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m is an arbitrary natural number greater than or equal to two, in infinite dimensional
Banach spaces, and involving the Caputo derivative in the generalized sense (via the
Liouville–Riemann sense). We study the existence of solutions under both convexity
and nonconvexity conditions on the multivalued side. Some examples of fractional
differential inclusions on lattices are given to illustrate the obtained abstract results.

Keywords: fractional differential inclusions, anti-periodic solutions, Caputo derivative
in the generalized sense, measure of noncompactness, fractional lattice inclusions.

2010 Mathematics Subject Classification: 26A33, 34K20, 34K45.

1 Introduction.

During the past two decades, fractional differential equations and fractional differential in-
clusions have gained considerable importance due to their applications in various fields, such
as physics, mechanics and engineering. For some of these applications, one can see [18, 23]
and the references therein. For some recent developments on initial-value problems for dif-
ferential equations and inclusions of fractional order, we refer the reader to the references
[2, 17, 30, 34, 38–45].

Some applied problems in physics require fractional differential equations and inclusions
with boundary conditions. Recently, many authors have been studied differential inclusions
with various boundary conditions. Some of these works have been done in finite dimensional
spaces and of positive integer order, for example, Ibrahim et al. [25] and Gomaa [19, 20].

Several results have studied fractional differential equations and inclusions with various
boundary value conditions in finite dimensional spaces. We refer, for example, to Agarwal
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et al. [1] where conditions are established for the existence of solutions for various classes
of initial and boundary value problems for fractional differential equations and inclusions
involving the Caputo derivative. Next, Ouahab [34] studied a fractional differential inclusion
with Dirichlet boundary conditions under both convexity and nonconvexity conditions on
the multi-valued right-hand side and Ntouyas et al. [33] discussed the existence of solutions
for fractional differential inclusions with three-point integral boundary conditions involving
convex and non-convex multivalued maps.

For some recent works on boundary value problems for fractional differential equations
and inclusions in infinite dimensional spaces, we refer to Benchohra et al. [7] where the ex-
istence of solutions are established for nonlinear fractional differential inclusions with two
point boundary conditions.

Anti-periodic boundary value problems occur in the mathematical modeling of a variety of
physical problems and have received a considerable attention. Examples include anti-periodic
trigonometric polynomials in the study of interpolation problems, anti-periodic wavelets, anti-
periodic conditions in physics, and so forth (for details, see [3]).

Some recent works on anti-periodic boundary value problems of fractional order q where
m− 1 < q < m and m = 2, 3, 4, 5 can be found in [1, 3–5, 11, 12, 26].

In this paper, we establish various existence results of solutions for fractional differential
equations and inclusions of arbitrary order q ∈ (m − 1, m), where m is a natural number
greater than or equal to two, in infinite dimensional Banach spaces, and involving the Caputo
derivative in the generalized sense (via the Riemann–Liouville sense). More precisely, let
J = [0, T], T > 0, E be a real separable Banach space with a norm ‖ · ‖. We study the
following fractional differential equations and inclusions with anti-periodic conditions:{

cDq
gx(t) = f (t, x(t)) a.e. on J,

x(k)(0) = −x(k)(T), k = 0, 1, 2, . . . , m− 1,
(1.1)

and {
cDq

gx(t) ∈ F(t, x(t)) for a.e. t ∈ J,

x(k)(0) = −x(k)(T), k = 0, 1, 2, . . . , m− 1,
(1.2)

respectively, where cDq
gx(t) is the generalized Caputo derivative which is defined via the

Riemann–Liouville fractional derivative of order q with the lower limit zero for the function x
at the point t, f : J × E→ E and F : J × E→ 2E is a multifunction.

We would like to point out that Agarwal et al. [1] considered the problems (1.1) and
(1.2) when m = 4 and the dimension of E is finite. Thereafter, Ahmad et al. [3] considered
the problem (1.1) when m = 2, Ahmad [4] proved the existence of solutions for (1.1) when
m = 3 and the dimension of E is finite, Cernea [12] proved existence theorems of solutions
for (1.2) when m = 3 and the dimension of E is finite, and Ibrahim [26] established various
existence achievements in infinite dimensional Banach spaces for (1.1) and (1.2) when m = 3.
Alsaedi et al. [5] considered (1.1) in finite dimensional spaces in the case when m = 5. As a
consequence, the obtained results in [1, 3–5, 11, 26] are particular cases of our derived results.
We must mention that Kaslik and Sivasundaram [28] gave non-existence of periodic solutions
of fractional order differential equations in the interval [0, ∞) by using the Mellin transform
approach. However, we consider fractional differential equations and inclusions with anti-
periodic conditions on [0, T] in this paper, not on the interval [0, ∞). In other words, we try to
find solutions to fractional differential equations and inclusions with anti-periodic conditions
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on finite time intervals, not to find periodic solutions on the infinite interval. So our problem
is much different from [28].

The present paper is organized as follows. In Section 2, we collect some background
material and basic results about fractional calculus. Hence, we prove auxiliary lemmas which
will be used later. In Section 3, we give existence results for (1.1). In Section 4, we prove
various existence results for (1.2). We consider the case when the values of F are convex
as well as nonconvex. In Section 5, we apply our abstract results to fractional differential
inclusions on lattices continuing on our previous work [45].

The proofs rely on the methods and results for boundary value fractional differential in-
clusions, the properties of noncompact measure and fixed point techniques.

2 Preliminaries and notations

Let C (J, E) be the space of E-valued continuous functions on J with the norm ‖x‖C(J,E) =

max{‖x(t)‖, t ∈ J}, ACn(J, E) be the space of E-valued functions f on J, which have con-
tinuous derivatives up to the order n − 1 on J such that f n−1 is absolute continuous on
J, L1 (J, E) be the space of all E-valued Bochner integrable functions on J with the norm
‖ f ‖L1(J,E) =

∫ b
0 ‖ f (t)‖dt, Pb(E) = {B ⊆ E : B is nonempty and bounded}, Pcl(E) = {B ⊆ E : B

is nonempty and closed}, Pk(E) = {B ⊆ E : B is nonempty and compact}, Pck(E) = {B ⊆ E : B
is nonempty, convex and compact}, Pcl,cv(E) = {B ⊆ E : B is nonempty, closed and convex},
conv(B) (respectively, conv(B)) be the convex hull (respectively, convex and closed hull in E)
of a subset B.

Let G : J → 2E be a multifunction. By S1
G we denote the set of integrable selections

of G, i.e., S1
G = { f ∈ L1 (J, E) : f (t) ∈ G(t) a.e.}. This set may be empty. For Pcl(E)-

valued measurable multifunction, S1
G is nonempty and bounded in L1 (J, E) if and only if

t→ sup{‖x‖ : x ∈ G(t)} ∈ L1 (J, R+) (such a multifunction is said to be integrably bounded)
(see [22, Theorem 3.2]). Note that S1

G ⊆ L1 (J, E) is closed if the values of G are closed and it
is convex if and only if for almost all t ∈ J, G(t) is convex set in E.

