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Abstract

In this paper we prove the existence of solutions of fractional impulsive semi-

linear evolution equations in Banach spaces. A nonlocal Cauchy problem is

discussed for the evolution equations. The results are obtained using fractional

calculus and fixed point theorems. An example is provided to illustrate the

theory.
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1 Introduction

Fractional differential equations are increasingly used for many mathematical models
in science and engineering. In fact fractional differential equations are considered as
an alternative model to nonlinear differential equations [8]. The theory of fractional
differential equations has been extensively studied by several authors [11, 16-19].
In [12, 14] the authors have proved the existence of solutions of abstract differential
equations by using semigroup theory and fixed point theorem. Many partial fractional
differential equations can be expressed as fractional differential equations in some
Banach spaces [13].

The nonlocal Cauchy problem for abstract evolution differential equation was
first studied by Byszewski [9]. Subsequently several authors have investigated the
problem for different types of nonlinear differential equations and integrodifferential
equations including functional differential equations in Banach spaces [2-4, 10, 20].
Mophou and N’Guérékata [22, 23, 24] and Balachandran and Park [5] discussed the
existence of solutions of abstract fractional differential equations with nonlocal initial
conditions.

Impulsive differential equations have become important in recent years as math-
ematical models of phenomena in both physical and social sciences. There has been a
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significant development in impulsive theory especially in the area of impulsive differ-
ential equations with fixed moments. Recently Benchohra and Slimani [6,7] discussed
the existence and uniqueness of solutions of impulsive fractional differential equations
and Ahmad and Sivasundaram [1] discussed the existence results for nonlinear im-
pulsive hybrid boundary value problems involving fractional differential equations.
Motivated by this work we study in this paper the existence of solutions of fractional
impulsive semilinear evolution equations in Banach spaces by using fractional calculus
and fixed point theorems.

2 Preliminaries

We need some basic definitions and properties of fractional calculus which are used
in this paper. By C(J, X) we denote the Banach space of continuous functions x(t)
with x(t) ∈ X for t ∈ J , a compact interval in R and ‖x‖C(J,X) = max

t∈J
‖x(t)‖.

Definition2.1. A real function f(t) is said to be in the space Cα, α ∈ R if there
exists a real number p > α, such that f(t) = tpg(t), where g ∈ C[0,∞) and it is said
to be in the space Cm

α iff f (m) ∈ Cα, m ∈ N.

Definition2.2. The Riemann-Liouville fractional integral operator of order β > 0 of
function f ∈ Cα, α ≥ −1 is defined as

Iβf(t) =
1

Γ(β)

∫ t

0

(t − s)β−1f(s)ds

where Γ(.) is the Euler gamma function.

Definition2.3. If the function f ∈ Cm
−1 and m is a positive integer then we define

the fractional derivative of f(t) in the Caputo sense as

dαf(t)

dtα
=

1

Γ(m − α)

∫ t

0

(t − s)m−α−1fm(s)ds, m − 1 < α < m.

If 0 < α < 1, then
dαf(t)

dtα
=

1

Γ(1 − α)

∫ t

0

f ′(s))

(t − s)α
ds,

where f ′(s) =
df(s)

ds
and f is an abstract function with values in X. For basic

facts about fractional derivatives and fractional calculus one can refer to the books
[15,21,25,26].
Consider the Banach space

PC(J, X) = {u : J → X : u ∈ C((tk, tk+1], X), k = 0, . . . , m and there exist

u(t−k ) and u(t+k ), k = 1, . . . , m with u(t−k ) = u(tk)}.
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with the norm ‖u‖PC = supt∈J ‖u(t)‖. Set J ′ := [0, T ]\{t1, . . . , tm}.

