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EXISTENCE OF SOLUTIONS FOR A NONLINEAR
FRACTIONAL ORDER DIFFERENTIAL EQUATION

ERIC R. KAUFMANN AND KOUADIO DAVID YAO

ABSTRACT. Let D% denote the Riemann-Liouville fractional differential oper-
ator of order a. Let 1 < o < 2 and 0 < 8 < «a. Define the operator L by
L = D® — aDP? where a € R. We give sufficient conditions for the existence of
solutions of the nonlinear fractional boundary value problem

Lu(t) + f(t,u(t)) =0, 0<t<1,
u(0) =0, u(1l) = 0.

1. INTRODUCTION

For u € L?[0,T],1 < p < oo, the Riemann-Liouville fractional integral of order

« > 0 is defined as
1

I*u(t) = T(a) /0 (t — 8)* tu(s) ds.

For n—1 < a < n, the Riemann-Liouville fractional derivative of order « is defined

by
1 dn ! n—a—1

Also, when a < 0, we will sometimes use the notation I* = D~“. Define the

D%u(t) =

operator L by L = D® — aD? where a € R. We give sufficient conditions for the

existence of solutions of the nonlinear fractional boundary value problem

Lu(t) + f(t,u(t)) =0, 0<t<]1, (1)

u(0) =0, u(l) =0. (2)

While much attention has focused on the Cauchy problem for fractional differ-
ential equations for both the Reimann-Liouville and Caputo differential operators,
see [3, 6, 8, 9, 10, 11, 12, 13, 14] and references therein, there are few papers de-
voted to the study of fractional order boundary value problems, see for example
[1, 2, 4, 5, 15].
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In the remainder of this section we present some fundamental results from frac-
tional calculus that will be used later in the paper. For more information on
fractional calculus we refer the reader to the manuscripts [9, 11, 12, 13]. In Section
2 we use the properties given below to find an equivalent integral operator to (1),
(2). We also state the fixed point theorems that we employ to find solutions. In
Section 3 we present our main results.

It is well known that if n — 1 < a < n, then D*t* % = 0,k = 1,2,...,n.

Furthermore, if u € L1[0,7] and a > 0, then for ¢t € [0, 7], we have
DI%u(t) = u(t). (3)
The semi-group property,
I°T®h(t) = I°Th(t) = I*I°h(t), (4)

holds when ac+ 6 > 0, t € [0,T].
If D*u € L'[0, T], then
ta*m

1°Du(t) = u(t) = Y [D*"™u(t)] =0 T(a—m £ 1)

lim (D "u) (t) = lim (I""“u) (t)

t—0t t—0+

and consequently if w € C™[0,T], then D¥ "™y (0) =0,0<m <n — 1.

2. PRELIMINARY RESULTS

Let h € C[0,1], a € (1,2) and suppose that 3 € (0,«). Let u € {v: D* €
C[0,1]} be a solution of the problem

(D —aDP)u(t) +h(t) =0, 0<t<1, (7)
u(0) =0, wu(l)=0. (8)

Our first goal in this section is to invert the linearized equation (7), (8).
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We begin by solving equation (7) for D®u and applying the integral operator I*
to both sides.

I1°D*u(t) = al*Du(t) — I*h(t), 0<t<1. (9)

From (5) and (6) we have that 1®D%u(t) = u(t) + c1t*~! for some constant c;.

Furthermore, by (4) we see that I*DPu(t) = I*"PI° DPu(t). At this point we need

to consider three cases. If 3 < 1, then I*DPu(t) = I Pu(t) since u € C[0,1].

If 3 =1, then I*DAu(t) = I* Pu(t) since u(0) = 0. If 3 > 1, then I*DPu(t) =

I97Bu(t) + cot*~ 1. In any case, equation (9) simplifies to
u(t) = al® Pu(t) + et —I*h(t), 0<t<1 (10)

for some constant c.

Let t =1 in (10) and apply the second boundary condition in (8) to get
0=wu(1) = al* Pu(l) +c— I*h(1).

