4
(∫

R3
|Ov|2dx

)2

+
1
2

t2
∫

R3
|v|2dx− 1

q
tq
∫

R3
g(x)|v|qdx < 0.

This shows that c1 := inf{I(u) : u ∈ Bα} < 0. By Ekeland’s variational principle [21], there
exists {un} ⊂ Bα which is a bounded (PS) sequence of I. Then, by Lemma 3.2, there exists
u1 ∈ E such that un → u1 as n→ ∞ in E. Hence I(u1) = c1 < 0 and I′(u1) = 0.

In order to apply Lemma 2.2 to get another solution, we introduce the following approxi-
mation problem:

−
(

a + b
∫

R3
|∇u|2dx

)
4u + u = λ|u|p−2u + g(x)|u|q−2u, λ ∈ [ 1

2 , 1]. (3.2)

Define Iλ : E→ R by
Iλ(u) = A(u)− λB(u), λ ∈ [ 1

2 , 1],

where B(u) = 1
p

∫
R3 |u|pdx and

A(u) =
1
2

∫
R3
(a|Ou|2 + u2)dx +

b
4

(∫
R3
|Ou|2dx

)2

− 1
q

∫
R3

g(x)|u|qdx.

Then {Iλ}λ∈J is a family of C1-functionals on E associated with the problem (3.2), where
J = [ 1

2 , 1]. Obviously, we have B(u) ≥ 0, ∀u ∈ E, and

A(u) ≥ 1
2
‖u‖2 − 1

q
|g|q∗S

− q
2

2 ‖u‖
q → ∞ as ‖u‖ → ∞.

In the following lemma, we show that the family of functionals {Iλ} satisfies the assump-
tions of Lemma 2.2.
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Lemma 3.4. If |g|q∗ < σ, then for any λ ∈ J the following conclusions hold.

(i) There exist η, ξ > 0 and e ∈ E with ‖e‖ > ξ such that

Iλ(u) ≥ η > 0 with ‖u‖ = ξ and Iλ(e) < 0.

(ii)
cλ := inf

γ∈Γ
max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(0), Iλ(e)}, λ ∈ J,

where Γ = {γ ∈ C([0, 1], E) | γ(0) = 0, γ(1) = e}.

Proof. (i) Since Iλ ≥ I1 for all u ∈ E and λ ∈ [ 1
2 , 1], by Lemma 3.1 there exist η > 0 and ξ > 0,

which are independent of λ ∈ [ 1
2 , 1], such that Iλ(u) ≥ η > 0 with ‖u‖ = ξ.

Let v ∈ E\{0} and set vt(x) = tv(t−2x) for t > 0, then we have

Iλ(vt) ≤
a
2

t4
∫

R3
|Ov|2dx +

b
4

t8
(∫

R3
|Ov|2dx

)2

+
1
2

t8
∫

R3
|v|2dx− 1

p
tp+6λ

∫
R3
|v|pdx.

Noting that p ∈ (2, 6), there exists t0 > 0 large enough, which is independent of λ ∈ [ 1
2 , 1],

such that Iλ(vt0) < 0 for all λ ∈ [ 1
2 , 1]. Thus, by taking e = vt0(x), (i) holds.

(ii) By (i) and the definition of cλ,

cλ ≥ c1 ≥ η > 0 for all λ ∈ [ 1
2 , 1].

Since Iλ(0) = 0, Iλ(e) < 0 for all λ ∈ [ 1
2 , 1], (ii) holds.

Then, thanks to Lemmata 2.2, 3.2 and 3.4, there exists {(λn, un)} ⊂ [ 1
2 , 1] × E such that

λn → 1 as n→ ∞ and

0 < η ≤ Iλn(un) = cλn ≤ c 1
2
, I′λn

(un) = 0 for all n ≥ 1. (3.3)

In view of Lemma 3.2, if the sequence {un} ⊂ E given above is bounded, there exists u2 6= 0
such that I′(u2) = 0. In particular, u2 is a non-trivial positive solution of the problem (1.1).

