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ABSTRACT. An existence result of a renormalized solution for a class of non-
linear parabolic equations in Orlicz spaces is proved. No growth assumption
is made on the nonlinearities.

1. INTRODUCTION

In this paper we consider the following problem:

(1.1) % - div(a(x,t,u,VU) + @(u)) — f inQx(0,T),
(1.2) b(x,u)(t =0) = b(z,up) in Q,
(1.3) u=0 on N x (0,T),

where ) is a bounded open subset of RY and 7' > 0, Q = Q x (0,7). Let b be a
Carathéodory function (see assumptions (3.1)-(3.2) of Section 3), the data f and

b(z,up) in LY(Q) and L'() respectively, Au = —div(a(m,t,u, Vu)) is a Leray-

Lions operator defined on VVO1 L (), M is an appropriate N-function and which
grows like M ~1M (B3 |Vu|) with respect to Vu, but which is not restricted by any
growth condition with respect to u (see assumptions (3.3)-(3.6)). The function ®
is just assumed to be continuous on R.

Under these assumptions, the above problem does not admit, in general, a weak
solution since the fields a(x,t,u, Vu) and ®(u) do not belong in (L, .(Q)" in gen-
eral. To overcome this difficulty we use in this paper the framework of renormalized
solutions. This notion was introduced by Lions and DiPerna [31] for the study of
Boltzmann equation (see also [27], [11], [29], [28], [2]).

A large number of papers was devoted to the study the existence of renormalized
solution of parabolic problems under various assumptions and in different contexts:
for a review on classical results see [7], [30], [9], [8], [4], [5], [34], [12], [13], [14].

The existence and uniqueness of renormalized solution of (1.1)-(1.3) has been

proved in H. Redwane [34, 35] in the case where Au = fdiv(a(z,t,u, Vu)) is

a Leray-Lions operator defined on LP(0, T} VVO1 'P(Q)), the existence of renormal-
ized solution in Orlicz spaces has been proved in E. Azroul, H. Redwane and M.
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Rhoudaf [32] in the case where b(z,u) = b(u) and where the growth of a(z, t,u, Vu)
is controlled with respect to u. Note that here we extend the results in [34, 32]
in three different directions: we assume b(x,u) depend on x , and the growth of
a(x, t,u, Vu) is not controlled with respect to u and we prove the existence in Orlicz
spaces.

The paper is organized as follows. In section 2 we give some preliminaries and
gives the definition of N-function and the Orlicz-Sobolev space. Section 3 is devoted
to specifying the assumptions on b, a, ®, f and b(x,up). In Section 4 we give
the definition of a renormalized solution of (1.1)-(1.3). In Section 5 we establish
(Theorem 5.1) the existence of such a solution.

2. PRELIMINARIES

Let M : Rt — Rt be an N-function, i.e., M is continuous, convex, with
M(t) > 0 for t > 0, %(t) — 0 ast — 0 and @ — o0 as t — oo. Equivalently,
M admits the representation : M(t) = fot a(s)ds where a : Rt — R* is non-
decreasing, right continuous, with a(0) = 0, a(¢) > 0 for ¢ > 0 and a(t) — oo as
t — oo. The N-function M conjugate to M is defined by M (t) = fot a(s) ds, where
a : RT — RT is given by a(t) = sup{s : a(s) < t}.

The N-function M is said to satisfy the Ay condition if, for some k& > 0,

(2.1) M(2t) < kM(t) forallt>0.

When this inequality holds only for ¢ > tq > 0, M is said to satisfy the As-condition
near infinity.

Let P and @ be two N-functions. P < () means that P grows essentially less
rapidly than @ ; i.e., for each € > 0,
P(t)
Qet)

(2.2) —0 ast— oo.

This is the case if and only if,

Q~'(1)
Poi(t)
We will extend these N-functions into even functions on all R. Let €2 be an open
subset of RY. The Orlicz class £(f2) (resp. the Orlicz space Ly (Q2)) is defined

as the set of (equivalence classes of) real-valued measurable functions u on €2 such
that :

(2.3)

— 0 ast— oo.

(2.4) M (u(z))dz < 400 (resp. M(@)dm < 400 for some A > 0).
Q Q

Note that Ly () is a Banach space under the norm
(2.5) |ullara = int {)\ >0 / M(@)dz < 1}
Q

and Lp(Q) is a convex subset of Ly/(Q). The closure in Ly () of the set of
bounded measurable functions with compact support in Q is denoted by Eps(Q).
The equality Ea(2) = L () holds if and only if M satisfies the As-condition,
for all ¢ or for ¢ large according to whether 2 has infinite measure or not.
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The dual of Ep(Q2) can be identified with L37(2) by means of the pairing
Jo u(@)v(x)dz, and the dual norm on L37(Q) is equivalent to ||.[57 o The space
L () is reflexive if and only if M and M satisfy the Ay condition, for all ¢ or for
t large, according to whether 2 has infinite measure or not.

