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ON A NONSTANDARD VOLTERRA TYPE DYNAMIC

INTEGRAL EQUATION ON TIME SCALES

DEEPAK B. PACHPATTE

Abstract. The main objective of the present paper is to study some basic
qualitative properties of solutions of a nonstandard Volterra type dynamic
integral equation on time scales. The tools employed in the analysis are based
on the applications of the Banach fixed point theorem and a certain integral
inequality with explicit estimate on time scales.

1. Introduction

Many physical systems can be modeled via dynamical systems on time scales.
As a response to the needs of the diverse applications, recently many authors have
studied the qualitative properties of solutions of Volterra type integral equations
on time scales, see [3, 6, 7, 8]. In [1] the authors have studied the Fredholm inte-
gral equation in which the functions involved under the integral sign contains the
derivative of a unknown functions, using Pervo’s fixed point theorem, the method
of successive approximation and trapezoidal quadrature rule. In view of the impor-
tance of the equation studied in [1], Pachpatte [10, 11, 12] has studied the existence
uniqueness and other properties of solutions of more general integral equations
using Banach fixed point theorem and suitable integral inequalities with explicit
estimates. Motivated by the results in [1, 10, 11, 12], in this paper we consider the
nonstandard Volterra type dynamic equation on time scales of the form

x(t) = g(t) +

t
∫

t0

f
(

t, τ, x(τ), x∆(τ)
)

∆τ , (1.1)

where g,f are given functions and x is the unknown function to be found, g : IT →
R

n, f : I2
T
× R

n × R
n → R

n, t is from a time scale T, which is nonempty closed
subset of R, the set of real numbers, τ ≤ t and IT = I ∩ T, I = [t0,∞) the given
subset of R, R

n the real n dimensional Euclidean space with appropriate norm
defined by |.|. The integral sign represents the general type of operation known as
delta integral (for details, see [2]).

In recent papers ([6, 7, 8]) the authors have studied existence and other quali-
tative properties of solutions of equation (1.1) when x∆ in (1.1) is absent. In fact,
the study of qualitative properties of solutions of (1.1) is challenging task because
of the occurrence of the extra factor x∆ in the integrand on the right hand side
in (1.1). In this paper we offer sufficient conditions for the existence, uniqueness
and other properties of solutions of (1.1). The main tools employed here are based
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on the application of Banach fixed point theorem and a suitable integral inequality
with explicit estimates on time scales. We hope that the results given here will
encourage the further investigation and widen the scope of applications.

2. Preliminaries

In this section we introduce some basic definitions and results on time scales T

needed in our subsequent discussion. The forward (backward) jump operator σ(t)
of t for t < sup T (respectively ρ(t) at t for t >inf T) is given by

σ(t) = inf{s ∈ T : s > t} (ρ(t) = sup{s ∈ T : s < t}),

for all t ∈ T. The graininess function µ : T → [0,∞) is defined by µ (t) = σ (t) − t.
Throughout we assume that T has a topology that it inherits from the standard
topology on the real number R. The jump operators σ and ρ allow the classification
of points in a time scale in the way: If σ(t) > t, then the point t is called right
scattered ; while if ρ(t) < t, then t is termed left scattered. If t < sup T and
σ(t) = t, then the point t is called right dense: while if t > inf T and ρ(t) = t, then
we say t is left-dense. If T has a left-scattered maximum value m, then we define
T

k := T−m, otherwise T
k := T. We say that f : T → R is rd-continuous provided

f is continuous at each right-dense point of T and has a finite left-sided limit at
each left-dense point of T and will be denoted by Crd.

Fix t ∈ T
k and let x : T → R. Define x∆(t) to be number (if it exists) with the

property that given ǫ > 0 there is a neighbourhood U of t with
∣

∣[x (σ (t)) − x (s)] − x∆ (t) [σ (t) − s]
∣

∣ ≤ ǫ |σ (t) − s| ,

for all s ∈ U .
A function F : T → R is called an antiderivative of f : T → R provided F∆ (t) =

f (t) holds for all t ∈ IT. In this case we define the integral of f by
τ
∫

s

f (τ)∆τ = F (t) − F (s) ,

where s, t ∈ T. The function p : T → R is said to be regressive if 1 + µ (t) p (t) 6= 0
for all t ∈ IT. We denote by ℜ the set of all regressive and rd-continuous functions
and define the set of all regressive functions by

ℜ+ = {p ∈ R : 1 + µ (t) p (t) > 0 for all t ∈ T} .