To complete the proof of Theorem 1.1, we just require that {un} ⊂ E is bounded. Let

An =
∫

R3
|Oun|2dx, Bn =

∫
R3
|un|2dx, Cn = λn

∫
R3
|un|pdx

and
Dn =

∫
R3

g(x)|un|qdx, En =
∫

R3
〈Og(x), x〉|un|qdx.

From (3.3) and Lemma 2.3, we have
1
2 (aAn + Bn) +

b
4 (An)2 − 1

p Cn − 1
q Dn = cλn ,

aAn + Bn + b(An)2 − Cn − Dn = 0,
a
2 An +

3
2 Bn +

b
2 (An)2 − 3

p Cn − 3
q Dn − 1

q En = 0.

(3.4)
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Lemma 3.5. {un} is bounded in E.

Proof. We prove the lemma by the following two steps.
Step 1. {|un|2} is bounded.

By contradiction, we assume that |un|2 → +∞ as n→ ∞. Let vn = un
|un|2 and

Xn = a
∫

R3
|∇vn|2dx, Yn = b|un|22

(∫
R3
|∇vn|2dx

)2

, Zn = λn|un|p−2
2

∫
R3
|vn|pdx.

Using (g1) and (g2), and multiplying (3.4) by 1
|un|22

, we see that


1
2 Xn +

1
4Yn − 1

p Zn = − 1
2 + on(1),

Xn + Yn − Zn = −1 + on(1),
1
2 Xn +

1
2Yn − 3

p Zn = − 3
2 + on(1),

(3.5)

where on(1)→ 0 as n→ ∞. For p ∈ (2, 6), solving (3.5), we have

Xn =
2− p
6− p

+ on(1).

This is a contradiction for n large enough, since Xn ≥ 0 for all n ∈ N. Thus, {|un|2} is
bounded.
Step 2. {|∇un|2} is bounded.

Similarly to the proof of Step 1, arguing by contradiction, if |∇un|2 → ∞ as n → ∞. Let
wn = un

|∇un|2 , Mn = b|∇un|22(
∫

R3 |∇wn|2dx)2 and Nn = λn|∇un|p−2
2

∫
R3 |wn|pdx. Using (g1), (g2)

and Step 1, and multiplying (3.4) by 1
|∇un|22

, we see that


1
4 Mn − 1

p Nn = − a
2 + on(1),

Mn − Nn = −a + on(1),
1
2 Mn − 3

p Nn = − a
2 + on(1).

(3.6)

From the first two equations of (3.6),we have

Mn =
2a(p− 2)

4− p
+ on(1), Nn =

ap
4− p

+ on(1).

This together with the third equation of (3.6) implies that p = 6 + on(1). So, if p 6= 6, (3.6) is
impossible to hold. Thus, {|∇un|2} is bounded.

Now we are in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.3, we find a solution u1 of the equation (1.1) with negative
energy. By Lemma 3.4, due to the Mountain Pass Theorem [21], we get a critical point u2 of
I corresponding to positive energy. Because u1 and u2 have different energies, it follows that
u1 6= u2. Moreover, by strong maximum principle, u1 and u2 are positive. Thus, we obtain
two positive solutions u1 and u2, one of which corresponds to positive energy and another
one negative energy.
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4 Proof of Theorem 1.2

At first, we assume that the assumptions of Theorem 1.2 always hold in this section. Since f is
a nonhomogeneous nonlinearity, the method of Lemma 3.5 is not available. However, by the
condition (g3), we can still obtain a bounded (PS) sequence. Before proving Theorem 1.2, we
give some useful preliminary results.

Lemma 4.1. There exists σ > 0, which depends on f, such that if |g|q∗ ∈ (0, σ), then there exist α > 0
and ρ > 0 such that

I(u)|‖u‖=α ≥ ρ > 0.