We now turn to the Orlicz-Sobolev space. WLy (Q) (resp. W'Ep(Q)) is the
space of all functions u such that u and its distributional derivatives up to order 1
lie in Lps(Q2) (resp. Ep(Q2)). This is a Banach space under the norm

(2.6) lulliace =D IV ullar0-

jal<1

Thus WLy () and WIEp(Q) can be identified with subspaces of the prod-
uct of N + 1 copies of Lj(2). Denoting this product by IIL,s, we will use the
weak topologies o(I1Ly, [1Ey;) and o(IILar, I1L77). The space Wi Ep () is de-
fined as the (norm) closure of the Schwartz space D(Q) in W!E () and the
space W3 La(S2) as the o(ILLys, IIEg7) closure of D(2) in WLy (). We say
that u, converges to u for the modular convergence in WLy () if for some
A >0, /M(W)dm — 0 for all |o|] < 1. This implies convergence
for o(IIL 1?[, I1L37). If M satisfies the Ay condition on R (near infinity only when
Q has finite measure), then modular convergence coincides with norm convergence.

Let W1L:7(Q) (resp. W1FE37(Q2)) denote the space of distributions on €
which can be written as sums of derivatives of order < 1 of functions in Ly;(12)
(resp. Eq7(Q)). It is a Banach space under the usual quotient norm.

If the open set Q has the segment property, then the space D(Q) is dense in
WaLa(Q) for the modular convergence and for the topology o (ILL s, I1L77) (cf.
[21]). Consequently, the action of a distribution in W' L37(€2) on an element of
W La(€2) is well defined. For more details see [1], [23].

For K > 0, we define the truncation at height K, Tk : R — R by

(2.7) Tk (s) = min(K, max(s, —K)).
The following abstract lemmas will be applied to the truncation operators.

Lemma 2.1. [21] Let F : R — R be uniformly lipschitzian, with F(0) = 0. Let M
be an N-function and let u € WLy (Q) (resp. WEEpN()).

Then F(u) € WYLy (Q) (resp. WEEpN(Q)). Moreover, if the set of discontinuity
points D of F' is finite, then

0 B F’(u)% a.e. in{zreQ:u(z)¢ D}
6xiF(u) B { 0 ’ a.e. in{xreQ:u(x)e D}

Lemma 2.2. [21] Let F : R — R be uniformly lipschitzian, with F(0) = 0. We
suppose that the set of discontinuity points of F' is finite. Let M be an N-function,
then the mapping F : WLy (Q) — WLy (Q) is sequentially continuous with
respect to the weak™ topology o(I1L s, I1E7).

Let Q be a bounded open subset of RV, T > 0 and set Q@ = Q x (0,T). M be an
N-function. For each o € N¥, denote by V¢ the distributional derivative on Q of
EJQTDE, 2010 No. 2, p. 3



order o with respect to the variable x € NV. The inhomogeneous Orlicz-Sobolev
spaces are defined as follows,

WLy (Q)={u € Ly(Q): Viu € Ly (Q) VY |af <1}
and WHE,(Q) ={u € Ex(Q) : Viu € Ey(Q) VY |of <1}

The last space is a subspace of the first one, and both are Banach spaces under
the norm,

(2.9) lull = > IVSullare-

lal<1

(2.8)

We can easily show that they form a complementary system when (2 satisfies
the segment property. These spaces are considered as subspaces of the product
space I1L/(Q) which have as many copies as there is a-order derivatives, |a| < 1.
We shall also consider the weak topologies o(II1L s, I1Eg;) and o(I1Lyy, I Lyy). If
u € WHTL(Q) then the function : ¢t — u(t) = u(t,.) is defined on (0,T) with
values in W1Ly(Q). If, further, u € WH*Ep(Q) then the concerned function is
a WIEp(Q)-valued and is strongly measurable. Furthermore the following imbed-
ding holds: W1Ey(Q) C LY0,T;W'Ep (). The space WH* Ly (Q) is not
in general separable, if u € W1*L;(Q), we can not conclude that the function
u(t) is measurable on (0,7"). However, the scalar function t +— ||u(t)||a,q is in
LY(0,T). The space W,y Ex(Q) is defined as the (norm) closure in W Ep (Q)
of D(Q). We can easily show as in [22] that when Q has the segment property,
then each element u of the closure of D(Q) with respect of the weak * topology
o (1L, 1Ey;) is a limit, in W% L (Q), of some subsequence (u;) C D(Q) for the
modular convergence; i.e., there exists A > 0 such that for all |o| < 1,

(2.10) / M(M) dxdt — 0 as i — oo.
0 A

This implies that (u;) converges to u in W1=L(Q) for the weak topology
o(I1Ls, 1IL7). Consequently,

(2.11) D(Q) D(Q)
This space will be denoted by Wy'* L (Q). Furthermore, Wy * Exr(Q) = Wy * Lar(Q)N
I1E);. Poincaré’s inequality also holds in Wol’mLM (Q), i.e., there is a constant C' > 0
such that for all u € Wy Lys(Q) one has,

(2.12) Y IVaulig <€ Y IVaullae:

lal<t lal=1

o (1L I ES7) _ o (1L X1 L77)

Thus both sides of the last inequality are equivalent norms on VVO1 TLv(Q). We
have then the following complementary system

W Lay(Q) F
(2.13) ( WEI’IEM(Q) Fy )

F being the dual space of WO1 TEMm(Q). Tt is also, except for an isomorphism,
the quotient of IIL3; by the polar set W&’ZEM(Q)J‘, and will be denoted by F =
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W12 [+(Q) and it is shown that,
(2.14) W L(Q) = {f = 3 Vefa: fo € Ly(Q)}.
la|<1

This space will be equipped with the usual quotient norm

(2.15) £ =inf Y llfallsz.o

lal<1

where the infimum is taken on all possible decompositions

(2.16) F=> Vifar fa€LyQ)
o<1
The space Fj is then given by,
(2.17) Fo={f=3 Vifu:facPr(Q}
lo|<1

and is denoted by Fy = W~1*Er(Q).