For p ∈ ℜ+ we define (see [2]) the exponential function ep(., t0) on time scale T as
the unique solution to the scalar initial value problem

x∆ (t) = p (t) x, x (t0) = 1.

If p ∈ ℜ+, then ep(t, t0) > 0 for all t ∈ T. The exponential function ep(., t0) is given
by

ep (t, t0) =























exp

(

t
∫

t0

p (s)∆s

)

for t ∈ T, µ > 0

exp

(

t
∫

t0

log(1+µ(s)p(s))
µ(s) ∆s

)

for t ∈ T, µ > 0
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where log is a principle logarithm function. In order to allow a comparison of
the results in the paper with the continuous case, we note that, if T = R, the
exponential function is given by

ep (t, s) = exp





t
∫

s

p (τ) dτ



 , eα (t, s) = exp (α (t − s)) , eα (t, 0) = exp (αt)

for s, t ∈ R, where α ∈ R is a constant and p : R → R is a continuous function.
To compare with the discrete case, if T = Z (the set of integers), the exponential
function is given by

ep (t, s) =

t−1
∏

τ=s

[1 + p (τ)], eα (t, s) = (1 + α)
t−s

, eα (t, 0) = (1 + α)
t
,

for s, t ∈ Z with s < t, where α 6= −1 is a constant and p : Z → R is a sequence
satisfying p(t) 6= −1 for all t ∈ Z.

We denote by Ω (t, s) the class of functions k : T × T → R which are continuous
at (t, t), where t ∈ T

k with t > t0, t0 ∈ T
k such that k(t, .) is rd-continuous on

[t0, σ(t)] and for each ǫ > 0 there exists a neighbourhood U of t independent of
τ ∈ [t0, σ(t)], such that

∣

∣k (σ (t) , τ) − k (s, τ) − k∆ (t, τ ) (σ (t) − s)
∣

∣ ≤∈ |σ (t) − s| ,

for all s ∈ U , where k∆ denotes the delta derivative of k with respect to first
variable.

We use following fundamental result proved in Bohner and Peterson [2] (see also
[4,9]).

Lemma 2.1. Let k ∈ Ω (t, s).Then

g (t) =

t
∫

t0

k (t, τ )∆τ, (2.1)

for t ∈ IT implies

g∆ (t) =

t
∫

t0

k∆ (t, τ )∆τ + k (σ (t) , t), (2.2)

for t ∈ IT.

We also need the following special version of Theorem 3.10 given in [4].

Lemma 2.2. Assume that u, a ∈ Crd, u ≥ 0, a ≥ 0. Let k(t, s) ∈ Ω (t, s),
k (σ (t) , t) ≥ 0 and k∆ (t, s) ≥ 0 for s, t ∈ T with s ≤ t. If

u (t) ≤ a (t) +

t
∫

t0

k (t, τ)u (τ)∆τ, (2.3)
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for all t ∈ T then

u (t) ≤ a (t) +

t
∫

t0

B (τ) eA (t, σ (τ))∆τ, (2.4)

for all t ∈ T where

A (t) = k (σ (t) , t) +

t
∫

t0

k∆ (t, τ )∆τ, (2.5)

B(t) = k (σ (t) , t) a (t) +

t
∫

t0

k∆ (t, τ)a (τ) ∆τ, (2.6)

for t ∈ T.

3. Existence and Uniqueness

In what follows, we assume that the functions g, g∆ : IT → R
n and for τ ≤ t,

f, f∆ : I2
T
× R

n × R
n → R

n are rd-continuous. By a solution of equation (1.1)
we mean a rd-continuous function x(t) for t ∈ T which is delta differentiable with
respect to t and satisfies the equation (1.1). For every rd-continuous function x(t)
together with its delta derivative x∆ (t), we denote by |x (t)|1 = |x (t)| +

∣

∣x∆ (t)
∣

∣.
For t ∈ T the notation a(t) = O(b(t)) for t → t0 we mean that there exists a

constant k ≥ 0 such that
∣

∣

∣

a(t)
b(t)

∣

∣

∣ ≤ k on some right hand neighbourhood of the

point t0, we denote by G the space of all rd-continuous functions x(t) whose delta
derivative x∆(t) exist, which fulfill the condition

|x (t)|1 = O (eλ (t, t0)) , (3.1)

where λ is a positive constant. In the space G we define the norm

|x|G = sup {|x (t)|1 eλ (t, t0) : t ∈ IT} . (3.2)

It is easy to see that G with the norm defined in (3.2) is a Banach space. The
condition (3.1) implies that there is a constant N ≥ 0 such that

|x (t)|1 ≤ Neλ (t, t0) .