Definition 2.1. Let X and Y be two topological spaces. A multifunction G : X → P(Y) is
said to be upper semicontinuous, if G−1(V) = {x ∈ X : G(x) ⊆ V} is an open subset of X for
every open V ⊆ Y.

For more information about multifunctions, see, [6, 10, 24, 27]. Now, let us recall the fol-
lowing definitions and facts about the integration and differentiation of fractional order.

Definition 2.2. [29, p. 69] The Riemann–Liouville fractional integral of order q > 0 with the
lower limit zero for a function f ∈ Lp(J, E), p ∈ [1, ∞) is defined as follows:

Iq f (t) = (gq ∗ f )(t) =
∫ t

0

(t− s)q−1

Γ(q)
f (s)ds, t ∈ J,

where the integration is in the sense of Bochner, Γ is the Euler gamma function, gq(t) = tq−1

Γ(q) ,
for t > 0, gq(t) = 0, for t ≤ 0 and ∗ denotes the convolution of functions. For q = 0, we set
I0 f (t) = f (t).

It is known [29] that Iq Iβ f (t) = Iq+β f (t), β, q ≥ 0. Moreover, by applying Young’s
inequality, it follows that

‖Iq f ‖Lp(J,E) = ‖gq ∗ f ‖Lp(J,E) ≤ ‖gq‖L1(J,R)‖ f ‖Lp(J,E) = gq+1(T)‖ f ‖Lp(J,E).



4 J. R. Wang, A. G. Ibrahim and M. Fečkan

Then, Iq maps Lp(J, E) to Lp(J, E). Let dqe be the least integer greater than or equal to the
number q. The set of natural numbers is denoted by N.

Definition 2.3. [29, p. 70] Let q > 0, m = dqe and f ∈ L1(J, E) be such that gm−q ∗ f ∈
Wm,1(J, E). The Riemann–Liouville fractional derivative of order q for f is defined by

Dq f (J) =
dm

dtm Im−q f (t) =
dm

dtm (gm−q ∗ f )(t),

where

Wm,1(J, E) =

{
f (t) =

m−1

∑
k=0

ck
tk

k!
+ Im ϕ(t), t ∈ J : ϕ ∈ L1(J, E), ck ∈ E

}
.

Note in the above definition that ϕ = f (m) and ck = f (k)(0), k = 0, 1, . . . , m− 1. In the fol-
lowing lemma, we mention some elementary properties for the Riemann–Liouville fractional
integrals and derivatives.

Lemma 2.4. Let q > 0 and m = dqe.

(i) If f ∈ L1(J, E) then gm−q ∗ (Iq f ) ∈Wm,1(J, E) and Dq Iq f (t) = f (t) a.e.

(ii) If γ > q and f ∈ L1(J, E), then Dq Iγ f (t) = Iγ−q f (t) a.e. In particular, if γ > k, k ∈ N, then
Dk Iγ f (t) = Iγ−k f (t) a.e.

(iii) If p > 1
q and f ∈ Lp(J, E) then Iq f is continuous on J.

Proof. Proofs of these properties are exactly as in the scalar case [36, Chapter 1].

Definition 2.5. [29, p. 91] Let q > 0 and m = dqe. The Caputo derivative in the generalized
sense (via Riemann–Liouville fractional derivative) of order q for a given function f is defined
by

cDq
g f (t) = Dq

[
f (t)−

m−1

∑
k=0

f (k)(0)
k!

tk

]
provided that the right side is well defined.

Remark 2.6. Let q > 0, m = dqe and f : J → R, f (t) = tn, n = 0, 1, 2, . . . , (m− 1). Then

cDq
gtn = Dq

[
tn −

m−1

∑
k=0

f (k)(0)
k!

tk

]
= Dq[tn − tn] = 0.

Remark 2.7. [29, Theorem 2.1] Let E be a reflexive Banach space, m ∈ N and q ∈ (m− 1, m).
If f ∈ ACm(J, E), then cDq

g f (t) exists a.e. and

cDα
g f (t) = Im−q

(
f (m)(t)

)
=

1
Γ(m− q)

∫ t

0
(t− s)m−q−1 f (m)(s)ds for a.e. t ∈ J.

Moreover, if f ∈ C(m)(J, E), then this equation is valid for all t ∈ J.

To proceed, we state the following lemma as a simple consequence of Lemma 2.4 and
formula [36, (3.13)].
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Lemma 2.8. Let m ∈N, q ∈ (m− 1, m) and f ∈ L
1
γ (J, E), where γ ∈ (0, q− (m− 1)). Then

(i) If σ > γ then the function t→ Iσ f (t) is continuous on J.

(ii) For any t ∈ T and k ∈ {0, 1, 2, . . . , m − 1}, the function (Iq f )(k)(t) is continuous satisfying
(Iq f )(k)(0) = 0. Moreover,

cDq
g (Iq f (t)) = Dq (Iq f (t)) for a.e. t ∈ J,

and hence, cDq
g(Iq f (t)) = f (t) a.e. on J.

The following lemma is essential to derive existence results of solutions for (1.1) and (1.2).

Lemma 2.9. Let m ∈ N and q ∈ (m− 1, m). If z ∈ L
1
γ (J, E), γ ∈ (0, q− (m− 1)) and x : J → E

is given by

x(t) = Iqz(t)−
m−1

∑
k=0

bk+1tk, (2.1)

where
bm =

1
2(m− 1)!

Iq−(m−1)z(T), (2.2)

b1 =
1
2

[
Iqz(T)−

m−1

∑
k=1

bk+1Tk

]
, (2.3)

and for 2 ≤ n ≤ m− 1,

bn =
1

2(n− 1)!

[
Iq−(n−1)z(T)−

m−1

∑
k=n

k!bk+1

(k− (n− 1))!
Tk−(n−1)

]
. (2.4)

Then, x(m−1) is continuous on J, cDq
gx(t) exists a.e. for t ∈ J and{

cDq
gx(t) = z(t) for a.e. t ∈ J,

x(k)(0) = −x(k)(T), k = 0, 1, 2, . . . , m− 1.
(2.5)

Proof. First we note, since for any k = 0, . . . , m − 1, it holds q − k ≥ q − (m − 1) > γ, by
Lemma 2.8, the functions Iq−kz, Dk(Iqz) are continuous on J. Hence bk+1 in (2.2), (2.3) and
(2.4) are well-defined, and x(k) are continuous on J for all k = 0, . . . , m− 1.