Consider the linear fractional impulsive evolution equation

dqu(t)

dtq
= A(t)u(t), t ∈ J = [0, T ], t 6= tk, (2.1)

∆u |t=tk = Ik(u(t−k )),

u(0) = u0,

where 0 < q ≤ 1 and A(t) is a bounded linear operator on a Banach space X,
Ik : X → X, k = 1, 2, · · · , m and u0 ∈ X, 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T ,
∆u|t=tk = u(t+k )− u(t−k ), u(t+k ) = lim

h→0+
u(tk + h) and u(t−k ) = lim

h→0−
u(tk + h) represent

the right and left limits of u(t) at t = tk.

Our Eq.(2.1) is equivalent to the integral equation

u(t) =







































u0 +
1

Γ(q)

∫ t

0

(t − s)q−1A(s)u(s)ds, if t ∈ [0, t1],

u0 +
1

Γ(q)

k
∑

i=1

∫ ti

ti−1

(ti − s)q−1A(s)u(s)ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1A(s)u(s)ds +

k
∑

i=1

Ii(u(t−i )), if t ∈ (tk, tk+1].

(2.2)

Definition 2.4. By a solution of the abstract Cauchy problem (2.1), we mean an
abstract function u such that the following conditions are satisfied:
(i) u ∈ PC(J, X) and u ∈ D(A(t)) for all t ∈ J ′;

(ii)
dqu

dtq
exists on J ′ where 0 < q < 1;

(iii) u satisfies Eq.(2.1) on J ′, and satisfy the conditions

∆u|t=tk = Ik(u(t−k )), k = 1, . . . , m,

u(0) = u0.

Now, we assume the following conditions to prove the existence of a solution of the
evolution Eq.(2.1).

(HA) A(t) is a bounded linear operator on X for each t ∈ J and the function t → A(t)
is continuous in the uniform operator topology.

(HI) The functions Ik : X → X are continuous and there exists a constant L1 > 0
such that

‖Ik(u) − Ik(v)‖ ≤ L1‖u − v‖, for each u, v ∈ X and k = 1, 2 · · · , m.

For brevity let us take
T q

Γ(q + 1)
= γ.

Theorem 2.1 If the hypotheses (HA) and (HI) are satisfied, then Eq.(2.1) has a
unique solution on J .
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Proof: The proof is based on the application of Picard’s iteration method. Let
M = max

0≤t≤T
‖A(t)‖ and define a mapping F : PC([0, T ] : X) → PC([0, T ] : X) by

Fu(t) = u0 +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1A(s)u(s)ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1A(s)u(s)ds +
∑

0<tk<t

Ik(u(t−k )). (2.3)

Let u, v ∈ PC(J, X). Then from Eq.(2.3), we have for each t ∈ J

‖Fu(t) − Fv(t)‖ ≤
T q

Γ(q + 1)
M

(

m + 1
)

‖u − v‖ + mL1‖u − v‖.

Then by induction we have

‖F nu(t) − F nv(t)‖ ≤

(

Mγ(m + 1) + mL1

)n

n!
‖u − v‖.

Since 1
n!

(

Mγ(m + 1) + mL1

)n
< 1 for large n, then by the well-known generalization

of the Banach contraction principle, F has a unique fixed point u ∈ PC([0, T ] : X).
This fixed point is the solution of Eq.(2.1).

3 Semilinear Evolution Equation

Now consider the semilinear fractional impulsive evolution equation

dqu(t)

dtq
= A(t)u(t) + f(t, u(t)), t ∈ J = [0, T ], t 6= tk, (3.1)

∆u |t=tk = Ik(u(t−k )),

u(0) = u0,

where A(t) is a bounded linear operator and f : J × X → X is continuous. This
Eq.(3.1) is equivalent to the integral equation

u(t) = u0 +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1A(s)u(s)ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1A(s)u(s)ds +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1f(s, u(s))ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1f(s, u(s))ds +
∑

0<tk<t

Ik(u(t−k )). (3.2)

We need the following additional assumptions to prove the existence of solution of
the Eq.(3.1).
(Hf) f : J ×X → X is continuous and there exist constants L2 > 0, N > 0 such that

‖f(t, u) − f(t, v)‖ ≤ L2‖u − v‖ for all u, v ∈ X.
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and N = max
t∈J

‖f(t, 0)‖.