Proof. From ( f1) and ( f3), for all ε > 0, there is Cε > 0 such that

| f (u)| ≤ ε|u|+ Cε|u|5. (4.1)

Then, by Lemma 2.1, we have

I(u) =
1
2
‖u‖2 +

b
4

(∫
R3
|Ou|2dx

)2

−
∫

R3
F(u)dx− 1

q

∫
R3

g(x)|u|qdx

≥ 1
2
‖u‖2 − ε

2
|u|22 −

Cε

6
|u|66 −

1
q
|g|q∗S

− q
2

2 ‖u‖
q

≥ 1
2
‖u‖2 − ε

2
S−1

2 ‖u‖
2 − Cε

6
S−3

6 ‖u‖
6 − 1

q
|g|q∗S

− q
2

2 ‖u‖
q

≥ ‖u‖q

(
1− S−1

2 ε

2
‖u‖2−q − Cε

6
S−3

6 ‖u‖
6−q − 1

q
|g|q∗S

− q
2

2

)
.

(4.2)

We fix Cε with ε = S2
2 . Then set l(t) = 1

4 t2−q − Cε
6 S−3

6 t6−q for t > 0. By direct calculations,
it yields

max
t>0

l(t) = l(α) =
(

3S3
6(2− q)

2Cε(6− q)

) 2−q
4

· 1
6− q

=: Cq,

where

α =

(
3S3

6(2− q)
2Cε(6− q)

) 1
4

.

Taking σ = qSq/2
2 Cq, then it follows from (4.2) that, if |g|q∗ < σ, I(u)|‖u‖=α ≥ ρ > 0, where

ρ = αq(l(α)− 1
q |g|q∗S

−q/2
2

)
> 0. Note that Cε depends on f , so does σ.

Lemma 4.2. If {un} ⊂ E is a bounded (PS) sequence of I, then {un} has a strongly convergent
subsequence in E.

Proof. Going if necessary to a subsequence, we have un ⇀ u in E. Inequality (4.1) and
Lemma 3.2 of [18] imply that

∫
R3 F(un)dx =

∫
R3 F(un − u)dx +

∫
R3 F(u)dx + o(1), then, simi-

larly to Lemma 3.2, we can prove the result.

Lemma 4.3. There exists u1 ∈ E such that

I(u1) = inf{I(u) : u ∈ Bα} < 0,

where Bα = {u ∈ E : ‖u‖ ≤ α} and α is given in Lemma 4.1.
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Proof. Since the proof is similar to Lemma 3.3, we omit its details here.

In the same way as the previous section, we introduce the following approximation prob-
lem:

−
(

a + b
∫

R3
|∇u|2dx

)
4u + u = λ f (u) + g(x)|u|q−2u, λ ∈ [ 1

2 , 1]. (4.3)

Define Iλ : E→ R by
Iλ(u) = A(u)− λB(u), λ ∈ [ 1

2 , 1]

where B(u) =
∫

R3 F(u)dx and

A(u) =
1
2

∫
R3
(a|Ou|2 + u2)dx +

b
4

(∫
R3
|Ou|2dx

)2

− 1
q

∫
R3

g(x)|u|qdx.

Then {Iλ}λ∈J is a family of C1-functionals on E corresponding to (4.3), where J = [ 1
2 , 1]. It is

easy to see that B(u) ≥ 0, ∀u ∈ E and

A(u) ≥ 1
2
‖u‖2 − 1

q
|g|q∗S

− q
2

2 ‖u‖
q → ∞ as ‖u‖ → ∞.

Similarly to Lemma 3.4, in the following lemma we want to show that {Iλ} satisfies the
assumptions of Lemma 2.2.

Lemma 4.4. If |g|q∗ < σ, then for any λ ∈ J, the following conclusions hold.

(i) There exist η, ξ > 0 and e ∈ E with ‖e‖ > ξ such that

Iλ(u) ≥ η > 0 with ‖u‖ = ξ and Iλ(e) < 0.