Now, in view of (ii) of Lemma 2.8, Dq
gz(t) exists for a.e. t ∈ J and cDq

gz(t) = Dqz(t) a.e.
Thus, for a.e. t ∈ J

cDq
gx(t) =c Dq

g(Iqz(t))−c Dq
g

(
m−1

∑
k=0

bk+1tk

)
= z(t)−c Dq

g

(
m−1

∑
k=0

bk+1tk

)
= z(t),

by Remark 2.6. So (2.1) is a general solution of (2.5). Next, in view of (2.1), condition x(0) =
−x(T) gives

0 = x(0) + x(T) =

[
Iqz(T)−

m−1

∑
k=1

bk+1Tk

]
− 2b1,

which implies (2.3). Furthermore, by differentiating both sides of (2.1), we get from (ii) of
Lemma 2.4 for 1 ≤ n ≤ m− 2

x(n)(t) = Iα−nz(t)− (n!)bn+1 −
m−1

∑
k=n+1

k!bk+1

(k− n))!
tk−n, t ∈ J.
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So conditions x(n)(0) = −x(n)(T) give

0 = x(n)(0) + x(n)(T) = Iq−nz(T)− 2(n!)bn+1 −
m−1

∑
k=n+1

k!bk+1

(k− n))!
Tk−n,

which implies (2.4). Similarly,

x(m−1)(t) = Iq−(m−1)z(t)− (m− 1)!bm, t ∈ J. (2.6)

Then, condition x(m−1)(0) = −x(m−1)(T) gives

0 = x(m−1)(0) + x(m−1)(T) = Iq−(m−1)z(T)− 2(m− 1)!bm,

which implies (2.2). The proof is finished.

Now, by using Lemma 2.9 to establish formulae of solutions for (2.5), when m = 2, 3, 4, 5,
we get known results mentioned in Introduction. We list them one by one as follows.

(i) for m = 2, we get (see [3])

x(t) = Iqz(t)− 1
2

Iqz(T) +
T − 2t

4
Iq−1z(T); (2.7)

(ii) for m = 3, we get (see [4, 12, 26])

x(t) = Iqz(t)− 1
2

Iqz(T) +
T − 2t

4
Iq−1z(T) +

t(T − t)
4

Iq−2z(T); (2.8)

(iii) for m = 4, we get (see [1])

x(t) = Iqz(t)− 1
2

Iqz(T) +
T − 2t

4
Iq−1z(T) +

t(T − t)
4

Iq−2z(T)

+
(6t2T − 4t3 − T3)

48
Iq−3z(T);

(2.9)

(iv) for m = 5, we get (see [5])

x(t) = Iqz(t)− 1
2

Iqz(T) +
T − 2t

4
Iq−1z(T) +

t(T − t)
4

Iq−2z(T)

+
(6t2T − 4t3 − T3)

48
Iq−3z(T) +

(2t3T − t4 − tT3)

48
Iq−4z(T).

(2.10)

Next, for m = 6, we get

x(t) = Iqz(t)− 1
2

Iqz(T) +
T − 2t

4
Iq−1z(T) +

t(T − t)
4

Iq−2z(T)

+
(6t2T − 4t3 − T3)

48
Iq−3z(T) +

(2t3T − t4 − tT3)

48
Iq−4z(T)

+

(
T5

4(5!)
− t2T3

4(4!)
+

t4T
4(4!)

− t5

2(5!)

)
Iq−5z(T).

(2.11)

From the above examples (2.7)–(2.10) and (2.11), it is worthwhile to observe that we expect
that (2.1) has a form

x(t) = Iqz(t)−
m−1

∑
j=0

θj(t)Iq−jz(T) (2.12)
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for polynomials θj(t) of degree j. Certainly by above arguments, such x(t) satisfies cDqx(t) =
z(t) a.e. on J. The anti-periodic conditions of (2.5) imply

Iq−kz(T) =
m−1

∑
j=k

(
θ
(k)
j (0) + θ

(k)
j (T)

)
Iq−jz(T), k = 0, 1, 2, . . . , m− 1 (2.13)

where we use θ
(k)
j (t) = 0 on J for k > j. Since z is arbitrarily, we set

θ
(k)
k (t) =

1
2

,

θ
(k)
j (0) + θ

(k)
j (T) = 0, k = 0, 1, 2, . . . , j− 1.

(2.14)

It is easy to see that (2.14) determine uniquely θj(t). Since the solution of (2.5) is unique, we
see that (2.12) with (2.14) give the solution (2.1), which coincides with the above computations
(2.11). Moreover we see that θj(t) are really independent of m. Furthermore, set

ηj(s) =
θj(sT)

T j , s ∈ [0, 1], j = 0, 1, 2, . . . , m− 1.

Then

η
(k)
k (s) =

1
2

,

η
(k)
j (0) + η

(k)
j (1) = 0, k = 0, 1, 2, . . . , j− 1.

(2.15)

Again, (2.15) determine uniquely ηj(t). But now ηj(t) are independent also of T, so we have

ηj(s) =
1
2

j+1

∑
k=1

γ
(j+1)
k

(k− 1)!
sk−1, γ

(j)
k ∈ R, j, k = 1, 2, 3, . . . , m. (2.16)

Then

θj(t) =
1
2

j+1

∑
k=1

γ
(j+1)
k T j+1−k

(k− 1)!
tk−1, j = 0, 1, 2, . . . , m− 1.

Hence

x(t) = Iqz(t)− 1
2

m−1

∑
j=0

j+1

∑
k=1

γ
(j+1)
k T j+1−k

(k− 1)!
tk−1 Iq−jz(T)

= Iqz(t)− 1
2

m

∑
k=1

m−1

∑
j=k−1

γ
(j+1)
k T j+1−k

(k− 1)!
Iq−jz(T)tk−1.

(2.17)

By comparing (2.1) with (2.17), we obtain

bk =
m−1

∑
j=k−1

γ
(j+1)
k T j+1−k

2(k− 1)!
Iq−jz(T), k = 1, 2, 3, . . . , m.

Consequently, γ
(j)
k is the coefficients of T j−k Iq−(j−1)z(T)

2(k−1)! in bk for any j, k = 1, 2, . . . , m with k ≤ j.
Next, by inserting (2.16) into (2.15), after elementary calculations, we derive

γ
(r)
r = 1, r = 1, 2, . . . , m, γ

(r)
r−k = −

k

∑
n=1

γ
(r)
r−(k−n)

2(n)!
, k = 1, 2, . . . , r− 1. (2.18)
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Using (2.18), we can derive step by step, for instance

γ
(r)
r−1 = −1

2
, r ≥ 2, γ

(r)
r−2 = 0, r ≥ 3, γ

(r)
r−3 =

1
24

, r ≥ 4

γ
(r)
r−4 = 0, r ≥ 5, γ

(r)
r−5 =− 1

2(5!)
, r ≥ 6, γ

(r)
r−6 =

3
2(6!)

, r ≥ 7.
(2.19)

Furthermore, let us set

η̃j(s) =
∫ s

0
ηj−1(z)dz− 1

2

∫ 1

0
ηj−1(z)dz, j = 1, 2, 3, . . . , m− 1.

We can easily check

η̃
(k)
k (s) =

1
2

,

η̃
(k)
j (0) + η̃

(k)
j (1) = 0, k = 0, 1, 2, . . . , j− 1.

So by uniqueness, η̃j = ηj, i.e., we get

ηj(s) =
∫ s

0
ηj−1(z)dz− 1

2

∫ 1

0
ηj−1(z)dz, j = 1, 2, 3, . . . , m− 1. (2.20)

On the other hand, (2.16) implies
γ
(j)
k = η

(k−1)
j−1 (0).