Remark 2.3. We can easily check, using lemma 2.1, that each uniformly lipschitzian
mapping F, with F(0) = 0, acts in inhomogeneous Orlicz-Sobolev spaces of order
12 WYLy (Q) and Wy Ly (Q).

3. ASSUMPTIONS AND STATEMENT OF MAIN RESULTS

Throughout this paper, we assume that the following assumptions hold true:
Q) is a bounded open set on RN (N > 2), T > 0 is given and we set Q = Q x (0, 7).
Let M and P be two N-function such that P < M.

(3.1) b: QxR — Ris a Carathéodory function such that,

for every x € Q : b(z,s) is a strictly increasing C*-function, with b(x,0) = 0.

For any K > 0, there exists Ax > 0, a function Ax in L°°(Q) and a function By

in L (2) such that

< ob(z, s) 0b(x, s)

- 0s s

for almost every z € , for every s such that |s| < K.
Consider a second order partial differential operator A : D(A) C Wh% L (Q) —

W% [++(Q) in divergence form,

(3.2) A < Ag(z) and ‘vm( )‘gBK(x),

A(u) = —div(a(ac,t,u, Vu))
where
(3.3) a:Qx(0,T) xR xRY - R is a Carathéodory function satisfying

for any K > 0, there exist 3% > 0 (for i = 1,2,3,4) and a function Cx € Ey(Q)
such that:

34)  la(z,t,5,8)| < Cx(x,t) + B M~ P(B|s|) + B M~ M (B |€])
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for almost every (x,t) € Q and for every |s| < K and for every £ € RY.
(3.5) la(@t,5,6) — a(a,t,5,69)] [~ €] >0

(3.6) a(z,t,s,6)§ > aM(|¢])

for almost every (x,t) € @, for every s € R and for every ¢ # &* € RN, where
a > 0 is a given real number.

(3.7) ® : R — R is a continuous function
(3.8) f is an element of L'(Q).
(3.9) ug is an element of L' () such that b(z,ug) € L'(Q).

Remark 3.1. As already mentioned in the introduction, problem (1.1)-(1.3) does
not admit a weak solution under assumptions (3.1)-(3.9) (even when b(z,u) = u)
since the growths of a(x, ¢, u, Du) and ®(u) are not controlled with respect to u (so
that these fields are not in general defined as distributions, even when u belongs to

WOLIL]\/](Q).

4. DEFINITION OF A RENORMALIZED SOLUTION

The definition of a renormalized solution for problem (1.1)-(1.3) can be stated
as follows.

Definition 4.1. A measurable function u defined on () is a renormalized solution
of Problem (1.1)-(1.3) if

(4.1) T (u) € Wy Ly (Q) VK >0 and b(x,u) € L>=(0,T; L*(Q)),
(4.2) / a(z,t,u, Vu)Vudxdt — 0 asm — +0o0 ;
{(t,2)€Q ; m<|u(z )| <m+1}

and if, for every function S in W?2°°(R), which is piecewise C* and such that S’
has a compact support, we have

(4.3) % — div (S’(u)a(m, t,u, Vu)) + 5" (u)a(z, t,u, Vu)Vu
— div (s'(u)cp(u)) + 8" (w)®(uw)Vu = £5'(u) in D'(Q),

and

(4.4) Bg(x,u)(t =0) = Bs(x,up) in Q,

where Bg(z, 2) :/ MS’(T) dr.
0 or

The following remarks are concerned with a few comments on definition 4.1.
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Remark 4.2. Equation (4.3) is formally obtained through pointwise multiplication
of equation (1.1) by S’(u). Note that due to (4.1) each term in (4.3) has a meaning
in LNQ) + W1 L7(Q).

Indeed, if K is such that suppS’ C [—K, K], the following identifications are
made in (4.3).

x Bs(x,u) € L*(Q), because |Bs(x,u)| < K| Ak || L) ISl o ®)-

* S’ (u)a(z,t,u, Vu) identifies with S’(u)a(z, t, Tk (u), VTK(u)) a.e. in ). Since
indeed |Tk (u)| < K a.e. in Q. Since S’(u) € L>°(Q) and with (3.4), (4.1) we obtain
that

S(u)a(x,t,TK(u), VTK(U)) € (Lg(Q)N.