Thus, ¢ = I*h(1) — aI* Pu(1). Consequently, if v € {v : D € C[0,1]} is a

solution of (7), (8), then wu satisfies the integral equation
u(t) = al* Pu(t) — at® 1 Pu(1) 4 t* %h(1) — I°h(t), 0<t<1. (11)

Conversely, using (3), we see that if u € C[0,1] is a solution (11), then u satisfies

the boundary value problem (7), (8). We thus have the following lemma.

Lemma 2.1. Let h € C[0,1], o € (1,2) and B € (0,a). Then u € {v: D% €
C10,1]} is a solution of (7), (8) if and only if u € C[0,1] is a solution of the integral

equation
1 1
u(t) = / G(t,s)h(s)ds — a/ G*(t,s)u(s)ds, 0<t <1,
0 0
where
1 te (1 —s) L —(t—s)*"1, 0<s<t,
ot ) (1—3s) (t—s)
Do) | o1 = g)0-1, t<s<1,
and
1 (1 —s)* Pt —(t—s)* Pl 0<s<t,
G*(t,s) = 57— e .
[la=p) | a=1(1 - g)a=b8-1, t<s<l

EJQTDE, 2009 No. 71, p. 3



Remarks: While the function G(t, s) satisfies G(t,s) > 0 for all ¢,s € (0, 1), see
[2], the function G*(¢, s) is not of constant sign.

We seek a fixed point of an operator associated with (1), (2), using a Nonlin-
ear Alternative of Leray-Schauder type and the Krasnosel’skii-Zabeiko fixed point

theorem [7]. For completeness we state these theorems below.

Theorem 2.2. Let B be a normed linear space. Let C C B be a convex set and
let U be open in C such that 0 € U. Let T : U — C be a continuous and compact
mapping. Then either

(1) the mapping T has a fived point in U, or

(2) there exists a u € OU and a X € (0,1) such that u = A\Tu.

Theorem 2.3. Let B be a Banach Space. Let T : B — B be a completely continuous
mapping and let L : B — B be a bounded linear mapping such that A =1 is not an
eigenvalue of L. Suppose that

|Tu— Lul

lull—oo  lul|

0. (12)
Then T has a fized point in B.

3. MAIN RESULTS

Define the Banach space B = (C[0,1], | - ||), where |Ju| = maxo<;<1 |u(t)|, and
the operator T : B — B by

Tu(t) = /O G(t, 5)f(s,u(s)) ds — a /0 G*(t, s)u(s) ds. (13)

Note that fixed points of (13) are solutions of (1), (2) and vice versa.
Assume that the function f satisfies the following conditions.
(H1) f:]0,1] x R — R is continuous and f(t,0) does not vanish identically on
any compact subset of [0, 1].

(Hs) There exists positive functions aq,as € C[0,1] such that
If(t,2)] < ai(t) + as(t)|2]

for all ¢ € [0,1].
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Theorem 3.1. Assume (Hy) and (Hs) hold. Then the operator T : B — B s

continuous and compact.

Proof. 1t follows trivially that T': B — B.
Let {v;} C B be such that v; — v as i — co. By (Hz) and the continuity of f

we have,

lim |Tv;(t) — To(t)] lim [ Gt s)|f(s,vi(s) = f(s,v(s))| ds

1—00 i—00 0

+ |a|ilir£10/0 |G*(t, 5)||vi(s)) — v(s)|ds

IN

IN

[ 66.5) tim [ Gsvi(6) = 0060 s

1
+ |a|/ |G*(t, s)| lim |vs(s) — v(s)| ds — 0.
0 11— 00

Hence T' is continuous.
Let V = {v} C B be a uniformly bounded subset and let R > 0 be such that
|lv]] < R for all v € V. Then for each v € V we have
1 1
o) < [ Gl el ds+lal [ 16 (15)]o(s) s
< MK+ |a|K2R,
where M = max .yejo1]x[01] |f(t, 2)|, K1 = maxep 1 folG(t, s)ds, and Ky =

maxyeo, 1] f01|G* (t,s)| ds. Hence TV is uniformly bounded.
Let v € V and suppose that t1,ts € [0, 1] are such that ¢; < t5. Then,