Hence for any r, k ∈N, r > k, by (2.20), we obtain

γ
(r)
r−k = η

(r−k−1)
r−1 (0) = ηk(0) = γ

(k+1)
1 ,

which justifies (2.19).
Summarizing, we arrive at the following result.

Corollary 2.10. Let m ∈ N and m− 1 < q < m. If z ∈ L
1
σ (J, E), σ ∈ (0, q− (m− 1)), then the

function x given by (2.17) and γ
(r)
r−k, r = 1, 2, 3, . . . , m, k = 0, 1, 2, . . . , r− 1 determined by (2.18), is

a solution of (2.5).

Remark 2.11. One can verify that the expression (2.17) coincides with the known relations
(2.7)–(2.10) and (2.11) for m = 2, 3, 4, 5, 6, respectively.

Remark 2.12. Let m ∈ N and m − 1 < q < m. If z ∈ L
1
σ (J, E), σ ∈ (0, q − (m − 1)) then

z ∈ L1(J, E) and the function x given by (2.17) satisfies the inequality

‖x‖C(J,E) ≤
3Tq−1

2Γ(q)
‖z‖L1(J,E) +

Tq−1

2

m−2

∑
j=1

1
Γ(q− j)

j+1

∑
k=1

|γ(j+1)
k |

(k− 1)!
‖z‖L1(J,E)

+
Tq−σ

2Γ(q−m + 1)( q−m+1−σ
1−σ )1−σ

m

∑
k=1

|γ(m)
k |

(k− 1)!
‖z‖

L
1
σ (J,E)

,

(2.21)

where by Hölder’s inequality

‖Iq−(m−1)z(T)‖ ≤ Tq−m+1−σ

Γ(q−m + 1)( q−m+1−σ
1−σ )1−σ

‖z‖
L

1
σ (J,E)

.
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Our main tools are the Schaefer fixed point theorem for single-valued mappings and the
O’Regan–Precup fixed point theorem [35, Theorem 3.1] for multivalued mappings, which is a
generalization of the Mönch fixed point theorem.

Lemma 2.13. Let Z : E → E be continuous and map every bounded subset into relatively compact
subset. If the set E(Z) = {x ∈ E : x = λZ(x), λ ∈ [0, 1)} is bounded, then Z has a fixed point.

Lemma 2.14. Let D be a closed convex subset of E, and N : D → Pc(D). Assume the graph of N is
closed, N maps compact sets into relatively compact sets and that, for some x0 ∈ U, one has

Z ⊆ D, Z = conv({x0} ∪ T(Z)), Z = C with C ⊆ Z countable =⇒ Z is relatively compact.
(2.22)

Then T has a fixed point.

For more about fixed point theorems see [16]. Finally, we give the concept of solutions for
(1.1) and (1.2).

Definition 2.15. Let f : J × E → E be a function. A function x ∈ C(m−1)(J, E) is called a
solution for (1.1), if cDq

gx(t) exists a.e. and{
cDq

gx(t) = f (t, x(t)) a.e. on J = [0, T],

x(k)(0) = −x(k)(T), k = 0, 1, 2, . . . , m− 1.

Definition 2.16. Let F : J × E→ 2E be a multifunction. A function x ∈ C(m−1)(J, E) is called a
solution for (1.2), if cDq

gx(t) exists a.e. and{
cDq

gx(t) = z(t) a.e. on J = [0, T],

x(k)(0) = −x(k)(T), k = 0, 1, 2, . . . , m− 1.

where z ∈ L1(J, E) with z(t) ∈ F(t, x(t)) for a.e. t ∈ J.

Of course, f and F in the above definitions are specified below with appropriate properties.

3 Existence results for (1.1)

In the following, we give the first existence result for (1.1).

Theorem 3.1. Let m ∈N, m ≥ 2 and q ∈ (m− 1, m). Let f : J× E→ E be a function such that the
following conditions are satisfied.

(H1) f is continuous.

(H2) There exists a function ϕ ∈ L
1
σ (J, R+), σ ∈ (0, q− (m− 1)) such that for any x ∈ E

‖ f (t, x)‖ ≤ ϕ(t)(1 + ‖x‖) for a.e. t ∈ J.

(H3) For a.e. s ∈ J, the function f (s, ·) maps any bounded subset into relatively compact subset in E.
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Then, the problem (1.1) has a solution provided that δ < 1 for

δ =

[
3Tq−1

2Γ(q)
+

Tq−1

2

m−2

∑
j=1

1
Γ(q− j)

j+1

∑
k=1

|γ(j+1)
k |

(k− 1)!

]
‖ϕ‖L1(J,R+)

+
Tq−σ

2Γ(q−m + 1)( q−m+1−σ
1−σ )1−σ

m

∑
k=1

|γ(m)
k |

(k− 1)!
‖ϕ‖

L
1
σ (J,R+)

.

(3.1)

Proof. Let us consider the operator N : C(J, E)→ C(J, E) defined by

(N(x))(t) = Iqz(t)− 1
2

m

∑
k=1

m−1

∑
j=k−1

γ
(j+1)
k T j+1−k

(k− 1)!
Iq−jz(T)tk−1, t ∈ J, (3.2)

where z(t) = f (t, x(t)), t ∈ J. Note that, since f is continuous, then for every x ∈ C(J, E),
the function z is continuous. Therefore, the operator N is well defined. We shall prove that N
satisfies the assumptions of the Schaefer fixed point theorem. We split the proof into several
steps.

Step 1. N is continuous.
Let {xn}n∈N be a sequence such that xn → x in C(J, E). For any t ∈ J,

‖(N(xn))(t)− (N(x))(t)‖

≤ Tq max
t∈J
‖ f (t, (xn(t))− f (t, (x(t))‖

[
1

Γ(q + 1)
+

1
2

m

∑
k=1

m−1

∑
j=k−1

|γ(j+1)|
k

(k− 1)!Γ(q + 1− j)

]
.

Since f is continuous, we get ‖N(xn)− N(x)‖ → 0, as, n→ ∞.

Step 2. N maps bounded sets into bounded sets.
Let r > 0 and Br = {x ∈ C(J, E) : ‖x‖C(J,E) ≤ r}. According to (H2), for any x ∈ Br

‖N(x)‖C(J,E) ≤ (1 + r)‖ϕ‖L1(J,R+)

[
3Tq−1

2Γ(q)
+

Tq−1

2

m−2

∑
j=1

1
Γ(q− j)

j+1

∑
k=1

|γ(j+1)
k |

(k− 1)!

]

+
(1 + r)Tq−σ

2Γ(q−m + 1)( q−m+1−σ
1−σ )1−σ

m

∑
k=1

|γ(m)
k |

(k− 1)!
‖ϕ‖

L
1
σ (J,R+)

= (1 + r)δ.

(3.3)

Then, N(Br) is bounded.