* S'(w)a(z, t,u, Vu)Vu identifies with S’(u)a(w, t, Tk (u), VIk (u)) VTk (u) and
in view of (3.2) and (4.1) one has

S'(u)a (x, t, Tk (u), VT§ (u)) VTk(u) € L*(Q).

* S (u)®(u) and S”(u)®(u)Vu respectively identify with S’(u)®(Tk(u)) and
S"(u)®(Tk (u))VTk (u). Due to the properties of S and (3.7), the functions S/, S”
and ®oTy are bounded on R so that (4.1) implies that S"(u)®(Tk (u)) € (L>®(Q))V,
and S"(u)@(TK(u))VTK(u) S (L]\/[(Q))N

The above considerations show that equation (4.3) takes place in D’(Q) and that
OBgs(z,u)

ot
Due to the properties of S and (3.2), we have

(4.5) belongs to W™ 5% L—(Q) + L*(Q).

(4.6) ‘VBS(LU)‘ < [ Ak Lo @) IV Tk (WIS | o< (0) + K15 oo () Bi (2)
and
(4.7) Bs(z,u) belongs to Wy Ly (Q).

Moreover (4.5) and (4.7) implies that Bg(z,u) belongs to C°([0,T]; L*(Q)) (for a
proof of this trace result see [30]), so that the initial condition (4.4) makes sense.

Remark 4.3. For every S € W% (R), nondecreasing function such that suppS’ C
[-K, K] and (3.2), we have

(4.8)  Ak|S(r) = S()| < |Bs(z,r) = Bs(x,1")| < || Ak||oe(e|S(r) = S(r7)]

for almost every x € Q and for every r, v’ € R.

5. EXISTENCE RESULT
This section is devoted to establish the following existence theorem.

Theorem 5.1. Under assumption (3.1)-(3.9) there exists at at least a renormalized
solution of Problem (1.1)-(1.3).

Proof. The proof is divided into 5 steps. O
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* Step 1. For n € N*, let us define the following approximations of the data:

1
(5.1) bp(x,7) = bz, To(r)) + oA in Q, Vs € R,
(5.2) an(z,t,7, &) = a(z,t, Tp(r),€) ae. inQ, Vs € R, V& € RY,
(5.3) ®,, is a Lipschitz continuous bounded function from R into R,

such that ®, uniformly converges to ® on any compact subset of R as n tends to
+00.

(5.4) £ €C(Q) = fullzr < Nfllzr and f,, — f in LY(Q) as n tends to +oo,

(5.5)
Uon € C() = ||bn(x, uon)||Lr < ||b(x, uo)|| 2 and by, (z, uon) — b(z, up) in Ll(Q)

as n tends to +oo.
Let us now consider the following regularized problem:

(5.6) % —div (an(x,t,un, Vu,) + @n(un)) = f, in Q,
(5.7) up, =0 on (0,T) x 09,
(5.8) by (2, up)(t = 0) = by (x, ugy) in Q.

As a consequence, proving existence of a weak solution u, € Wol’mLM(Q) of (5.6)-
(5.8) is an easy task (see e.g. [25], [33]).

* Step 2. The estimates derived in this step rely on usual techniques for problems
of the type (5.6)-(5.8).

Proposition 5.2. Assume that (5.1)-(5.9) hold true and let u, be a solution of
the approzimate problem (5.6) — (5.8). Then for all K, n > 0, we have

(5.9)  IThlu)lwaoryiq) < K (1lm@) + 1@ wo) @) ) = CK,

where C' is a constant independent of n.
G10) [ Bl do < K(lfl + b0l e) = CK.

by, (z, 3)

99 ds.

for almost any 7 in (0,T), and where B (x,r) = / Tk (s)
0

(5.11) lim meas{(z, ) eqQ: |uyl > K} =0 uniformly with respect to n.

K—o00

Proof. We take T (un)y(0,r) as test function in (5.6), we get for every 7 € (0,T)
(5.12)
<8bn($, Un,)
ot
+/ D, (un ) VT (uy) do dt = / Tk (uy) dz dt,
Q-
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which implies that,
(5.13)

B (x,uy)(T) dz Jr/ an(z,t, T (un), VT (un))VTk (uy,) dx dt
Q Qr

+/ D, (un)VTk (uy) do dt = fuTk (uy) dz dt +/ B (x, upn) dx
Q- Q- Q
where, B (z,r) = / TK(S)W ds.

s

0
The Lipschitz character of ®,,, Stokes formula together with the boundary con-
dition (5.7), make it possible to obtain

(5.14) / D, (un)VTk (uy) do dt = 0.

-

Due to the definition of B} we have,

(5.15)  0< / Bz, uon) do < K/ b (2, 10m) | de < K [Ib( wo)l| 1 (0.
Q Q

By using (5.14), (5.15) and the fact that B (z,u,) > 0, permit to deduce from
(5.13) that
(5.16)

/Qan(wataTK(un)a VTk (un)) VT (un) do dt < K(||anL1(Q)+||bn($auOn)HLl(Q)) <CK,

which implies by virtue of (3.6), (5.4) and (5.5) that,

611 [ M) de i < K (o) + 106 m0) s @) = CK
We deduce from that above inequality (5.13) and (5.15) that

18 [ Ben)r) do < (1@ + 18wl o) = CK.

for almost any 7 in (0,7).