Theorem 3.1. If the hypotheses (HA),(HI),(Hf) are satisfied and if γ(m+1)(M+L2)
+ mL1 < 1

2
then the fractional impulsive evolution Eq.(3.1) has a unique solution on

J .
Proof. Let Z = PC(J, X). Define the mapping Φ : Z → Z by

Φu(t) = u0 +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1A(s)u(s)ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1A(s)u(s)ds +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1f(s, u(s))ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1f(s, u(s))ds +
∑

0<tk<t

Ik(u(t−k )). (3.3)

and we have to show that Φ has a fixed point. This fixed point is the solution of
Eq.(3.1). Choose r ≥ 2

(

‖u0‖ + (m + 1)Nγ
)

. Then we can show that ΦBr ⊂ Br,
where Br := {u ∈ Z : ‖u‖ ≤ r}. From the assumptions we have

‖Φu(t)‖ ≤ ‖u0‖ +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖A(s)‖‖u(s)‖ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1‖A(s)‖‖u(s)‖ds

+
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖f(s, u(s))‖ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1‖f(s, u(s))‖ds +
∑

0<tk<t

‖Ik(u(t−k ))‖

≤ ‖u0‖ +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖A(s)‖‖u(s)‖ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1‖A(s)‖‖u(s)‖ds

+
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1
(

‖f(s, u(s)) − f(s, 0)‖ + ‖f(s, 0)‖
)

ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1
(

‖f(s, u(s))− f(s, 0)‖ + ‖f(s, 0)‖
)

ds

+
∑

0<tk<t

‖Ik(u(t−k ))‖

≤ ‖u0‖ +
T q

Γ(q + 1)

(

mMr + Mr + m(L2r + N) + (L2r + N)
)

+ mL1r

= ‖u0‖ + (m + 1)γN + r
(

γ(m + 1)(M + L2) + mL1

)

≤ r.
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Thus, Φ maps Br into itself. Now, for u1, u2 ∈ Z, we have

‖Φu1(t) − Φu2(t)‖ ≤
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖A(s)
(

u1(s) − u2(s)
)

‖ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1‖A(s)
(

u1(s) − u2(s)
)

‖ds

+
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖f(s, u1(s)) − f(s, u2(s))‖ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1‖f(s, u1(s) − f(s, u2(s))‖ds

+
∑

0<tk<t

‖Ik(u1(t
−
k )) − Ik(u2(t

−
k ))‖

≤
T q

Γ(q + 1)

(

m(M + L2) + (M + L2)
)

‖u1 − u2‖ + mL1‖u1 − u2‖

≤
(

γ(m + 1)(M + L2) + mL1

)

‖u1 − u2‖

≤
1

2
‖u1 − u2‖.

Hence Φ is a contraction mapping and therefore there exists a unique fixed point
u ∈ Br such that Φu(t) = u(t). Any fixed point of Φ is the solution of Eq.(3.1).

4 Nonlocal Cauchy Problem

In this section we discuss the existence of solution of the impulsive evolution equation
(3.1) with nonlocal condition of the form

u(0) + g(u) = u0 (4.1)

where g : PC(J, X) → X is a given function which satisfies the following condition.

(Hg) g : PC(J, X) → X is continuous and there exists a constant G > 0 such that

‖g(u) − g(v)‖ ≤ G‖u − v‖PC for u, v ∈ PC(J, X).