Step 3. N maps bounded sets into relatively compact subsets.
Let r > 0, x ∈ Br, t1, t2 ∈ J (t1 < t2). According to (H2), ‖ f (t, x(t))‖ ≤ ϕ(t)(1 + r) for a.e.
t ∈ J. Then,

‖N(x)(t2)− N(x)(t1)‖

≤ 1 + r
Γ(q)

[ ∫ t1

0

[
|(t2 − s)q−1 − (t1 − s)|q−1

]
ϕ(s)ds +

∫ t2

t1

(t2 − s)q−1ϕ(s)ds
]

+
r + 1

2

m

∑
k=1

m−1

∑
j=k−1

|γ(j+1)
k |T j+1−k

(k− 1)!
Iq−j ϕ(T)(tk−1

2 − tk−1
1 ).

Since q > 1, then clearly as t2 → t1, ‖(N(x1)(t2))− (N(x1)(t1))‖ → 0, independently of x and
uniformly for t1, t2. Therefore, N(Br) is equicontinuous.
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Now, let t ∈ J be fixed. We want to show that the subset G(t) = {(N(x))(t) : x ∈ Br} is
relatively compact in E. According to the definition of N, (H2), the properties of the Hausdorff
measure of noncompactness [32], one obtains

χ(G(t)) ≤ 1
Γ(q)

∫ t

0
(t− s)q−1χ({ f (s, x(s)) : x ∈ Br})ds

+
1
2

m

∑
k=1

m−1

∑
j=k−1

|γ(j+1)
k |T j

(k− 1)!Γ(q− j)

∫ T

0
(T − s)q−j−1χ({ f (s, x(s)) : x ∈ Br})ds.

(3.4)

Observe that in view of (H3), it follows χ({ f (s, x(s)) : x ∈ Br}) = 0, for almost s ∈ J, Then,
(3.4) implies χ(G(t)) = 0.

Step 4. The subset {x ∈ C(J, E) : x = λN(x), λ ∈ [0, 1)} is bounded.
Let λ ∈ [0, 1) and x ∈ C(J, E) be such that x = λN(x). If ‖x‖C(J,E) = r, then by (3.3)

r = ‖x‖C(J,E) ≤ ‖N(x)‖C(J,E) ≤ (1 + r)δ.

So

‖x‖C(J,E) ≤
δ

1− δ
.

As a consequence of steps 1→ 4 and the Schaefer fixed point theorem, the function N has
a fixed point. In view of (H2) and Corollary 2.10, this fixed point is a solution for the problem
(1.1). The proof is completed.

In the following theorem, we give another existence result for (1.1).

Theorem 3.2. Let m ∈ N, m ≥ 2 and q ∈ (m− 1, m). Let f : J × E → E be a function such that
(H1), (H3) and the following condition is satisfied.

(H4) There exists ϕ ∈ L
1
σ (J, R+), σ ∈ (0, m− (q− 1)) such that for any x ∈ E

‖ f (t, x)‖ ≤ ϕ(t) f or a.e. t ∈ J.

Then, the problem (1.1) has a solution.

Proof. Let us consider the operator N : C(J, E) → C(J, E) defined as (3.2). Arguing as in the
proof of Theorem 3.1, we can show that N is continuous and maps any bounded subset to
relatively compact subset. It remains to show that the set {x ∈ C(J, E) : x = λN(x), λ ∈ [0, 1)}
is bounded.

Let λ ∈ [0, 1) and x ∈ C(J, E) be such that x = λN(x). Then, by (H4) and arguments of
(3.3), we have

‖x‖C(J,E) ≤ ‖N(x)‖C(J,E) ≤ δ.

This proves that the subset {x ∈ C(J, E) : x = λN(x), λ ∈ [0, 1)} is bounded. According
to Schaefer’s fixed point theorem, the function N has a fixed point. In view of (H4) and
Corollary 2.10, this fixed point is a solution for the problem (1.1). The proof is completed.

Remark 3.3. The condition (H3) is satisfied, if the dimension of E is finite.
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4 Existence results for (1.2)

4.1 Convex case

At first, we consider the case when values of F are convex. In the following, we give the first
existence result for (1.2).

Theorem 4.1. Let m ∈ N, m ≥ 2 and q ∈ (m− 1, m). Let F : J × E → Pck(E) be a multifunction.
Assume the following conditions.

(H5) For every x ∈ E, t→ F(t, x) is measurable and for a.e. t ∈ J, x → F(t, x) is upper semicontin-
uous.

(H6) There exists a function ϕ ∈ L
1
σ (J, R+), σ ∈ (0, q− (m− 1)) and a nondecreasing continuous

function Ω : R+ → R+ such that for any x ∈ E

‖F(t, x)‖ ≤ ϕ(t)Ω(‖x‖) for a.e. t ∈ J.

(H7) There exists a function β ∈ L
1
ς (J, R+), ς ∈ (0, q− (m− 1)) such that

` :=

[
3Tq−1

2Γ(q)
+

Tq−1

2

m−2

∑
j=1

1
Γ(q− j)

j+1

∑
k=1

|γ(j+1)
k |

(k− 1)!

]
‖β‖L1(J,R+)

+
Tq−ς

2Γ(q−m + 1)( q−m+1−ς
1−ς )1−ς

m

∑
k=1

|γ(m)
k |

(k− 1)!
‖β‖

L
1
ς (J,R+)

< 1

(4.1)

and for every bounded subset D ⊆ E, χ(F(t, D)) ≤ β(t)χ(D) for a.e. t ∈ J, where χ is the
Hausdorff measure of noncompactness in E.

(H8) There is a positive number r such that

δΩ(r) ≤ r (4.2)

for δ in (3.1).

Then the problem (1.2) has a solution.

Proof. In view of (H5) and [27, Theorems 1.3.1 and 1.3.5] for every x ∈ C(J, E), the multifunc-
tion t → F(t, x(t)) has a measurable selection and by (H6) this selection belongs to S1

F(·,x(·)).

So, we can define a multifunction R : C(J, E) → 2C(J,E) as follows: For any x ∈ C(J, E), a
function y ∈ R(x) if and only if

y = N ( f ),

where f ∈ S1
F(·,x(·)) and N : C(J, E) → C(J, E) is defined as (3.2) with z = f . According to

(H6) and Corollary 2.10, any fixed point for R is a solutions for (1.2). So, our aim is to prove
that the multivalued function R satisfies the assumptions of Lemma 2.14. Denote D = Br. It
is clear since the values of F are convex, the values of R are convex also.

Step 1. R(D) ⊆ D.
Let x ∈ D and y ∈ R(x). Then, by using the same arguments in Step 2 of the proof of
Theorem 3.1, we can show that, for any t ∈ J

‖y(t)‖C(J,E) ≤ δΩ(r). (4.3)
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This inequality with (4.2) imply ||y||∞ ≤ r.

Step 2. R(D) is a equicontinuous set in C(J, E).
Let y ∈ R(D) and t1, t2 ∈ J, (t1 < t2). Then there is x ∈ D with y ∈ R(x). By using the same
arguments in Step 3 of the proof of Theorem 3.1 with (H6), and recalling the definition of R,
there is f ∈ S1

F(·,x(·)) such that

‖y(t2)− y(t1)‖ = ‖N ( f )(t2)−N ( f )(t1)‖

≤ Ω(r)
Γ(q)

[ ∫ t1

0

[
|(t2 − s)q−1 − (t1 − s)|q−1

]
ϕ(s)ds +

∫ t2

t1

(t2 − s)q−1ϕ(s)ds
]

+
r + 1

2

m

∑
k=1

m−1

∑
j=k−1

|γ(j+1)
k |T j+1−k

(k− 1)!
Iq−j ϕ(T)(tk−1

2 − tk−1
1 ), t ∈ J.

