
Electronic Journal of Qualitative Theory of Differential Equations

2010, No. 1, 1-12; http://www.math.u-szeged.hu/ejqtde/

Some stability and boundedness conditions for non-autonomous

differential equations with deviating arguments

Cemil Tunç

Abstract

In this article, the author studies the stability and boundedness of solutions for the

non-autonomous third order differential equation with a deviating argument, r:

x′′′(t) + a(t)x′′(t) + b(t)g1(x
′(t − r)) + g2(x

′(t)) + h(x(t − r))

= p(t, x(t), x(t − r), x′(t), x′(t − r), x′′(t)),

where r > 0 is a constant. Sufficient conditions are obtained; a stability result in the

literature is improved and extended to the preceding equation for the case p(t, x(t), x(t−

r), x′(t), x′(t−r), x′′(t)) = 0, and a new boundedness result is also established for the case

p(t, x(t), x(t − r), x′(t), x′(t − r), x′′(t)) 6= 0.

1 Introduction

In 1968, Ponzo [10] considered the following nonlinear third order differential equation without

a deviating argument:

x′′′(t) + a(t)x′′(t) + b(t)x′(t) + cx(t) = 0.

For the preceding equation, he constructed a positive definite Liapunov function with negative

semi-definite time derivative. This established the stability of the null solution.

In this paper, instead of the preceding equation, we consider the following non-autonomous
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third order differential equation with a deviating argument, r :

x′′′(t) + a(t)x′′(t) + b(t)g1(x
′(t − r)) + g2(x

′(t)) + h(x(t − r))

= p(t, x(t), x(t − r), x′(t), x′(t − r), x′′(t)),
(1)

which is equivalent to the system:

x′(t) = y(t),

y′(t) = z(t),

z′(t) = −a(t)z(t) − b(t)g1(y(t)) − h(x(t)) + b(t)
t
∫

t−r

g′1(y(s))z(s)ds

−g2(y(t)) +
t
∫

t−r

h′(x(s))y(s)ds + p(t, x(t), x(t − r), y(t), y(t − r), z(t)),

(2)

where r is a positive constant; the functions a, b, g1, g2, h and p depend only on the arguments

displayed explicitly and the primes in Eq. (1) denote differentiation with respect to t ∈ ℜ+ =

[0,∞). The functions a, b, g1, g2, h and p are assumed to be continuous for their all respective

arguments on ℜ+, ℜ+, ℜ , ℜ, ℜ and ℜ+ ×ℜ5, respectively. Assume also that the derivatives

a′(t) ≡ d
dt

a(t), b′(t) ≡ d
dt

b(t), h′(x) ≡ d
dx

h(x) and g′1(y) ≡ d
dy

g1(y) exist and are continuous;

throughout the paper x(t), y(t) and z(t) are abbreviated as x, y and z, respectively. Finally,

the existence and uniqueness of solutions of Eq. (1) are assumed and all solutions considered

are supposed to be real valued.

The motivation of this paper has come by the result of Ponzo [10, Theorem 2]. Our

purpose here is to extend and improve the result established by Ponzo [10, Theorem 2] to

the preceding non-autonomous differential equation with the deviating argument r for the

asymptotic stability of null solution and the boundedness of all solutions, whenever p ≡ 0

and p 6= 0 in Eq.(1), respectively.

At the same time, it is worth mentioning that one can recognize that by now many

significant theoretical results dealt with the stability and boundedness of solutions of nonlinear

differential equations of third order without delay:

x′′′(t) + a1x
′′(t) + a2x

′(t) + a3x(t) = p(t, x(t), x′(t), x′′(t)),

in which a1, a2 and a3 are not necessarily constants. In particular, one can refer to the
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book of Reissig et al. [11] as a survey and the papers of Ezeilo [4,5], Ezeilo and Tejumola

[6], Ponzo [10], Swick [14], Tunç [16, 17, 18, 21], Tunç and Ateş [27] and the references

cited in these works for some publications performed on the topic. Besides, with respect our

observation from the literature, it can be seen some papers on the stability and boundedness

of solutions of nonlinear differential equations of third order with delay (see, for example,

the papers of Afuwape and Omeike [2], Omeike [9], Sadek [12], Sinha [13], Tejumola and

Tchegnani [15], Tunç ([19, 20], [22-26]), Zhu [28]) and the references thereof).