Theorem 4.1. If the hypotheses (HA),(HI),(Hf) and (Hg) are satisfied and if γ(m+1)
(M+L2)+mL1+G < 1

2
then the fractional impulsive evolution Eq.(3.1) with nonlocal

condition (4.1) has a unique solution on J .
Proof: We want to prove that the operator Ψ : Z → Z defined by

Ψu(t) = u0 − g(u) +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1A(s)u(s)ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1A(s)u(s)ds +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1f(s, u(s))ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1f(s, u(s))ds +
∑

0<tk<t

Ik(u(t−k )) (4.2)
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has a fixed point. This fixed point is then a solution of Eq.(3.1) and Eq.(4.1). Choose
r ≥ 2

(

‖u0‖ + ‖g(0)‖ + (m + 1)Nγ
)

. Then it is easy to see that ΨBr ⊂ Br.
Further, for u1, u2 ∈ Z, we have

‖Ψu1(t) − Ψu2(t)‖ ≤
(

G+γ(m + 1)(M + L2) + mL1

)

‖u1(t) − u2(t)‖

≤
1

2
‖u1(t) − u2(t)‖.

The result follows by the application of contraction mapping principle.

Our next result is based on the following well-known fixed point theorem.

Krasnoselskii Theorem. Let S be a closed convex nonempty subset of a Banach
space X. Let P, Q be two operators such that (i) Px + Qy ∈ S whenever x, y ∈ S;
(ii) P is a contraction mapping;
(iii) Q is compact and continuous.
Then there exists z ∈ S such that z = Pz + Qz.

Now, we assume the following condition instead of (Hf) and apply the above fixed
point theorem.

(Hf)
′

f : J × X → X is continuous and there exists a continuous function µ ∈ L1(J)
such that ‖f(t, u)‖ ≤ µ(t), for all (t, u) ∈ J × X.

Theorem 4.2. Assume that (HA),(HI),(Hf)
′

,(Hg) hold. If G+γ(m+1)M+mL1 < 1,
then the fractional evolution Eq.(3.1) with nonlocal condition (4.1) has a solution on
J .
Proof. Choose

r ≥
‖u0‖ + ‖g(0)‖ + γ(m + 1)µ0

1 − (G + γ(m + 1)M + mL1)

where µ0 = supt∈J µ(t) and define the operators P and Q on Br as

Pu(t) = u0 − g(u) +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1A(s)u(s)ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1A(s)u(s)ds +
∑

0<tk<t

Ik(u(t−k ) and

Qu(t) =
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1f(s, u(s))ds +
1

Γ(q)

∫ t

tk

(t − s)q−1f(s, u(s))ds.
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For any u, v ∈ Br, we have

‖Pu(t) + Qv(t)‖

≤ ‖u0‖ + ‖g(u) − g(0)‖ + ‖g(0)‖ +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖A(s)‖‖u(s)‖ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1‖A(s)‖‖u(s)‖ds +
∑

0<tk<t

‖Ik(u(t−k )‖

+
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖f(s, v(s))‖ds +
1

Γ(q)

∫ t

tk

(t − s)q−1‖f(s, v(s))‖ds

≤ ‖u0‖ + ‖g(0)‖ + γ(m + 1)µ0 + r(G + (m + 1)γM + mL1)

≤ r.

Hence, we deduce that ‖Pu + Qv‖ ≤ r.
Next, for any t ∈ I, u, v ∈ X we have

‖Pu(t) − Pv(t)‖

≤ ‖g(u) − g(v)‖ +
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖A(s)‖‖u(s) − v(s)‖ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1‖A(s)‖u(s) − v(s)‖ds +
∑

0<tk<t

‖Ik(u(t−k )) − Ik(v(t−k ))‖

≤ G‖u − v‖ + γ(m + 1)M‖u − v‖ + mL1‖u − v‖

≤ (G + γ(m + 1)M + mL1)‖u − v‖.

And since G + γ(m + 1)M + mL1 < 1, then P is a contraction mapping.
Now, let us prove that Q is continuous and compact.