(ii)
cλ := inf

γ∈Γ
max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(0), Iλ(e)}, λ ∈ J,

where Γ = {γ ∈ C([0, 1], E) | γ(0) = 0, γ(1) = e}.

Proof. (i) Since Iλ ≥ I1 for all u ∈ E and λ ∈ [ 1
2 , 1], by Lemma 4.1 there exist η, ξ > 0, which

are independent of λ ∈ [ 1
2 , 1], such that Iλ(u) ≥ η > 0 with ‖u‖ = ξ. Let v ∈ C∞

0 (R3) such
that 0 ≤ v ≤ 1, v(x) = 1 for |x| ≤ 1, v(x) = 0 for |x| ≥ 2, |Ov| ≤ C and set vt(x) = tv(t−2x)
for t > 0, then we have

Iλ(vt) ≤
a
2

t4
∫

R3
|Ov|2dx +

b
4

t8
(∫

R3
|Ov|2dx

)2

+
1
2

t8
∫

R3
|v|2dx− t6λ

∫
R3

F(tv)dx

=
a
2

t4
∫
|x|≤2
|Ov|2dx +

b
4

t8
(∫
|x|≤2
|Ov|2dx

)2

+
1
2

t8
∫
|x|≤2
|v|2dx

− t8λ
∫
|x|≤2

F(tv)
t2v2 v2dx.

From the condition ( f2), F(tv)/(t2v2) → ∞ as t → ∞, so there exists t0 > 0 large enough,
which is independent of λ ∈ [ 1

2 , 1], such that Iλ(vt0) < 0 for all λ ∈ [ 1
2 , 1]. Thus, by taking

e = vt0(x), (i) holds.
(ii) By (i) and the definition of cλ,

cλ ≥ c1 ≥ η > 0, for all λ ∈ [ 1
2 , 1].

Since Iλ(0) = 0, Iλ(e) < 0 for all λ ∈ [ 1
2 , 1], (ii) holds.
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Then, thanks to Lemmata 2.2, 4.2 and 4.4, there exists {(λn, un)} ⊂ [ 1
2 , 1] × E such that

λn → 1 as n→ ∞ and

0 < η ≤ Iλn(un) = cλn ≤ c 1
2
, I′λn

(un) = 0 for all n ≥ 1. (4.4)

In view of Lemma 4.2, if the sequence {un} ⊂ E given above is bounded, there exists u2 6= 0
such that I′(u2) = 0. In particular, u2 is a non-trivial solution of problem (1.1).

To complete the proof of Theorem 1.2, it is sufficient to prove that {un} is bounded in E.

Lemma 4.5. {un} is bounded in E.

Proof. From the condition ( f4), we can deduce that F(u) ≥ C|u|µ with C = F(1). Let β ∈
( 1

µ , 1
2 ), then by (2.1), (4.4) and Lemma 2.3, we have

4Iλn(un)− βI′λn
(un)un − Pλn(un)

=

(
3
2
− β

) ∫
R3

a|Oun|2 +
(

1
2
− β

) ∫
R3
|un|2dx +

(
1
2
− β

)
b
(∫

R3
|Oun|2dx

)2

+λn

∫
R3
(β f (un)un − F(un))dx−

∫
R3

[(
1
q
− β

)
g(x)− 1

q
〈∇g(x), x〉

]
|un|qdx

≥
(

1
2
− β

)
‖un‖2 + λn(µβ− 1)C|un|µµ −

1
q
|un|qµ|g(x)− 〈∇g(x), x〉|q,

where q = µ
µ−q ∈ (2, 6). Since q ∈ (1, 2), µ > 2, {un} is bounded in E.

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 4.3, we find a solution u1 of the equation (1.1) with negative
energy. By Lemma 4.4, due to the Mountain Pass Theorem [21], we get a critical point u2 of
I, whose energy is positive. Thus, u1 and u2 are two different solutions with their energies
having different signs. If, in addition, f (u) is odd, the corresponding functional is even, then
the solutions u1 and u2 are positive.
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