Then, the right hand side does not depend on x and uniformly tends to zero when t2 → t1.

Step 3. The implication (2.22) holds with x0 = 0.
Let Z ⊆ D, Z = conv({x0} ∪ R(Z)), Z = C with C ⊆ Z countable. We claim that Z is
relatively compact. Since C is countable and since C ⊆ Z = conv({x0} ∪ R(Z)), we can find a
countable set H = {yn : n ≥ 1} ⊆ R(Z) with C ⊆ conv({x0} ∪ H). Then, for any n ≥ 1, there
exists xn ∈ Z with yn ∈ R(xn). This means that there is fn ∈ S1

F(·,xn(·)) such that yn = N ( fn).

From Z ⊆ C ⊆ conv ({x0} ∪ H) we find that χ(Z(t)) ≤ χ(C(t)) ≤ χ(H(t)), t ∈ J. Observe
that, by (H6), for every natural number n, ‖ fn(s)‖ ≤ ϕ(s) Ω(r) a.e. Then, by using (H6) and
the properties of the measure of noncompactness, one has for t ∈ J (see [9, 21, 32])

χ(Z(t)) ≤ 1
Γ(q)

∫ t

0
(t− s)q−1χ({ fn(s) : n ≥ 1})ds

+
1
2

m

∑
k=1

m−1

∑
j=k−1

|γ(j+1)
k |T j

(k− 1)!Γ(q− j)

∫ T

0
(T − s)q−j−1χ({ fn(s) : n ≥ 1})ds.

(4.4)

Observe that, since Z ⊆ C ⊆ conv ({x0} ∪ H), then from Step 2, Z is equicontinuous. More-
over, according to condition (H7) for a.e. t ∈ J,

χ({ fn(t) : n ≥ 1}) ≤ β(t)χ({xn(t) : n ≥ 1}) ≤ β(t)χ(Z(t)) ≤ β(t)χC(J,E)(Z)

So, we find from (4.4) that

χC(J,E)(Z) = max
t∈J

χ(Z(t)) ≤ `χC(J,E)(Z).

This inequality with (4.1) imply that Z is relatively compact.

Step 4. R maps compact sets into relatively compact sets.
Let G be a compact subset of D. From Step 2, R(G) is equicontinuous. Let {yn}n∈N, be a
sequence in R(G). Then, there is a sequence {xn}n∈N in G such that yn ∈ R(xn). This means
that

yn = N ( fn) (4.5)

for fn ∈ S1
F(·,xn(·)). Arguing as above, one obtains from (4.5), for t ∈ J

χ({yn(t) : n ≥ 1}) ≤ 1
Γ(q)

∫ t

0
(t− s)q−1χ({ fn(s) : n ≥ 1}ds)

+
1
2

m

∑
k=1

m−1

∑
j=k−1

|γ(j+1)
k |T j

(k− 1)!Γ(q− j)

∫ T

0
(T − s)q−j−1χ({ fn(s) : n ≥ 1})ds.

(4.6)
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Now, since G is compact in C(J, E), then for t ∈ J, the subset G(t) is relatively compact in E.
Therefore, χ({xn(t) : n ≥ 1}) = 0, t ∈ J. Hence, by (H7) we get for a.e. t ∈ J,

χ({ fn(t) : n ≥ 1}) ≤ β(t)χ({xn(t) : n ≥ 1}) = 0.

This with (4.6) imply
χ({yn(t) : n ≥ 1}) = 0, for all t ∈ J.

This together with the equicontinuity of {yn : n ≥ 1}, we conclude, from the Ascoli–Arzelà
theorem, the set {yn : n ≥ 1} is relatively compact. Then, the sequence {yn}n∈N has a
convergent subsequence. This shows that R(G) is relatively compact.

Step 5. The graph R is closed.
Let {xn}n∈N be a sequence in D with xn → x in D and let yn ∈ R(xn) with yn → y in C(J, E).
We have to show that y ∈ R(x). Then, for any n ≥ 1, there is fn ∈ S1

F(·,xn(·)) such that

yn = N ( fn). (4.7)

Observe that for every n ≥ 1 and for a.e. t ∈ J

‖ fn(t)‖ ≤ ϕ(t)Ω
(
‖xn‖C(J,E)

)
≤ ϕ(t)Ω(r).

This show that the set { fn : n ≥ 1} is integral bounded. In addition, the set { fn(t) : n ≥ 1}
is relatively compact for a.e. t ∈ J because of assumption (H7) both with the convergence of
{xn}n∈N imply that

χ({ fn (t) : n ≥ 1}) ≤ χ(F(t, {xn (t) : n ≥ 1}}) ≤ β(t)χ({xn (t) : n ≥ 1}) = 0.

Hence, the sequence { fn}n∈N is semi compact, hence, it is weakly compact in L1(J, E) (see,
[27, Proposition 4.2.1]). So, without loss of generality we can assume that fn converges weakly
to a function f ∈ L1(J, R+). From Mazur’s lemma, for every natural number j there is a
natural number k0(j) > j and a sequence of nonnegative real numbers λj,k, k = j, . . . , k0(j)
such that ∑k0

k=j λj,k = 1 and the sequence of convex combinations zj = ∑k0
k=j λj,k fk, j ≥ 1

converges strongly to f in L1(J, R+) as j→ ∞. Then we get for a.e. t ∈ J

f (t) ∈
⋂
j≥1

{zk(t) : k ≥ j} ⊆
⋂
j≥1

conv

⋃
k ≥j

F(t, xk(t))

 .

Since F is upper semicontinuous with convex and compact values, using [44, Lemma 2.6], we
conclude that f (t) ∈ F(t, x(t)), for a.e. t ∈ J. Note that, by (H6) for every t ∈ J, s ∈ (0, t] and
every n ≥ 1∥∥∥(t− s)α−1zn(s)

∥∥∥ ≤ |t− s|α−1 ϕ(s)Ω(r) ∈ L1((0, t], R+), α = q− (m− 1), . . . , q. (4.8)

Next taking yn = ∑k0(n)
k=n λn,k yk. Then by (4.7)

yn(t) = Iqzn(t)−
1
2

m

∑
k=1

m−1

∑
j=k−1

γ
(j+1)
k T j+1−k

(k− 1)!
Iq−jzn(T)tk−1, t ∈ J. (4.9)

But yn(t) → y(t) and zn(t) → f (t). Therefore, by passing to the limit as n → ∞ in (4.9) we
obtain, from the Lebesgue dominated convergence theorem (see (4.8)), that y = N ( f ), i.e.,
y ∈ R(x).

As a result of the Steps 1 → 5 the multivalued R satisfies all assumptions of Lemma 2.14.
Then, R has a fixed point which is a mild solution of (1.2). The proof is completed.
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Now we present our second result for the problem (1.2).