Let {un} be a sequence in Br, such that un → u in Br. Then

f(s, un(s)) → f(s, u(s)), n → ∞

because the function f is continuous on I × X. Now, for each t ∈ I, we have

‖Qun(t) − Qu(t)‖ ≤
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖f(s, un(s)) − f(s, u(s))‖ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1‖f(s, un(s) − f(s, u(s))‖ds

→ 0 as n → ∞.

Consequently, lim
n→∞

‖Qun(t) − Qu(t)‖ = 0. In other words, Q is continuous.

Let’s now note that Q is uniformly bounded on Br. This follows from the inequality

‖Qu(t)‖ ≤
1

Γ(q)

∑

0<tk<t

∫ tk

tk−1

(tk − s)q−1‖f(s, u(s))‖ds

+
1

Γ(q)

∫ t

tk

(t − s)q−1‖f(s, u(s))‖ds.

≤ γ(m + 1)µ0.

EJQTDE, 2010 No. 4, p. 8



Now, let’s prove that Qu, u ∈ Br is equicontinuous. Let t1, t2 ∈ J , t1 < t2, and let
Br be a bounded set in X. Let u ∈ Br, we have

‖Qu(t2) − Qu(t1)‖

≤
1

Γ(q)

∫ t2

0

(t2 − s)q−1‖f(s, u(s))‖ds +
1

Γ(q)

∫ t1

0

(t2 − s)q−1‖f(s, u(s))‖ds

≤
1

Γ(q)

∫ t1

0

(

(t2 − s)q−1 − (t1 − s)q−1
)

‖f(s, u(s))‖ds

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1‖f(s, u(s))‖ds

≤
µ0

Γ(q + 1)

(

2(t2 − t1)
q − tq1 + tq2

)

.

As t1 → t2, the right hand side of the above inequality tends to zero. In short we have
proven that Q(Br) is relatively compact for t ∈ I. By Arzela Ascoli’s theorem, Q is
compact. Hence by the Krasnoselskii theorem there exists a solution of the problem
(3.1) with nonlocal condition (4.1).

5 Example

Consider the following impulsive fractional differential equation

dqu(t)

dtq
=

1

20
e−t|u(t)| +

e−t|u(t)|

(9 + et)(1 + |u(t)|)
, t ∈ J, t 6=

1

2
, 0 < q ≤ 1, (5.1)

∆u|t= 1

2

=
|u(1

2

−
)|

8 + |u(1
2

−
)|

, (5.2)

u(0) = u0. (5.3)

Take J := [0, 1] ⊂ R+,

A(t) =
1

20
e−tI,

f(t, u) =
e−tu

(9 + et)(1 + u)
, (t, u) ∈ J × X, and

Ik(u) =
u

8 + u
, u ∈ X.

Let u, v ∈ X and t ∈ J . Then we have

‖f(t, u) − f(t, v)‖ =
e−t

(9 + et)

∣

∣

∣

u

(1 + u)
−

v

(1 + v)

∣

∣

∣

=
e−t|u − v|

(9 + et)(1 + u)(1 + v)

≤
e−t

(9 + et)
|u − v|

≤
1

10
|u − v|.
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Hence the condition (Hf) holds with L2 = 1
10

. Let u, v ∈ X. Then we have

‖Ik(u) − Ik(v)‖ = |
u

8 + u
−

v

8 + v
| =

8|u − v|

(8 + u)(8 + v)
≤

1

8
|u − v|.

Hence the condition (HI) holds with L1 = 1
8
. Here M = 1

20
. We shall check that

condition γ(m + 1)(M + L2) + mL1 < 1
2

is satisfied with m = 1. Indeed

γ(m + 1)(M + L2) + mL1 < 1/2 ⇔ Γ(q + 1) >
4

5
, (5.4)

which is satisfied for some q ∈ (0, 1]. Then by Theorem 3.1 the problem (5.1)-(5.3)
has a unique solution on [0,1] for the values of q satisfying (5.4).

Acknowledgement. The authors are thankful to the referee for the improvements
of the paper.
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