We prove (5.11). Indeed, thanks to lemma 5.7 of [21], there exist two positive
constants §, A such that,

(5.19) / M (v) dz dt < 5/ M(\Vu|) dz dt for all v € Wy Ly (Q).
Q Q
T (un
Taking v = Kg\“ ) in (5.19) and using (5.17), one has
Tk (un
(5.20) / M(M) dz dt < CK,
0 A
where C' is a constant independent of K and n. Which implies that,
C'K
(5.21) meas{(z,t) €Q: |uy| > K} < W%)
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where C’ is a constant independent of K and n. Finally,
Klim meas{(ac, t)eQ: |uy| > K} = 0 uniformly with respect to n.
— 00
We prove de following proposition:

Proposition 5.3. Let u, be a solution of the approximate problem (5.6)-(5.8),
then

(5.22) Up — U a.e. in Q,
(5.23) b (z,upn) — b(x,u) a.e. in Q,
(5.24) b(x,u) € L>(0,T; L'(Q)),

(5.25)  an (x,t,Tk(un), VTk(un)) — g in (Ly(Q)Y for o(IlLyy TIEy)
for some ¢y, € (Ly7(Q))"N.

(5.26) lim lim an (2, t, Up, Vn)Vuy, dz dt = 0.

Mmoo =0 Jm< up [ <m+1}

Proof. Proceeding as in [5, 9, 7], we have for any S € W2°°(R) such that S’ has a
compact support (supp S’ C [ K, K])

(5.27) B2(z,u,) is bounded in W, " Ly (Q),
and
Bg(x, un _
(5.28) OB, un) 4y ounded in L}(Q) + W L1 —(Q),

ot
independently of n.

As a consequence of (4.6) and (5.17) we then obtain (5.27). To show that (5.28)
holds true, we multiply the equation for w,, in (5.6) by S’(u,) to obtain

(5.29) % = diV(S’(un)an(t,x,un, Vun))
— 8" (un)an (2, £, iy Vitn) Viin + div(S’(un)d)n(un)) + f0S"(un) in D'(Q).

Where B§(z,r) = / S’(s)w
included in [—K, K], Ou8 may be replaced by Tk (u,) in each of these terms. As
a consequence, each term in the right hand side of (5.29) is bounded either in
W12 [+=(Q) or in L'(Q). As a consequence of (3.2), (5.29) we then obtain (5.28).
Arguing again as in [5, 7, 6, 9] estimates (5.27), (5.28) and (4.8), we can show (5.22)
and (5.23).

We now establish that b(z,u) belongs to L°°(0,T; L*(2)). To this end, recalling
(5.23) makes it possible to pass to the limit-inf in (5.18) as n tends to +oo and to
obtain

ds. Since supp S’ and supp S” are both

1
g/ﬂBK(x,U)(T) dz < (|| fllrr(@) + 1b(z, wo)ll 1 (e)) = C,
EJQTDE, 2010 No. 2, p. 10



for almost any 7 in (0,7). Due to the definition of Bk (x,s), and because of the
pointwise convergence of + B (z,u) to b(z,u) as K tends to +oo, which shows
that b(z,u) belongs to L>(0,T; L*(Q2)).

We prove (5.25). Let ¢ € (Ex(Q))N with [|¢||am.0 = 1. In view of the mono-
tonicity of a one easily has,
(5.30)

/ an, (z, t, T (un), VTk(un))gp do dt < / an, (z, t, T (un), VTk(un)) VT (uy) d dt
Q Q

+ /Q an (w,t,Tk(Un), (,0) VT (un) — ] dz dt.

and
(5.31)

—/ an (z,t,Tk(un),VTk(un))gp dx dt < / an (z,t,Tk(un),VTk(un))VTk(un) dx dt
Q Q

- /Q an (m,t,Tk(un), —go) [VTk(un) + o] dz dt,

since T} (u,,) is bounded in W, '* L3;(Q), one easily deduce that a, (x, t, Tr(un), VI (un))

is a bounded sequence in (L77(Q))Y, and we obtain (5.25).
Now we prove (5.26). We take of T} (un — Tin(uyn)) as test function in (5.6), we
obtain

(5.32) (M,Tl(un—Tm(un)»—i—/ an (2, t, Uy, Vup)Vu, de dt
ot {m<Jun|<m+1}

4 /Q div [/Oun B ()T} (r — Tm(r))] do dt = /anTl(un T (un)) da dt.