Using this fact in (3.2) we observe that

|x|G ≤ N. (3.3)

Our main result in this section is given in the following theorem.

Theorem 3.1. Assume that
(i) the function f in equation (1.1) and its delta derivative with respect to t are
rd-continuous and satisfy the conditions

|f (t, τ, u, v) − f (t, τ, u, v)| ≤ h1 (t, τ ) [|u − u| + |v − v|] , (3.4)
∣

∣f∆ (t, τ, u, v) − f∆ (t, τ, u, v)
∣

∣ ≤ h2 (t, τ) [|u − u| + |v − v|] , (3.5)
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where for i = 1, 2 and t0 ≤ τ ≤ t, hi(t, τ) ∈ Ω(t, τ).
(ii) there exists a nonnegative constant α such that α < 1 and

h1 (σ (t) , τ) eλ (t, t0) +

t
∫

t0

[h1 (t, τ) + h2 (t, τ )]eλ (τ, t0)∆τ ≤ αeλ (t, t0) , (3.6)

for t ∈ IT, and λ is given as in (3.1).
(iii) there exists a nonnegative constant β such that

|g (t)|1 + |f (σ (t) , t, 0, 0)| +

t
∫

t0

[

|f (t, τ, 0, 0)| +
∣

∣f∆ (t, τ, 0, 0)
∣

∣

]

∆τ ≤ βeλ (t, t0) ,

(3.7)
where g, g∆, f, f∆ are as in equation (1.1) and λ is given as in (3.1). Then Equation
(1.1) has a unique solution x(t) in G on IT.

Proof. Let x : IT → R
n be rd-continuous and define the operator S by

(Sx) (t) = g (t) +

t
∫

t0

f
(

t, τ, x (τ) , x∆ (τ)
)

∆τ . (3.8)

By taking delta derivative on both sides of (3.8) (see Lemma 1), we get

(Sx)∆ (t) = g∆ (t)+ f
(

σ (t) , t, x (t) , x∆ (t)
)

+

t
∫

t0

f∆
(

t, τ, x (τ) , x∆ (τ)
)

∆τ . (3.9)

We show that Sx maps G into itself. Evidently Sx and (Sx)∆ are rd-continuous
on T. We first verify that (3.1) is satisfied. From (3.8) and (3.9), we have

|(Sx)(t)|1 = |(Sx) (t)| +
∣

∣

∣
(Sx)∆ (t)

∣

∣

∣

≤ |g (t)| +

t
∫

t0

∣

∣f
(

t, τ, x (τ) , x∆ (τ)
)

− f (t, τ, 0, 0) + f (t, τ, 0, 0)
∣

∣∆τ

+
∣

∣g∆ (t)
∣

∣+
∣

∣f
(

σ (τ) , τ, x (t) , x∆ (t)
)

− f (σ (t) , t, 0, 0) + f (σ (t) , t, 0, 0)
∣

∣

+

t
∫

t0

∣

∣f∆
(

t, τ, x (τ) , x∆ (τ)
)

− f∆ (t, τ, 0, 0) + f∆ (t, τ, 0, 0)
∣

∣∆τ

≤ |g (t)|1 +

t
∫

t0

|f (t, τ, 0, 0)|∆τ +

t
∫

t0

h1 (t, τ ) |x (t)|1 ∆τ

+ |f (σ (t) , t, 0, 0)| +

t
∫

t0

∣

∣f∆ (t, τ, 0, 0)
∣

∣∆τ
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+ h1 (σ (t) , τ) |x (t)|1 +

t
∫

t0

h2 (t, τ ) |x (τ)|1∆τ

≤ βeλ (t, t0) + h1 (σ (t) , τ ) |x (t)|1 +

t
∫

t0

h1 (t, τ ) |x (τ)|1∆τ

+

t
∫

t0

h2 (t, τ ) |x (τ)|1∆τ

≤ βeλ (t, t0) + |x|G {h1 (σ (t) , t) eλ (t, t0)

+

t
∫

t0

[h1(t, τ) + h2(t, τ)]eλ (τ, t0)∆τ







≤ [β + Nα] eλ (t, t0) . (3.10)

From (3.10) it follows that Sx ∈ G. This proves that S maps G into itself.
Now we verify that S is a contraction map. Let x, y ∈ C (IT, Rn). From

(3.9), (3.10) and using the hypotheses, we have

|(Sx)(t) − (Sy)(t)|1 = |(Sx) (t) − (Sy) (t)| +
∣

∣

∣(Sx)
∆

(t) − (Sy)
∆

(t)
∣

∣

∣

≤

t
∫

t0

∣

∣f
(

t, τ, x (τ) , x∆ (τ)
)