It should be noted that, to the best of our knowledge, we did not find any work based on

the result of Ponzo [10, Theorem 2] in the literature. That is to say that, this work is the first

attempt carrying the result of Ponzo [10, Theorem 2] to certain non-autonomous differential

equations with deviating arguments. The assumptions will be established here are different

from that in the papers mentioned above.

2 Main Results

Let p(t, x, x(t − r), y, y(t − r), z) = 0. We establish the following theorem

Theorem 1. In addition to the basic assumptions imposed on the functions a(t), b(t),

g1, g2 and h appearing in Eq. (1), we assume that there are positive constants a, α, β, b1, b2,

B, c, c1 and L such that the following conditions hold:

(i) a(t) ≥ 2α + a , B ≥ b(t) ≥ β,

g1(0) = g2(0) = h(0) = 0,

0 < c1 ≤ h′(x) ≤ c, αβ − c > 0,

g1(y)
y

≥ b1 ≥ 1, g2(y)
y

≥ b2, (y 6= 0) and |g′1(y)| ≤ L.

(ii) [αb(t) − c] y2 ≥ 2−1αa′(t)y2 + b′(t)
y
∫

0

g1(η)dη.

Then the null solution of Eq. (1) is stable, provided

r < min

{

αb2

α(BL + 2c) + c
,

2α

BL(2 + α) + c

}

.
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Proof. To prove Theorem 1, we define a Lyapunov functional V (t, xt, yt, zt) :

2V (t, xt, yt, zt) =z2+2αyz+2b(t)
∫ y

0 g1(η)dη+2
∫ y

0 g2(η)dη+αa(t)y2+2h(x)y

+2α
∫ x

0 h(ξ)dξ+λ1

0
∫

−r

t
∫

t+s

y2(θ)dθds+λ2

0
∫

−r

t
∫

t+s

z2(θ)dθds,
(3)

where λ1 and λ2 are some positive constants which will be specified later in the proof.

Now, from the assumptions g1(y)
y

≥ b1 ≥ 1 , g2(y)
y

≥ b2 , (y 6= 0), and 0 < c1 ≤ h′(x) ≤ c, it

follows that

2b(t)
∫ y

0 g1(η)dη=2b(t)
∫ y

0
g1(η)

η
ηdη ≥ βb1y

2 ≥ βy2,

2
∫ y

0 g2(η)dη=2
∫ y

0
g2(η)

η
ηdη ≥ b2y

2,

h2(x) = 2
∫ x

0 h(ξ)h′(ξ)dξ ≤ 2c
∫ x

0 h(ξ)dξ.

The preceding inequalities lead to the following:

2V (t, xt, yt, zt) ≥ (z + αy)2 + β[y + β−1h(x)]2 + 2α
∫ x

0 h(ξ)dξ − 1
β
h2(x)

+b2y
2+λ1

0
∫

−r

t
∫

t+s

y2(θ)dθds+λ2

0
∫

−r

t
∫

t+s

z2(θ)dθds

≥ (z + αy)2 + β[y + β−1h(x)]2 + 2α
∫ x

0 h(ξ)dξ − 2c
β

x
∫

0

h(ξ)dξ

+b2y
2+λ1

0
∫

−r

t
∫

t+s

y2(θ)dθds+λ2

0
∫

−r

t
∫

t+s

z2(θ)dθds.

Now, it is clear

2α
∫ x

0 h(ξ)dξ − 2c
β

x
∫

0

h(ξ)dξ = 2β−1(αβ − c)
x
∫

0

h(ξ)dξ

≥ c1β
−1(αβ − c)x2.

Hence

2V (t, xt, yt, zt) ≥ (z + αy)2 + β[y + β−1h(x)]2 + 2−1c1β
−1(αβ − c)x2 + b2y

2

+λ1

0
∫

−r

t
∫

t+s

y2(θ)dθds+λ2

0
∫

−r

t
∫

t+s

z2(θ)dθds.

The preceding inequality allows the existence of some positive constants Di , (i = 1, 2, 3),

such that

V (t, xt, yt, zt) ≥ D1x
2 + D2y

2 + D3z
2 ≥ D4(x

2 + y2 + z2), (4)

where D4 = min{D1,D2,D3}, since
0
∫

−r

t
∫

t+s

y2(θ)dθds ≥ 0 and
0
∫

−r

t
∫

t+s

z2(θ)dθds ≥ 0.
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Now, along a trajectory of (2) we find

d
dt

V (t, xt, yt, zt) = −
[

αb(t)g1(y)y−1 + αg2(y)y−1 − h′(x) − 2−1αa′(t)
]

y2 + b′(t)
y
∫

0

g1(η)dη

− [a(t) − α] z2 + zb(t)
t
∫

t−r

g′1(y(s))z(s)ds + z
t
∫

t−r

h′(x(s))y(s)ds

+αyb(t)
t
∫

t−r

g′1(y(s))z(s)ds + αy
t
∫

t−r

h′(x(s))y(s)ds

+λ1y
2r − λ1

t
∫

t−r

y2(s)ds + λ2z
2r − λ2

t
∫

t−r

z2(s)ds.