Using the fact that / (r)TY (r—Tp(r)) dz dt € Wy Ly (Q) and Stokes formula,
0

we get

(5.33) / B (z,un(T)) dx +/ a(z, t, Up, Vy)Vuy, de dt
< {m<|un|<m+1}

2
< [ Ui = Tonlwn)) do di+ | B (o, u0n) dn,
Q Q
where B (z,r) = / Mﬂ(s —Tn(s)) ds.
0 S

In order to pass to the limit as n tends to 400 in (5.33), we use B (z, un(T)) > 0
and (5.4)-(5.5), we obtain that

(5.34) lim an(z,t, Up, Vg )Vuy, de dt

=100 Jim< un | <m+1}

g/ \f| der dt+/ bz, uo)| dz.
{lu[>m} {|uo|>m}

Finally by (3.8), (3.9) and (5.34) we obtain (5.26).
(I
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* Step 3. This step is devoted to introduce for K > 0 fixed, a time regularization

w!, ; of the function T (u) and to establish the following proposition:

Proposition 5.4. Let u, be a solution of the approximate problem (5.6)-(5.8).
Then, for any k > 0:

(5.35) VTi(up) — VTi(u) ae. in Q,
(5.36)
an, (x,t,Tk(un),VTk(un)) — a(x,t,Tk(u),VTk(u)) weakly in (Ly;(Q))N,

(5.37) M(|VT(un)|) — M(|VTx(u)]) strongly in L'(Q),
as n tends to +00.
Let use give the following lemma which will be needed later:

Lemma 5.5. Under assumptions (3.1) — (3.9), and let (z,) be a sequence in
Wol’wLM(Q) such that,

(5.38) Zn = 2 in Wy La(Q) for o(IILa (Q), TEF(Q)),

(5.39) (an(2,t, 20, Van))n is bounded in (Ly;(Q)Y,

5.40 n(T,t, 20, Van) — an (2,1, 2n, V2xs) | |V, — Vzxs| dedt — 0,
(5.40) /Q[a(z 2y Vin) — an(z,t, 2 zx)}[z zx}x

as n and s tend to +0o, and where x5 is the characteristic function of

Qs = {(m,t) €Q; |Vz < s}

Then,

(5.41) Vz, — Vz ae inQ,

(5.42) lim an(z,t, 2, V)V, de dt = / a(z,t,z,Vz)Vzdrdt,
nmeeJQ Q

(5.43) M(|Vz,|) — M(|Vz]) in LYQ).

Proof. See [32]. O

Proof. (Proposition 5.4). The proof is almost identical of the one given in, e.g. [32].
where the result is established for b(z, u) = u and where the growth of a(z, t, u, Du)
is controlled with respect to w. This proof is devoted to introduce for k£ > 0 fixed,
a time regularization of the function T} (u), this notion, introduced by R. Landes
(see Lemma 6 and Proposition 3, p. 230 and Proposition 4, p. 231 in [24]). More
recently, it has been exploited in [10] and [15] to solve a few nonlinear evolution
problems with L' or measure data.

Let v; € D(Q) be a sequence such that v; — u in Wy " Lys(Q) for the modular
convergence and let 1; € D(Q) be a sequence which converges strongly to ug in
LY(9).
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Let wﬁj = Ty (vj)+e Ty (1p;) where Ty (v;), is the mollification with respect to
time of T (v;), note that w!' ; is a smooth function having the following properties:

owt' .
(5.44) L (Tiloy) = why), wh(0) = Te(wi), Juty] < K,
(5.45) wh; = Ti(u), + e " T(yh;) in Wy L (Q),
for the modular convergence as j — oc.
(5.46) Ti(u)y 4 e T (1) — Ti(u) in Wy " La(Q),

for the modular convergence as p — oo.
Let now the function h,, defined on R with m > k by: h,(r) = 1 if |r| <
m, h(r)=—[r|+m+1ifm<|r|<m+1and h(r) =0if [r| >m + 1.

Using the admissible test function ¢} | = (T (un) — wj;)m (un) as test func-
tion in (5.6) leads to
by (x, un)

(5.47) ( Oty 4 /Q an(, t, wn, Vun) (VT (un) — Vg ;) (uy) do dt

ot 7 rn,g,m

+/ an (@, t, wn, Vun) (T (un) — wi' ;) Vuphy, (u,) da dt

Q

+/ D (un) Vg, (un) (Ti (un) — wy';) da dt
{m<Jun|<m+1} 7

+ / @y, (tn ) () (VT ks (un) — Vwk',) da dt = / fngaﬁij,m dx dt.
Q Q

Denoting by €(n, j, i, i) any quantity such that,

lim lim lim lim e(n,j, u,2) = 0.
1—00 U—00 J—00 N—00

The very definition of the sequence wj';

; makes it possible to establish the fol-
lowing lemma.

Lemma 5.6. Let ¢! = (Tk(un) — Wt hm (uy), we have for any k > 0:

n,j,m 2,

Oby, (, Uy i L
(548) <%a @Z:]m«) > e(naja H’al)a

where (,) denotes the duality pairing between L*(Q) + W =1%L17(Q) and L>=(Q) N
Wo "Ly (Q).