− f
(

t, τ, y (τ) , y∆ (τ)
)∣

∣∆τ

+
∣

∣f
(

σ (t) , t, x(t), x∆(t)
)

− f
(

σ (t) , t, y(t), y∆(t)
)∣

∣

+

t
∫

t0

∣

∣f∆
(

t, τ, x (τ) , x∆ (τ)
)

− f∆
(

t, τ, y (τ) , y∆ (τ)
)∣

∣∆τ

≤

t
∫

t0

h1 (t, τ) |x (τ) − y(τ)|1 ∆τ + h1 (σ (t) , t) |x (t) − y(t)|1

+

t
∫

t0

h2 (t, τ ) |x (t) − y (t)|1 ∆τ

≤ |x − y|G {h1 (σ (t) , t) eλ (t, t0)

+

t
∫

t0

[h1 (t, τ) + h2 (t, τ )]eλ (τ, t0) ∆τ}

≤ |x − y|G αeλ (t, t0) . (3.11)

From (3.11) we obtain

|Sx − Sy|G ≤ α |x − y|1 .
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Since α < 1, it follows from the Banach fixed point theorem that S has a unique
fixed point in G. The fixed point of S is however a solution of equation (1.1). The
proof is complete. �

Remark 1. If we choose f (t, τ, x, u) = E (t, τ, x)−u, then by simple calculation
it is easy to observe that the equation (1.1) reduces to the equation of the following
form

y (t) = h (t) +

t
∫

t0

k (t, τ, y(τ))∆τ , (3.12)

which is recently studied in [6] by Kulik and Tisdell, using Banach and Schafer fixed
point theorems (see also [7]). In [1] the authors have studied the continuous case
of a variant of equation (1.1) by using Pervo’s fixed point theorem and Successive
approximations.
The following theorem deals with the uniqueness of solution of equation (1.1) whose
proof is based on the application of the inequality given in Lemma 2.2.

Theorem 3.2. Assume that the function f in equation (1.1) and its delta deriv-
ative with respect to t satisfy the conditions (3.4) and (3.5). Further, assume that
h1(t, s), h2(t, s) ∈ Ω(σ, s) and h1 (σ(t), t) ≤ c where c < 1 is a constant. Then the
equation (1.1) has at most one solution on IT.

Proof. Let x(t) and y(t) be two solutions of (1.1), then from the hypotheses, we
have

|x (t) − y (t)| +
∣

∣x∆ (t) − y∆ (t)
∣

∣

≤

∣

∣

∣

∣

∣

∣

t
∫

t0

∣

∣f
(

t, τ, x(τ), x∆(τ)
)

∆τ − f
(

t, τ, y(τ), y∆(τ)
)

∆τ
∣

∣

+
∣

∣f
(

σ (t) , t, x(t), x∆ (t)
)

− f
(

σ (t) , t, y (t) , y∆ (t)
)∣

∣

+

∣

∣

∣

∣

∣

∣

t
∫

t0

f∆
(

t, τ, x(τ), x∆ (τ)
)

∆τ −

t
∫

t0

f∆
(

t, τ, y(τ), y∆ (τ)
)

∆τ

∣

∣

∣

∣

∣

∣

≤

t
∫

t0

h1(t, τ)
[

|x(τ) − y(τ)| +
∣

∣x∆(τ) − y∆(τ)
∣

∣

]

∆τ

+ h1(σ(t), t)
[

|x(t) − y(t)| +
∣

∣x∆(t) − y∆(t)
∣

∣

]

+

t
∫

t0

h2(t, τ)
[

|x(t) − y(τ)| +
∣

∣x∆(t) − y∆(τ)
∣

∣

]

∆τ

≤ c
[

|x(t) − y(t)| +
∣

∣x∆(t) − y∆(t)
∣

∣

]

+

t
∫

t0

[h1 (t, τ ) + h2 (t, τ)]
[

|x(τ) − y(τ)| +
∣

∣x∆(τ) − y∆(τ)
∣

∣

]

∆τ. (3.13)
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From (3.13) we have

|x(t) − y(t)| +
∣

∣x∆(t) − y∆(t)
∣

∣

≤
1

1 − c

t
∫

t0

[h1 (t, τ) + h2 (t, τ )]
[

|x(t) − y(t)| +
∣

∣x∆(τ) − y∆(τ)
∣

∣

]

∆τ. (3.14)

Now a suitable application of lemma 2.2 (when a(t) = 0) to (3.14) yields

|x(t) − y(t)| +
∣

∣x∆(t) − y∆(t)
∣

∣ ≤ 0,

and hence x(t) = y(t). Thus there is at most one solution to equation (1.1) on
IT. �

4. Properties of Solutions

In this section we study some basic properties of solutions of equation (1.1) under
some suitable conditions on the functions involved therein.