(5)

In view of the assumptions of Theorem 1 and the inequality 2 |mn| ≤ m2 + n2, we find the

following inequalities:

[

αb(t)g1(y)y−1 + αg2(y)y−1 − h′(x) − 2−1αa′(t)
]

y2 − b′(t)
y
∫

0

g1(η)dη

≥
[

αb1b(t) + αb2 − c − 2−1αa′(t)
]

y2 − b′(t)
y
∫

0

g1(η)dη

≥ [αb(t) − c] y2 − 2−1αa′(t)y2 − b′(t)
y
∫

0

g1(η)dη + αb2y
2

≥ αb2y
2,

[a(t) − α] z2 ≥ (α + a)z2,

zb(t)

t
∫

t−r

g′1(y(s))z(s)ds ≤
BL

2
rz2 +

BL

2

t
∫

t−r

z2(s)ds,

αyb(t)

t
∫

t−r

g′1(y(s))z(s)ds ≤
αBL

2
ry2 +

αBL

2

t
∫

t−r

z2(s)ds,

z

t
∫

t−r

h′(x(s))y(s)ds ≤
c

2
rz2 +

c

2

t
∫

t−r

y2(s)ds,

αy

t
∫

t−r

h′(x(s))y(s)ds ≤
αc

2
ry2 +

αc

2

t
∫

t−r

y2(s)ds.
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The substituting of the preceding inequalities into (5) gives

d
dt

V (t, xt, yt, zt) ≤ −1
2 [αb2 − (αBL + αc + 2λ1)r] y

2 − 1
2αb2y

2

−az2 − 1
2 [2α − (BL + c + 2λ2)r] z

2

+
[

2−1(1 + α)c − λ1

]

t
∫

t−r

y2(s)ds

+
[

2−1(1 + α)BL − λ2

]

t
∫

t−r

z2(s)ds.

Let λ1 = (1+α)c
2 and λ2 = (1+α)BL

2 . Hence we can write

d
dt

V (t, xt, yt, zt) ≤ −1
2 [αb2 − (αBL + αc + 2λ1)r] y

2 − 1
2αb2y

2

−az2 − 1
2 [2α − (BL + c + 2λ2)r] z

2.

Now, the last inequality implies

d

dt
V (t, xt, yt, zt) ≤ −λ3 y2 − λ4 z2,

for some positive constants λ3 and λ4, provided

r < min

{

αb2

α(BL + 2c) + c
,

2α

BL(2 + α) + c

}

.

This completes the proof of Theorem 1 (see also Burton [3], Hale [7], Krasovskii [8]).

For the case p(t, x, x(t − r), y, y(t − r), z) 6= 0, we establish the following theorem.

Theorem 2. Suppose that assumptions (i)-(ii) of Theorem 1 and the following condition

hold:

|p(t, x, x(t − r), y, y(t − r), z)| ≤ q(t),

where q ∈ L1(0,∞). Then, there exists a finite positive constant K such that the solution

x(t) of Eq. (1) defined by the initial functions

x(t) = φ(t), x′(t) = φ′(t), x′′(t) = φ′′(t)

satisfies

|x(t)| ≤ K,
∣

∣x′(t)
∣

∣ ≤ K,
∣

∣x′′(t)
∣

∣ ≤ K

EJQTDE, 2010 No. 1, p. 6



for all t ≥ t0 , where φ ∈ C2([t0 − r, t0], ℜ) , provided

r < min

{

αb2

α(L + 2c) + c
,

2α

BL(2 + α) + c

}

.

Proof. It is clear that under the assumptions of Theorem 2, the time derivative of

functional V (t, xt, yt, zt) satisfies the following:

d

dt
V (t, xt, yt, zt) ≤ −λ3 y2 − λ4 z2 + (αy + z)p(t, x, x(t − r), y, y(t − r), z).

Hence
d

dt
V (t, xt, yt, zt) ≤ D5(|y| + |z|)q(t), (6)

where D5 = max{1, α}.