Proof. See [34, 32]. O

Now, we turn to complete the proof of proposition 5.4. First, it is easy to see
that (see also [32]):

(5.49) 4@%@#Mtem$m

)

(5.50) /Q<I>n(un)hm(un)(VTk(un) = Vwy;) dz dt = e(n, j, p),
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and

(5.51) / Dy, (tn) Vuy (Ty (un) — wy;) da dt = e(n, j, p).
{m<Jun|<m1} ’

Concerning the third term of the right hand side of (5.47) we obtain that

(5.52) / an (2, Uy Vn ) Vg by, (un) (Tr (un) — wf ;) da dt
{m<|un|<m+1} ’

< 2k/ an (2, t, U, Vug)Vu, do dt.
{m<|un|<m+1}

Then by (5.26). we deduce that,
(5.53)

an (@, t, wn, V) Vun iy, (un) (T (un) — wy';) da dt < e(n, g, m).
{m<Jun|<m+1} ’
Finally, by means of (5.47)-(5.53), we obtain,
(5.54) /Qan(z, tyUn, V) (VT (un) — Vi ) (un) dz dt < e(n, j, 1, m).

Splitting the first integral on the left hand side of (5.54) where |u,| < k and |u,| > k,
we can write,

/Qan(x,t,un, V) (Vg (un) — Vwi ;) hm (un) do dt
= / an (2, t, T (un), VI (un)) (VT (un) — Vg )b (up) de dt
Q
—/ an (2, t, Uy, Vun)Vwﬁjhm(un) dz dt.
{lun|>k}
Since hy, (u,) = 0 if |up| > m + 1, one has

(5.55) /Q (2, s V) (VT () — Vol Y (1) it

= /Qan(:c,t, Tie(un ), VT (un)) (VT (un) — Vi) hm (uy) dz dt

7/ (3t T 1 () V1 () )Vl i () dae dt = Ty + I
{lun| >k}

In the following we pass to the limit in (5.55) as n tends to +oo, then j then p and
then m tends to +00. We prove that

I = /QcpmVTk(u)#hm(u)X{uM} dx dt + €(n, j, p).
Using now the term I; of (5.55), we conclude that, it is easy to show that,

(5.56) /Q an (x,t, T (un), vmw) (VT3 (un) = Vol Y (1) da dt

:/ [an(x,t,Tk(un),VTk(un)) — an(z,t, Ty (un), VTk(v5)X5)
Q
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x {VTk(un) - VTk(uj)Xﬂ B (1) da dt
+ /Q an, (m,t, T (un), VTk(vj)Xj) [VTk(un) = VT(v;)X; | hm (un) dz dt
+ /Q an, (:I:, t, Tr(un), VTk(un)) VTk(vj)thm(un) dx dt

,/ G (x,t, Tk (un), VTk(un)) Vwﬁjhm(un) de dt =Jy + Jo + J3 + Jy,
Q
where x; denotes the characteristic function of the subset

Ol = {(:z:,t) €Q : |VTi(vy)| < s}

In the following we pass to the limit in (5.56) as n tends to +oco, then j then p
then m tends and then s tends to +o0o in the last three integrals of the last side.
We prove that

(5.57) Jo = €(n, j),

(5.58) s = / VT (w)xs da dt + e(n, ),
and ¢

(5.59) Jy = —/ 0 VT (u) dz dt + e(n, j, p, ).
We conclude then that, ¢

(5.60)

/Q [an (m,t,Tk(un),VTk(un)) —ay, (m,t,Tk(un),VTk(u)Xs)} [VTk(un)—VTk(u)xs} dz dt

= /Q [an (:c, t, T (up), VTk(un)) —anp (:c, t, T (un), VI (u)xs)}
x {VTk () — VTk(u)xs} B () daz dt

+ /Q an (:c £, T (un), VTk(un)) {VTk(un) - VT/C(U)XS} (1= R (un)) da dt

— /Q an (x,t, T (un), VTk(u)xs) {VTk(un) - VTk(u)xs} (1 = hpm(uy)) dz dt.

Combining (5.48), (5.56), (5.57), (5.58), (5.59) and (5.60) we deduce,
(5.61)

/Q [an (m,t,Tk(un),VTk(un)) —ay, (m,t,Tk(un),VTk(u)xs)} [VTk(un)—VTk(u)xs} dz dt

< E(n,j, Hym, 5)'
To pass to the limit in (5.61) as n, j, m, s tends to infinity, we obtain

(5.62) lim lim {an(x,t,Tk(un),VTk(un))—an(x,t,Tk(un),VTk(u)xs)}

§—00 N—00 Q

X {VTk(un) - VTk(u)XS} dx dt = 0.
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This implies by the lemma 5.5, the desired statement and hence the proof of Propo-
sition 5.4 is achieved. O

* Step 4. In this step we prove that u satisfies (4.2).

Lemma 5.7. The limit u of the approximate solution w,, of (5.6)-(5.8) satisfies

(5.63) lim a(z,t,u, Vu)Vu dx dt = 0.

m=+00 J i< u|<m+1}

Proof. Remark that for any fixed m > 0 one has

/ an (2, t, Up, Vun)Vu, de dt

{m§|un,|§m+1}

= / an (2, t, Up, V) [VTmH(un) — VTm(un)} dx dt
Q

= / an (x,t,TmH(un),VTmH(un)) VTt (un) da dt
Q

— /Q an (:c, t, T (un), VTm(un)) VT, (uy)dedt

According to (5.42) (with z, = T, (un) or 2z, = Tryt1(un)), one is at liberty to pass
to the limit as n tends to +oo for fixed m > 0 and to obtain