First we present the following theorem concerning the estimate on the solution
of equation (1.1).

Theorem 4.1. Assume that the functions g, f in equation (1.1) and their delta
derivatives with respect to t satisfy

|g(t)| +
∣

∣g∆(t)
∣

∣ ≤ r(t), (4.1)

|f(t, s, u, v)| ≤ h1 (t, s) [|u| + |v|] , (4.2)
∣

∣f∆(t, s, u, v)
∣

∣ ≤ h2 (t, s) [|u| + |v|] , (4.3)

where r : IT → R+ = [0,∞) is rd-continuous and hi ∈ Ω(t, s) for i = 1, 2. Let
k(t, s) = h1 (t, s) + h2 (t, s) and assume that h1 (σ(t), t) ≤ c, where c < 1 is a
constant. If x(t), t ∈ IT is any solution of equation (1.1) then

|x (t)| +
∣

∣x∆ (t)
∣

∣ ≤
r(t)

1 − c
+

t
∫

t0

B1 (τ)eA1
(t, σ(t)) ∆τ, (4.4)

for t ∈ IT, where A1(t) and B1(t) are defined respectively by the right hand sides of

(2.5) and (2.6) by replacing k(t, τ) by k(t,τ)
1−c

and a(t) by r(t)
1−c

.

Proof. Using the fact that x(t) is a solution of equation (1.1) and hypotheses, we
have

|x (t)| +
∣

∣x∆ (t)
∣

∣ ≤ |g(t)| +

t
∫

t0

∣

∣f
(

t, τ, x(τ), x∆(τ)
)∣

∣∆τ

+
∣

∣g∆(t)
∣

∣+
∣

∣f
(

σ(t), t, x(t), x∆(t)
)∣

∣+

t
∫

t0

∣

∣f∆
(

t, τ, x(τ), x∆(τ)
)∣

∣∆τ

≤ r(t) +

t
∫

t0

h1 (t, τ )
[

|x (τ)| +
∣

∣x∆(τ)
∣

∣

]

∆τ
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+ h1 (σ(t), t)
[

|x (t)| +
∣

∣x∆(t)
∣

∣

]

+

t
∫

t0

h2 (t, τ)
[

|x (τ)| +
∣

∣x∆(τ)
∣

∣

]

∆τ

≤ r(t) + c
[

|x (t)| +
∣

∣x∆(t)
∣

∣

]

+

t
∫

t0

k (t, τ)
[

|x (τ)| +
∣

∣x∆(τ)
∣

∣

]

∆τ.

(4.5)

From (4.5), we obtain

|x (t)| +
∣

∣x∆(t)
∣

∣ ≤
r(t)

1 − c
+

1

1 − c

t
∫

t0

k (t, τ)
[

|x (τ)| +
∣

∣x∆(τ)
∣

∣

]

∆τ. (4.6)

Now an application of Lemma 2.2 to (4.6) yields (4.4). �

Remark 2. We note that the estimate obtained in (4.4) gives not only bounds
on solutions of equation (1.1) but also bounds on their delta derivatives. If the
estimate on the right hand side of (4.4) is bounded then the solution of equation
(1.1) and its delta derivative are bounded.

Next we obtain the estimate on the solution of equation (1.1) assuming that the
function f and its delta derivative with respect to t satisfy Lipscitz type conditions.

Theorem 4.2. Assume that the function f and its delta derivative with respect to
t satisfy the conditions (3.4) and (3.5). Let hi (t, s), k(t, s), h1 (σ(t), t) and c be as
in Theorem 4.1 and

α(t) =
∣

∣f
(

σ(t), t, g(t), g∆(t)
)∣

∣+

t
∫

t0

∣

∣f
(

t, τ, g(τ), g∆(τ)
)∣

∣∆τ

+

t
∫

t0

∣

∣f∆
(

t, s, g(τ), g∆(τ)
)∣

∣∆τ,

where g is defined as in equation (1.1). If x(t), t ∈ IT is any solution of equation
(1.1) then

|x(t) − g(t)| +
∣

∣x∆(t) − g∆(t)
∣

∣ ≤
α(t)

1 − c
+

t
∫

t0

B2(τ)eA1
(τ, σ(τ))∆τ, (4.7)

for t ∈ IT where A1(t) is as in Theorem 4.1 and B2(t) is defined by the right hand

side of (2.5) replacing a(t) by α(t)
1−c

.