ITo(ts) - To(ts)] < / IG(tr,5) — Gt2, )| (5, 0(s))] ds

+lal / (G* (b1, 5) — G*(t2, ) [u(s)] ds

(M&'l + |a|R€2)|t1 — ﬁ2|,

IN

where €1 > 0 and g2 > 0 are such that |G(t1,s) — G(t2,s)| < e1|t1 — t2| and
|G*(t1,8) — G*(t2,s)| < e2|t1 — ta] respectively. As such, the operative T is equi-
continuous. By the Arzela-Ascoli Theorem, the operator T' is compact and the

proof is complete. O
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Define A, B € R by

A

1
max </ G(t,s)a1(s) ds> and
tel0,1] 0

B = max </01G(t,s)a2(s)+|aG*(t,s)|ds).

te(0,1]

These quantities will be used in our first main theorem.

Theorem 3.2. Assume that conditions (Hy) and (Hz) hold. Suppose that 0 < A <

oo and 0 < B < 1. Then there exists a solution of the boundary value problem (1),

2).

Proof. Let U = {u € B: ||lu| < R} where R = 2. Then,

Tu(t)] < / G(t,5) |f(5,u(s))] ds + |a / G (8, )] fu(s)] ds

< /o G(t,s)a1(s)ds + </o G(t,s)az(s) + |a G*(t, s)| ds> [l
= A+ Bllul.

Suppose there exists a u € QU and a A € (0,1) such that u = ATu, then for this

u and A we have
R = [lul = A[|Tu|| < A+ Bllu|| = R,

which is a contradiction.
By Theorem 2.2, there exists a fixed point u € U of T.. This fixed point is a
solution of (1), (2) and the proof is complete. O

In our next theorem we replace condition (Hz) with the following condition.

(Hz) limjy|—o ftw) ©(t) uniformly in [0, 1], where ¢ € C[0,T].

Jul

We use Theorem 2.3 to establish a fixed point for the operator T
Theorem 3.3. Suppose that (Hy) and (Hs) hold and that

0< /O Glt, s)p(s) + |a G (t, 5)|ds < 1. (14)

Then there exists a solution of (1), (2).
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Proof. We use the same operator defined in (13) and note that under condition
(H3) standard arguments can be used to show that T is compact.

Define an operator L : B — B by

Lu(t) = /0 G(t, s)p(s)u(s)ds — a/o G*(t, s)u(s) ds.

Then L is a bounded linear mapping. Furthermore, if w is such that v = Lu and

u # 0, then by (14)

= e
< ( [ 6ttset9 +1ac s>|ds) Jul
<l

which is a contradiction. Consequently, A = 1 is not an eigenvalue of L.

Fix £ > 0. By condition (Hj), there exists an N > 0 such that if |z| > N then

—p(s)| <e (15)

for all s € [0,1]. Set
B =max{f(s,z): s €0,1], |z| € [0, N]}

and note that if |u(s)| < N then ’f(s,u(s)) - <p(s)|u(s)|’ < B+ ||¢||N.
Pick M > N such that B + ||¢||N < eM and let u € B be such that |lul| > M.
If s € [0,1] is such that |u(s)| < N then

[ £ u(s)) — (&) u()| < B+ gl < ule
If s € [0,1] is such that |u(s)| > N then by (15),

[F(s,u(s) = o(s)u(s)]

< lulle.
Hence for all s € [0, 1],

[F(s.u(s) = p(s)]u(s)

< lulle.
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For ||u|| > M we have

IN

Tut) = L)) < [ G| ue) =~ ols)ute)] s

<max/ G(t,s)ds) [lu|le.
tel0,1] Jo

IN

That is, for some constant C, || Tu—Lul| < Cl|u|le. Hence condition (12) of Theorem

2.3 is valid. Since all the conditions of Theorem 2.3 hold, there exists a fixed point

w of T. This solution w is a solution of the boundary value problem (1), (2) and

the proof is complete. O

Remark: With slight modifications, the results of Theorems 3.2 and 3.3 can be

extended to the boundary value problem

Du(t) = Y " axDPu(t) + f(t,u(t) =0, 0 <t <1,
k=1

u(0) = u(1) =0,

where a € (1,2),0< 81 < B2 < -+ < fr < a,and ap € R,k =0,1,...,m.
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