(5.64) lim an (2, t, Up, Vg )V, de dt

=00 Jim< un | <m+1}

= [ alx,t, Ti1(u), Vi1 (u) | Vi1 (u) da dt
I )
/Qa(z,t,Tm(u),VTm(u)) VT (u) dxdt

= / a(x,t,u, Vu)Vu dz dt
{m<lul<m+1}

Taking the limit as m tends to +oo in (5.64) and using the estimate (5.26) it possible
to conclude that (5.63) holds true and the proof of Lemma 5.7 is complete. O

* Step 5. In this step, u is shown to satisfies (4.3) and (4.4). Let S be a function in
W?2°°(R) such that S’ has a compact support. Let K be a positive real number such

that supp(S’) C [-K, K]. Pointwise multiplication of the approximate equation
(5.6) by S’ (uy) leads to

O0B%(x Unp, . / "
(5.65) % — dw(S (un)an(z,t,un,Vun)) + S (up)an(x, t, un, Vg )Vuy,
— div (S’(un)q)(un)) + 5" ()P (un)Vu, = £S5 (u,) in D'(Q),

where Bg(x, z) = / S’(r)w
r

It what follows we pass to the limit as n tends to +oo in each term of (5.65).
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* Since S’ is bounded, and Bg(x, u,) converges to Bg(z,u) a.e. in @ and in L>(Q)

9B (x,un) 9Bs(zu) 4

weak *. Then 5 converges to =——5.== in D'(Q) as n tends to +o0.

* Since suppS C [—K, K], we have
S (un)an (x, t, tn, Vun) = S (un)an (x,t,TK(un),VTK(un)) a.e. in Q.

The pointwise convergence of u,, to u as n tends to 400, the bounded character of
S’, (5.22) and (5.36) of Lemma 5.4 imply that

S (up)an (x, t, T (un), VTK(un)) N S'(u)a(x, t, Tk (u), VTK(U)) weakly in (LW(Q))N,

for o(IILy7, I1Eys) as n tends to 400, because S(u) = 0 for |u] > K a.e. in Q. And
the term S’(u)a(m,t, Tk (u), VTK(U)) = S'(w)a(z, t,u, Vu) a.e. in Q.

* Since suppS’ C [-K, K], we have
S" (wn ) an (T, ty Uy Vn)Vuy, = S (up)ay, (x, t, Tk (un), VTK(un)) VTk (uy) a.e. in Q.

The pointwise convergence of S”(u,) to S”(u) as n tends to +o0, the bounded
character of S” and (5.22)-(5.36) of Lemma 5.4 allow to conclude that

S (up)an (@, t, Un, Vi)V, — S’(u)a(:c, t, Tk (u), VTK(u))VTK(u) weakly in L'(Q),
as n tends to +o0o. And
S"(u)a(m,t, Tr(u), VTK(U))VTK(U) = 8"(u)a(z,t,u, Vu)Vu a.e. in Q.

* Since suppS’ C [—K, K], we have S (un)®p (un) = S (un)®n(Tk (uy)) a.e. in Q.
As a consequence of (3.7), (5.3) and (5.22), it follows that:

S’ ()@, () — S (u)®(Tk (u)) strongly in (Ep(Q))Y,
as n tends to +00. The term S’(u)®(Tk (u)) is denoted by S’ (u)®(u).

x Since S € WH°(R) with suppS’ C [~K, K], we have S”(un)®, (un)Vu, =
D, (Tk (un))VS" (uy) a.e. in Q, we have, VS”(u,,) converges to V.S” (u) weakly in
Ly (Q)Y as n tends to 400, while ®,,(Tk (uy)) is uniformly bounded with respect
to n and converges a.e. in @ to ®(Tk(u)) as n tends to +oo. Therefore

S" ()P (un) Vi, — ®(Tk (u))VS" (u) weakly in Ly (Q).

x Due to (5.4) and (5.22), we have f,,S(uy,) converges to fS(u) strongly in L*(Q),
as n tends to 4-o0.

As a consequence of the above convergence result, we are in a position to pass
to the limit as n tends to +o0o in equation (5.65) and to conclude that u satisfies
(4.3).

It remains to show that Bg(z,u) satisfies the initial condition (4.4). To this end,
firstly remark that, S’ has a compact support, we have Bg(x,uy) is bounded in
L>*(Q). Secondly, (5.65) and the above considerations on the behavior of the terms
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OB% n
OB, un) 4 1y ounded in L1(Q) + W1 L—(Q). As
a consequence, an Aubin’s type Lemma (see e.g., [36], Corollary 4) (see also [16])
implies that BZ(z,u™) lies in a compact set of C°([0,T7]; L'(£2)). It follows that,
BZ(z,uy)(t = 0) converges to Bg(z,u)(t = 0) strongly in L' (). Due to (4.8) and
(5.5), we conclude that B%(z,u,)(t = 0) = Bé(z, uo,) converges to Bg(z,u)(t = 0)
strongly in L(€). Then we conclude that

of this equation show that

Bg(x,u)(t =0) = Bs(x,ug) in Q.

As a conclusion of step 1 to step 5, the proof of theorem 5.1 is complete.
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