Theorem 4.2. Let m ∈ N, m ≥ 2 and q ∈ (m− 1, m). Let F : J × E → Pck(E) be a multifunction.
We suppose the following assumptions.

(H9) For every x ∈ E, t −→ F(t, x) is measurable.

(H10) There is a function ς ∈ L
1
σ (J, E), σ ∈ (0, q− (m− 1)) such that for every x, y ∈ E

h (F(t, x), F(t, y)) ≤ ς(t)‖x− y‖ for a.e. t ∈ J,

where h is the Hausdorff metric, and

sup{‖x‖ : x ∈ F(t, 0)} ≤ ς(t) for a.e. t ∈ J.

Then the problem (1.2) has a solution provided that

c =

[
3Tq−1

2Γ(q)
+

Tq−1

2

m−2

∑
j=1

1
Γ(q− j)

j+1

∑
k=1

|γ(j+1)
k |

(k− 1)!

]
‖ς‖L1(J,R+)

+
Tq−σ

2Γ(q−m + 1)( q−m+1−σ
1−σ )1−σ

m

∑
k=1

|γ(m)
k |

(k− 1)!
‖ς‖

L
1
σ (J,R+)

< 1.

(4.10)

Proof. According to (H9), (H10) and [27, Theorems 1.1.9, 1.3.1 and 1.3.5] for every x ∈ C(J, E),
the multifunction t→ F(t, x(t)) has an integrable selection. So, we can define a multifunction
R : C(J, E)→ 2C(J,E) as in Theorem 4.1. Now, we show that R satisfies the assumptions of the
theorem of Covitz and Nadler [13]. The proof will be given in two steps.

Step 1. The values of R are nonempty and closed.
Since S1

F(·,x(·)) is nonempty, the values of R are nonempty. In order to prove the values of R are
closed, let x ∈ C(J, E) and {un}n∈N be a sequence in R(x) such that un → u in C(J, E). Then,
according to the definition of R there is a sequence { fn}n∈N in S1

F(·,x(·)) such that un = N ( fn).
Now, let t ∈ J be a fixed. In view of (H10), for every n ≥ 1, and for a.e. t ∈ J

‖F(t, x)‖ = h (F(t, x(t)), {0}) ≤ h (F(t, x(t)), F(t, 0)) + h (F(t, 0), {0})
≤ ς(t)‖x(t)‖+ ς(t) ≤ ς(t)(1 + ‖x‖C(J,E)).

(4.11)

Then, for every n ≥ 1, and for a.e. t ∈ J, ‖ fn(t)‖ ≤ ς(t)(1 + ‖x‖C(J,E)). This show that the set
{ fn : n ≥ 1} is integrably bounded. Arguing as in Step 5 in the proof of Theorem 4.1, we can
show that u ∈ R(x).

Step 2. R is a contraction.
Let z1, z2 ∈ C(J, E) and y1 ∈ R(z1). Then, there is f ∈ S1

F(·,z1(·)) such that

y1 = N ( f ). (4.12)

Consider a multifunction Z : J → 2E defined by Z(t) = {u ∈ E : ‖ f (t)− u‖ ≤ ς(t)‖z1(t)−
z2(t)‖}. For each t ∈ J, Z(t) ∩ F(t, z2(t)) is nonempty. Indeed, let t ∈ J. From (H10), we have
h (F(t, z2(t)), F(t, z1(t))) ≤ ς(t)‖z1(t)− z2(t)‖. Hence, there exists ut ∈ F(t, z2(t)) such that

‖ut − f (t)‖ ≤ ς(t)‖z1(t)− z2(t)‖.



16 J. R. Wang, A. G. Ibrahim and M. Fečkan

Moreover, since the functions ς, z1, z2 f , are measurable ([10, Proposition III.4], [27, Corollary
1.3.1]) the multifunction V : t → Z(t) ∩ F(t, z1(t)) is measurable. Then there is h ∈ S1

F(·,z2(·))
such that for a.e. t ∈ J

‖h(t)− f (t)‖ ≤ ς(t)‖z1(t)− z2(t)‖. (4.13)

Let us define
y2 = N (h). (4.14)

Obviously y2 ∈ R(z2). Furthermore, following the proof of Step 2 of Theorem 3.1, we get from
(4.12)–(4.14) and Hölder’s inequality

‖y1(t)− y2(t)‖ ≤ c‖z1 − z2‖C(J,E), t ∈ J,

by interchanging the role of y2 and y1 we obtain

h(R(z1), R(z2)) ≤ c‖z1 − z2‖C(J,E).

Therefore, the multivalued function R is a contraction due to the condition (4.10).
Thus, by the theorem of Covitz and Nadler [13], R has a fixed point which is a solution for

(1.2). The proof is finished.

4.2 Nonconvex case

Now we give an existence result for (1.2) when the values of F are not necessarily convex.
This result extend [2, Theorem 4.2] to infinite dimensional spaces.

Theorem 4.3. Let m ∈ N, m ≥ 2 and q ∈ (m − 1, m). Assume that the condition (H7) and the
following condition are satisfied:

(H11) F : J × E→ Pcl(E) is a multifunction such that

(i) F(t, x) has a measurable graph and for almost t ∈ J, x → F(t, x) is lower semicontinuous.

(ii) There exists a function p ∈ L
1
σ (J, R+), σ ∈ (0, q− (m− 1)) such that for any x ∈ E

‖F(t, x)‖ ≤ p(t) for a.e. t ∈ J.

Then, the problem (1.2) has a solution.

Proof. Consider the multivalued Nemitsky operator N : C(J, E)→ 2L1(J,E) defined by

N(x) = S1
F(·,x(·)) = { f ∈ L1(J, E) : f (t) ∈ F(t, x(t))) for a.e. t ∈ J}.

We prove that N has a continuous selection. To achieve this aim, we show that N satisfies
the assumptions of [8, Theorem 3]. That is, N is l.s.c. and possessing a nonempty closed
decomposable value. Since F has closed values, S1

F is closed. Because F is integrably bounded,
S1

F is nonempty (see [22, Theorem 3.2]). It is easy to see that, S1
F is decomposable (see [22,

Theorem 3.1]). To check the lower semicontinuity of N, we need to show that, for every
u ∈ L1(J, E), x → d(u, N(x)) is upper semicontinuous. This is equivalent to show that for any
λ ≥ 0, the set

uλ = {x ∈ C(J, E) : d(u, N(x)) ≥ λ}
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is closed. For this purpose, let {xn}n∈N ⊆ uλ and assume that xn → x in C(J, E). Then, for all
t ∈ J, xn(t)→ x(t) in E. Note that from [22, Theorem 2.2] we have

d(u, N(xn)) = inf
v∈N(xn)

‖u− v‖L1(J,E) = inf
v∈N(xn)

∫ T

0
‖u(t)− v(t)‖dt

=
∫ T

0
inf

v∈N(xn)
‖u(t)− v(t)‖dt =

∫ T

0
d (u(t), F(t, xn(t))) dt.