Proof. Using the fact that x(t) is a solution of (1.1) and hypotheses, we observe
that

|x(t) − g(t)| +
∣

∣x∆(t) − g∆(t)
∣

∣

≤

t
∫

t0

∣

∣f
(

t, τ, x(τ), x∆(τ)
)

− f
(

t, τ, g(τ), g∆(τ)
)∣

∣∆τ +

t
∫

t0

∣

∣f
(

t, τ, g(τ), g∆ (τ)
)∣

∣∆τ
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+
∣

∣f
(

σ(t), t, x(t), x∆(t)
)

− f
(

σ(t), t, g(t), g∆(t)
)∣

∣+
∣

∣f
(

σ(t), t, g(t), g∆(t)
)∣

∣

+

t
∫

t0

∣

∣f∆
(

t, τ, x(τ), x∆(τ)
)

− f∆
(

t, τ, g(τ), g∆(τ)
)∣

∣+

t
∫

t0

∣

∣f∆
(

t, τ, g(τ), g∆ (τ)
)∣

∣∆τ

≤

t
∫

t0

∣

∣f
(

t, τ, g(τ), g∆(τ)
)∣

∣∆τ +

t
∫

t0

h1(t, τ)
[

|x(τ) − g(τ)| +
∣

∣x∆(τ) − g∆(τ)
∣

∣

]

∆τ

+
∣

∣f
(

σ(t), t, g(t), g∆(t)
)∣

∣+

t
∫

t0

∣

∣f∆
(

t, τ, g(τ), g∆(τ)
)∣

∣∆τ

+ h1(σ(t), t)
[

|x(t) − g(t)| +
∣

∣x∆(t) − g∆(t)
∣

∣

]

+

t
∫

t0

h2(t, τ)
[

|x(τ) − g(τ)| +
∣

∣x∆(τ) − g∆(τ)
∣

∣

]

∆τ

≤ c
[

|x(t) − g(t)| +
∣

∣x∆(t) − g∆(t)
∣

∣

]

+
∣

∣f
(

σ(t), t, g(t), g∆(t)
)∣

∣

+

t
∫

t0

∣

∣f
(

t, τ, g (τ) , g∆(τ)
)∣

∣∆τ +

t
∫

t0

f∆
(

t, τ, g (τ) , g∆(τ)
)

∆τ

+

t
∫

t0

[|h1 (t, τ ) + h1 (t, τ )|]
[

|x(τ) − g(τ)| +
∣

∣x∆(τ) − g∆(τ)
∣

∣

]

∆τ

= c
[

|x(t) − g(t)| +
∣

∣x∆(t) − g∆(τ)
∣

∣

]

+ α(t)

+

t
∫

t0

[|h1 (t, τ ) + h1 (t, τ )|]
[

|x(τ) − g(τ)| +
∣

∣x∆(τ) − g∆(τ)
∣

∣

]

∆τ. (4.8)

From (4.8), we observe that
[

|x(t) − g(t)| +
∣

∣x∆(t) − g∆(t)
∣

∣

]

≤
α(t)

1 − c
+

1

1 − c

t
∫

t0

k(t, τ)
[

|x(τ) − g(τ)| +
∣

∣x∆(τ) − g∆(τ)
∣

∣

]

∆τ. (4.9)

Now an application of Lemma 2.2 to (4.9) yields (4.7). �

Consider the equation (1.1) and the corresponding Volterra integral equation

y(t) = H(t) +

t
∫

t0

F
(

t, τ, y (τ) , y∆ (τ)
)

∆τ, (4.10)

where H, F are given functions and y is the unknown function, H : IT → R
n,

for τ ≤ t, F : I2
T
× R

n × R
n → R

n and the functions H(t) and F (t, τ, u, v) are
rd-continuous and delta differentiable with respect to t.
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The following theorem deals with continuous dependence of solutions of equation
(1.1) on functions involved therein.