In view of the inequalitiy |m| < 1 + m2 , it follows from (6) that

d

dt
V (t, xt, yt, zt) ≤ D5(2 + y2 + z2) q(t). (7)

By (4) and (7), we get that

d
dt

V (t, xt, yt, zt) ≤ D5(2 + D−1
4 V (t, xt, yt, zt))q(t)

= 2D5q(t) + D5D
−1
4 V (t, xt, yt, zt)q(t).

Integrating the preceding inequality from 0 to t, using the assumption q ∈ L1(0,∞) and the

Gronwall-Reid-Bellman inequality, (see Ahmad and Rama Mohana Rao [1]), it follows that

V (t, xt, yt, zt) ≤ V (0, x0, y0, z0) + 2D5A + D5D
−1
4

t
∫

0

V (s, xs, ys, zs)q(s)ds

≤ {V (0, x0, y0, z0) + 2D5A} exp

(

D5D
−1
4

t
∫

0

q(s)ds

)

= {V (0, x0, y0, z0) + 2D5A} exp(D5D
−1
4 A) = K1 < ∞,

(8)

where K1 > 0 is a constant, K1 = {V (0, x0, y0, z0)+2D5A} exp(D5D
−1
4 A), and A =

∞
∫

0

q(s)ds.

Thus, we have from (4) and (8) that

x2 + y2 + z2 ≤ D−1
4 V (t, xt, yt, zt) ≤ K,

where K = K1D
−1
4 .
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This fact completes the proof of Theorem 2.

Example. Consider nonlinear delay differential equation of third order:

x′′′(t) + {11 + (1 + t2)−1}x′′(t) + 2(1 + e−t)x′(t − r) + 4x′(t) + x(t − r)

= 4
1+t2+x2(t)+x2(t−r)+x′2(t)+x′2(t−r)+x′′2(t)

.
(9)

Delay differential Eq. (9) may be expressed as the following system:

x′ = y

y′ = z

z′ = −{11 + (1 + t2)−1}z − 2(1 + e−t)y − 4y − x

+2(1 + e−t)
t
∫

t−r

z(s)ds +
t
∫

t−r

y(s)ds

+ 4
1+t2+x2+x2(t−r)+y2+y2(t−r)+z2 .

Clearly, Eq. (9) is special case of Eq. (1), and we have the following:

a(t) = 11 +
1

1 + t2
≥ 11 = 2 × 5 + 1,

α = 5, a = 1,

b(t) = 1 +
1

et
,

1 ≤ 1 +
1

et
≤ 2,

β = 1, B = 2,

g1(y) = 2y, g1(0) = 0,

g1(y)

y
= 2 = b1 > 1, (y 6= 0),

g′1(y) = 2 = L,

y
∫

0

g1(η)dη =

y
∫

0

2ηdη = y2,

g2(y) = 4y, g2(0) = 0,

g2(y)

y
= 4 = b2, (y 6= 0),

h(x) = x, h(0) = 0, h′(x) = 1,
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0 < 2−1 < h′(x) ≤ 1,

c1 = 2−1, c = 1,

a′(t) = −
2t

(1 + t2)2
, (t ≥ 0),

b′(t) = −
1

et
, (t ≥ 0),

p(t, x, x(t − r), y, y(t − r), z)

= 4
1+t2+x2+x2(t−r)+y2+y2(t−r)+z2 ≤ 4

1+t2
= q(t).

In view of the above discussion, it follows that

αβ − c = 4 > 0,

[αb(t) − c]y2 = [4 + 5e−t]y2, (t ≥ 0),

α

2
a′(t)y2 + b′(t)

y
∫

0

g(η)dη = −

[

5t

(1 + t2)2

]

y2 − e−ty2, (t ≥ 0),

[αb(t) − c]y2 = [4 + 5e−t]y2 ≥ −
[

5t
(1+t2)2

]

y2 − e−ty2

= α
2 a′(t)y2 + b′(t)

y
∫

0

g(η)dη,

∞
∫

0

q(s)ds =

∞
∫

0

4

1 + s2
ds = 2π < ∞,

that is, q ∈ L1(0,∞) and

r < min

{

αb2

α(BL + 2c) + c
,

2α

BL(2 + α) + c

}

= min

{

4

31
,
10

29

}

=
4

31
.

Thus all the assumptions of Theorems 1 and 2 hold. This shows that the null solution of Eq.

(9) is stable and all solutions of the same equation are bounded, when p(t, x, x(t − r)y, y(t −

r), z) = 0 and 6= 0, respectively.
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