(4.15)

Therefore,

λ ≤ lim
n→∞

sup d(u, N(xn)) = lim
n→∞

sup
∫ b

0
d(u(t), F(t, xn(t))dt. (4.16)

Observe that, as a result of the Fatou lemma, we have

lim
n→∞

sup
∫ b

0
d (u(t), F(t, xn(t))) dt ≤

∫ b

0
lim
n→∞

sup d (u(t), F(t, xn(t))) dt.

Thus (4.16) gives us

λ ≤
∫ b

0
lim
n→∞

sup d (u(t), F(t, xn(t))) dt.

On the other hand, by virtue of (H11)(i), the function z→ d(u(t), F(t, z)) is u.s.c. Then the last
inequality with (4.15) imply

λ ≤
∫ b

0
d(u(t), F(t, x(t))dt = d(u, N(x)).

This proves that u
λ

is closed. By applying Theorem of Bressan–Colombo [8, Theorem 3], there
is a continuous map Z : C(J, E) → L1(J, E) such that Z(x) ∈ N(x), for every x ∈ C(J, E).
Then, Z(x)(s) ∈ F(s, x(s)) a.e. for s ∈ J. Now consider a map π : C(J, E) → C(J, E) defined
by

π(x) = N (Z(x)). (4.17)

Our aim now is to prove that the function π satisfies the assumptions of Mönch’s fixed point
theorem. Arguing as in (3.3) we can show that, by using (H11)(ii), for any x ∈ C(J, E), we
have ‖π(x)‖C(J,E) ≤ Υ for

Υ = ‖p‖L1(J,R+)

[
3Tq−1

2Γ(q)
+

Tq−1

2

m−2

∑
j=1

1
Γ(q− j)

j+1

∑
k=1

|γ(j+1)
k |

(k− 1)!

]

+
(1 + r)Tq−σ

2Γ(q−m + 1)( q−m+1−σ
1−σ )1−σ

m

∑
k=1

|γ(m)
k |

(k− 1)!
‖p‖

L
1
σ (J,R+)

.

Let D = BΥ. Then π(D) ⊆ D. Also, arguing as in the proof of Theorem 4.1, we can show
that π is continuous and satisfies (2.22). So, as result of the Mönch fixed point theorem, there
is x ∈ C(J, E) such that x = π(x). Since p ∈ L

1
σ (J, R+) and 0 < σ < q − (m − 1), by

Corollary 2.10, the function x is a solution for (1.2). The proof is completed.

5 Applications to fractional lattice inclusions

In this section, we apply the above abstract results to a model of fractional differential inclu-
sions on lattices with local neighborhood interactions represented by

cDq
0,txn(t) ∈ fn(t, xn−1(t), xn(t), xn+1(t)), n ∈ Z, a.e. on J, (5.1)
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where q ∈ (m− 1, m), m ∈ N, m ≥ 2, fn : J ×R3 → 2R be specified latter and xn ∈ R with
limn→±∞ xn = 0. We are looking for forced localized solutions of (5.1). We are motivated
by [14, 15, 31, 37], where countable systems of ODEs are studied. Here we study countable
systems of fractional differential inclusions.

Set E = c0 = {x = {xn}n∈Z : xn ∈ R, limn→±∞ xn = 0} with the norm ‖x‖ = supn∈Z |xn|.
Then E is a separable Banach space. The following two examples will illustrate the feasibility
of our assumptions in the above theorems.

Example 5.1. Let fn : J ×R3 → 2R be multifunctions defined by

fn(t, xn−1, xn, xn+1) = a1
cos πt
|n|+ 1

+ [−a2xn, a2xn] + a3xn−1 + a4xn+1

for any n ∈ Z where ai, i = 1, 2, 3, 4 are constants. Then we define F : J × E → 2E as
F(t, x) = { fn(t, xn−1, xn, xn+1)}n∈Z, and the condition (H5) is easily verified. Note T = 1.
Next, for (t, x) ∈ J × E, we have

‖F(t, x)‖ = sup{‖y‖ : y ∈ F(t, x)} ≤ 3A(‖x‖+ 1),

for A = max{|ai| : i = 1, 2, 3, 4}, so the condition (H6) is satisfied with ϕ(t) = 3A and
Ω(z) = z + 1 for t ∈ J and z ∈ R+. Now let t ∈ J, x, y ∈ E and u ∈ F(t, x). Then
un = a1

cos 2πt
|n|+1 + λnxn + a3xn−1 + a4xn+1, |λn| ≤ |a2|, n ∈ Z. Taking v = {a1

cos 2πt
|n|+1 + λnyn +

a3yn−1 + a4yn+1}n∈Z ∈ F(t, y), we get

d(u, F(t, y)) ≤ ‖u− v‖ ≤ 3A‖x− y‖.

This yields that
sup

u∈F(t,x)
d(u, F(t, y)) ≤ 3A‖x− y‖.

Similarly, we can show that

sup
v∈F(t,y)

d(v, F(t, x)) ≤ 3A‖x− y‖.

Therefore,
h(F(t, x), F(t, y)) ≤ 3A‖x− y‖,

where h denotes the standard Hausdorff distance. So by [27, Corollary 2.2.1, p. 47], for every
bounded subset D ⊆ E, χ(F(t, D)) ≤ β(t)χ(D), for a.e. t ∈ J, with β(t) = 3A for t ∈ J. By
assuming[

3
Γ(q)

+
m−2

∑
j=1

1
Γ(q− j)

j+1

∑
k=1

|γ(j+1)
k |

(k− 1)!

]
A +

1

Γ(q−m + 1)( q−m+1−ς
1−ς )1−ς

m

∑
k=1

|γ(m)
k |

(k− 1)!
A <

2
3

(5.2)

for some ς ∈ (0, q − (m − 1)), then (H7) and (H8) are satisfied, since also δ < 1. Finally,
applying Theorem 4.1, the problem (5.1) has a 1-antiperiodic solution.

Example 5.2. Let fn : J ×R3 → 2R be multifunctions defined as:

fn(t, xn−1, xn, xn+1) = [−a2xn, a2xn] + a3xn−1 + a4xn+1

when t ∈ [0, 1
4 ), and fn(t, xn−1, xn, xn+1) =

[
− a1

cos πt
|n|+1 , a1

cos πt
|n|+1

]
when t ∈ [ 1

4 , 1] for any n ∈ Z

and ai, i = 1, 2, 3, 4 are constants. Then we define F : J × E → 2E as F(t, x) = { fn(t, xn)}n∈Z,
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and the condition (H9) is easily verified. Note T = 1. Clearly ‖F(t, 0)‖ = 0 for t ∈ [0, 1
4 )

and ‖F(t, 0)‖ ≤ |a1| for t ∈ [ 1
4 , 1]. By arguing as in the previous example we can show that

h(F(t, x), F(t, y)) ≤ 3 max{|a2|, |a3|, |a4|}‖x − y‖. Hence the condition (H10) is satisfied with
ς(t) = 3A. By assuming (5.2), then (4.10) is satisfied. Finally, applying Theorem 4.2 the
problem (5.1) has a 1-antiperiodic solution.
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