Theorem 4.3. Assume that the function f in equation (1.1) and its delta derivative
with respect to t satisfy the conditions (3.4) and (3.5). Let, for i=1,2, hi (t, s),
k(t, s), h1 (σ(t), t) and c be as in Theorem 4.2. Let x(t) and y(t), t ∈ IT be solutions
of equations (1.1) and (4.10) respectively. Suppose that

|g(t) − H(t)| +

t
∫

t0

∣

∣f
(

t, τ, y(τ), y∆(τ)
)

− F
(

t, τ, y(τ), y∆(τ)
)∣

∣∆τ ≤ r1(t), (4.11)

∣

∣g∆(t) − H∆(t)
∣

∣+
∣

∣f
(

σ(t), t, y(t), y∆(t)
)

− F
(

σ(t), t, y(t), y∆(t)
)∣

∣

+

t
∫

t0

∣

∣f∆
(

t, τ, y(τ), y∆(τ)
)

− F
(

t, τ, y(τ), y∆(τ)
)∣

∣∆τ ≤ r2(t), (4.12)

where g, f and H, F are functions involved in equations (1.1) and (4.10) and
r1(t), r2(t) : IT → R+ are rd-continuous. Then the solution x(t), t ∈ IT of equa-
tion (1.1) depends continuously on the functions involved on the right hand side of
equation (1.1).

Proof. As x(t) and y(t) are solutions of equations (1.1) and (4.10), we have

|x(t) − y(t)|

≤ |g(t) − H(t)| +

t
∫

t0

∣

∣f
(

t, τ, x(τ), x∆(τ)
)

− f
(

t, τ, y(τ), y∆(τ)
)∣

∣∆τ

+

t
∫

t0

∣

∣f
(

t, τ, y(τ), y∆(τ)
)

− F
(

t, τ, y(τ), y∆(τ)
)∣

∣∆τ

≤ r1(t) +

t
∫

t0

h1(t, τ)
[

|x(τ) − y(τ)| +
∣

∣x∆(τ) − y∆(τ)
∣

∣

]

∆τ, (4.13)

and
∣

∣x∆(t) − y∆ (t)
∣

∣

≤
∣

∣g∆(t) − H∆(t)
∣

∣+
∣

∣f
(

σ(t), t, x(t), x∆(τ)
)

− f
(

σ(t), t, y(t), y∆(τ)
)∣

∣

+
∣

∣f
(

σ(t), t, y(t), y∆(τ)
)

− F
(

σ(t), t, y(t), y∆(τ)
)∣

∣

+

t
∫

t0

∣

∣f∆
(

t, τ, x(τ), x∆(τ)
)

− f∆
(

t, τ, y(τ), y∆(τ)
)∣

∣∆τ

+

t
∫

t0

∣

∣f∆
(

t, τ, y(τ), y∆(τ)
)

− F∆
(

t, τ, y(τ), y∆(τ)
)∣

∣∆τ
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≤ r2(t) + h1 (σ(t), t)
[

|x(t) − y(t)| +
∣

∣x∆(t) − y∆(t)
∣

∣

]

+

t
∫

t0

h2 (t, τ )
[

|x (τ) − y(τ)| +
∣

∣x∆ (τ) − y∆(τ)
∣

∣

]

∆τ. (4.14)

Now from (4.13), (4.14) and using assumption that h1 (σ(t), t) ≤ c, we observe that

|x(t) − y(t)| +
∣

∣x∆(t) − y∆(t)
∣

∣

≤
r1(t) + r2(t)

1 − c
+

1

1 − c

t
∫

t0

k (t, τ)
[

|x(τ) − y (τ)| +
∣

∣x∆(τ) − y∆ (τ)
∣

∣

]

∆τ. (4.15)

Now an application of Lemma 2.2 to (4.15) yields

|x(t) − y(t)| +
∣

∣x∆(t) − y∆(t)
∣

∣ ≤
r1(t) + r2(t)

1 − c
+

t
∫

t0

B3 (τ)eA1
(t, σ(t))∆τ, (4.16)

for t ∈ IT, where A1(t) is as defined in Theorem 4.1 and B3(t) is defined by right

hand side of equation (2.6) replacing a(t) by r1(t)+r2(t)
1−c

. From (4.16) it follows that

the solution of equation (1.1) depends rd-continuously on the functions involved on
the right side of equation (1.1). �

We next consider the Volterra integral equations on time scales of the forms

z(t) = g(t) +

t
∫

t0

f
(

t, τ, z(τ), z∆(τ), µ
)

∆τ , (4.17)

z(t) = g(t) +

t
∫

t0

f
(

t, τ, z(τ), z∆(τ), µ0

)

∆τ , (4.18)

where g, f are given functions and z is the unknown function to be found and µ, µ0

are real parameters.
The following theorem deals with the dependency of solutions of equations (4.17)
and (4.18) on parameters.

Theorem 4.4. Assume that the function f in (4.17),(4.18) and its delta derivative
with respect to t satisfy the conditions

|f(t, τ, u, v, µ) − f(t, τ, u, v, µ)| ≤ h1 (t, τ ) [|u − u| + |v − v|] , (4.19)

|f(t, τ, u, v, µ) − f(t, τ, u, v, µ0)| ≤ e1(t, τ) |µ − µ0| , (4.20)
∣

∣f∆(t, τ, u, v, µ) − f∆(t, τ, u, v, µ)
∣

∣ ≤ h2(t, τ) [|u − u| + |v − v|] , (4.21)
∣

∣f∆(t, τ, u, v, µ) − f∆(t, τ, u, v, µ0)
∣

∣ ≤ e2(t, τ) |µ − µ0| , (4.22)

where h1, h2, e1, e2 ∈ Ω(t, τ). Let, for i = 1, 2, hi(t, τ), k (t, τ ), h1(σ(t), τ) and c be
as in Theorem 4.2 and

β(t) = e1(σ(t), t) +

t
∫

t0

[e1(t, τ) + e2(t, τ)]∆τ .

EJQTDE, 2009 No. 72, p. 12



Let z1(t) and z2(t) be the solutions of equation (4.17) and (4.18) respectively, then

|z1(t) − z2(t)| +
∣

∣z∆
1

(t) − z∆
2 (t)

∣

∣ ≤
|µ − µ0|

1 − c
β(t) +

t
∫

t0

B4(τ)eA1
(t, σ(τ))∆τ, (4.23)

where A1(t) is as in Theorem 4.1 and B4(t) is defined by right hand side of (2.6)

replacing a(t) by |µ−µ0|
1−c

β(t).

Proof. Let w(t) = z1(t) − z2(t), where z1(t) and z2(t) are respectively solutions of
equations (4.17) and (4.18), then

|w(t)| ≤

t
∫

t0

∣

∣f
(

t, τ, z1(τ), z∆
1

(τ), µ
)

− f
(

t, τ, z2(t), z
∆
2

(t), µ
)∣

∣∆τ

+

t
∫

t0

∣

∣f
(

t, τ, z2(τ), z∆
2

(τ), µ
)

− f
(

t, τ, z2(τ), z∆
2 (τ), µ0

)∣

∣∆τ

≤

t
∫

t0

h1(t, τ)
[

|w(τ)| +
∣

∣w∆(τ)
∣

∣

]

∆τ +

t
∫

t0

e1(t, τ) |µ − µ0|∆τ, (4.24)

and
∣

∣w∆(t)
∣

∣ ≤
∣

∣f
(

σ(t), t, z1(t), z
∆
1

(t), µ
)

− f
(

σ(t), t, z2(t), z
∆
2

(t), µ
)∣

∣

+
∣

∣f
(

σ(t), t, z2(t), z
∆
2 (t), µ

)

− f
(

σ(t), t, z2(t), z
∆
2

(t), µ0

)∣

∣

+

t
∫

t0

∣

∣f∆
(

t, τ, z1(τ), z∆
1

(τ), µ
)

− f∆
(

t, τ, z2(τ), z∆
2 (τ), µ

)∣

∣∆τ

+

t
∫

t0

∣

∣f∆
(

t, τ, z2(τ), z∆
2

(τ), µ
)

− f∆
(

t, τ, z2(τ), z∆
2 (τ), µ0

)∣

∣∆τ

≤ h1 (σ(t), t)
[

|w(t)| +
∣

∣w∆(t)
∣

∣

]

+ e1 (σ(t), t) |µ − µ0|

+

t
∫

t0

h2(t, τ)
[

|w(τ)| +
∣

∣w∆(τ)
∣

∣

]

∆τ +

t
∫

t0

e2(t, τ) |µ − µ0|∆τ. (4.25)

From (4.24), (4.25) and using the assumption h1 (σ(t), t) ≤ c, it is easy to observe
that

|w(t)| +
∣

∣w∆(t)
∣

∣ ≤
|µ − µ0|

1 − c
β(t) +

1

1 − c

t
∫

t0

k(t, τ)
[

|w(τ)| +
∣

∣w∆(τ)
∣

∣

]

∆τ. (4.26)

Now an application of Lemma 2.2 to (4.26) yields (4.23), which shows the depen-
dency of solutions of (4.17), (4.18) on parameters. �
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Remark 3. Recently, in [6,7] the authors have studied some basic qualitative
properties of solutions of dynamic equations on time scales by using Banach and
Schafer fixed point theorems. Indeed, a particular feature of our approach is that
it present conditions under which we can offer simple, unified and concise proofs of
some of the important qualitative properties of solutions of equation (1.1), about
which we believe almost nothing seems to be known.
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