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1 Introduction

The study of problems of elliptic equations and variational problems with p(x)-growth con-
dition has attracted more and more attention in recent years. It possesses a solid background
in physics and originates from the study on electrorheological fluids (see Razi¢ka [12]) and
elastic mechanics (see Zhikov [14]). It also has wide applications in different research fields,
such as image processing models (see e.g. [5,9], stationary thermorheological viscous flows
(see [1]) and the mathematical description of the filtration processes of an ideal barotropic gas
through a porous medium (see [2]).
In this paper, we are concerned with the study of the nonhomogeneous eigenvalue prob-
lem
A(|Au P72 Au) + A(|Au P22 Au) + V (x) [u]*0) 2y
= A(Ju|" @2y 4 u|2M) 2y, in Q, (P)
u=Au=0, onoaQ),

where Q is a bounded domain of RN with smooth boundary, A is a real number, V is an
indefinite weight function, and p1, p2, 41, 42, @ are continuous functions on ().
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The study of fourth order nonlinear eigenvalue problems involving variable exponents
growth conditions has captured a special attention in the last few years; see e.g. [3,4,8, 11].
We give in what follows a concise but complete image of the actual stage of research on this
topic.

In the case that q1(x) = g2(x) = g(x) for any x € Q and V = 0 in Q, Ge and Zhou [8]
established the existence of two positive constants Ag and A; with Ag < Ay such that any
A € [A1,+00) is an eigenvalue, while and A € (0,A¢) is not an eigenvalue of the above
problem.

The same problem, for V(x) = 0, p1(x) = pa2(x) and q1(x) = g2(x) is studied by Ayoujil
and Amrouss in [3]. The authors established the existence of infinitely many eigenvalues for
problem (P) by using an argument based on the Ljusternik-Schnirelmann critical point theory.
Denoting by A the set of all nonnegative eigenvalues, they showed that sup A = 400 and they
pointed out that only under special conditions, which are somehow connected with a kind of
monotony of the function p(x), we have inf A > 0 (this is in contrast with the case when p(x)
is a constant; then, we always have inf A > 0).

This paper is a natural outgrowth of the results in [8]. We consider the eigenvalues for a
fourth order nonlinear eigenvalue problem (P) with the potential V # 0 and g1 # g2 on Q) in
the right-hand side.

In this paper we study problem (P) under the following assumptions:

H(p1, P2 91,92, %) :

1<p(x)<qgy <qp <a(x)<qy <qf <pi(x) <5, VxeQ,

N[ Z

sz(x) —
t TP v
qg; < N—2p2(x)’ x €,

where g, = min, 5 ¢;(x) and g = max,_5q:(x) (i = 1,2);

H(V):V e L'®(Q), withr € C(Q) and r(x) > N vxe Q.

mMn—p’/
ming &

Inspired by the above-mentioned papers, we study problem (P) from a more extensive
viewpoint. More precisely, we will show the existence of two constants Ag and A with Ag < A4
such that any A > A; is an eigenvalue of problem (P) while any A < Ay is not an eigenvalue
of problem (P).

This paper is composed of three sections. In Section 2, we recall the definition of variable
exponent Lebesgue spaces, Lp(x)(()), as well as Sobolev spaces, Wlfp(x)(ﬂ). Moreover, some
properties of these spaces will be also exhibited to be used later. In Section 3, we give the
main results and their proofs.

2 Preliminaries

In this section we first recall some facts on variable exponent spaces L?*)(Q)) and W) (()).
For details, we refer to [6,7,10].
Set
C+(Q)={heC(Q): h(x) >1for any x € Q}.

Define
h™ = minh(x), ht = maxh(x) foranyh e C.(Q).

xeQ xeQ
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For any p € C(Q)), we define the variable exponent Lebesgue space:

LPe(Q) = {u : u is a measurable real value function / u(x)[PWdx < +00} ,
0

with the norm |ul ) = |ulp) = inf{A >0: [, |@\p(x)dx < 1}, and define the variable
exponent Sobolev space

WEPE (Q) = {u € LPY(Q) : D*u e LPX(Q), |a| <k},
with the norm || yyipe ) = [[llkp) = | |Zk | D%l
al<

We remember that spaces LP(*)(Q)) and WEP(¥)(Q) are separable and reflexive Banach
spaces. Denoting by Wg’p =) (Q) the closure of CP(Q) in WkP()(Q).

For p(x) € C,(Q), by L1¥)(Q)) we denote the conjugate space of LP*)(Q) with ﬁ +
q(lT) = 1, then the Holder’s type inequality

1 1
/Q |uo|dx < <p + q> el lolw)y,  # € LPY(Q), 0 e L1V(Q)  (21)

then the following relations hold

Uy <1(=1,>1) & p() <1(=1,>1), 2.2)
- +

[ulpeey) > 1= full < p(u) < full, (23)
+ _

ulpey < 1= [ulf oy < p(u) < Jul . (2.4)

un — | p(x) = 0= p(up —u) — 0. (2.5)

Definition 2.1. Assume that spaces E, F are Banach spaces, we define the norm on the space
X:=ENFas [lullx = [lulle + [Jullr

In order to discuss problem (P), we need some theories on space
o bpix) 2,pi(x)
X; =W, Q)W (Q)

(i = 1,2). Since p1(x) > p2(x) for any x € Q, so the space Wg’pl(x)(ﬂ) is continuously
embedded in Wol’p 2() (), W2n ) (Q) is continuously embedded in W>P2(*)(Q)), so X; is con-
tinuously embedded in X>.

From the Definition 2.1, it follows that for any u € Xy, [lull1 = [[ul1px) + [4ll2,p(x), thus
[ullh = Tulp) + [Vl pey + Ejaj=2 [Du] ()

In Zang and Fu [13], the equivalence of the norms was proved, and it was even proved
that the norm |Au|,(,) is equivalent to the norm ||ul[; (see [11, Theorem 4.4]).
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Let us choose on X; the norm defined by |[u[[; = |Aul,,). Note that, (X1, || - [|1) is also
a separable and reflexive Banach space. Similar to (2.2),(2.3), (2.4) and (2.5), we have the
following, define mapping p; : X; = R by

pr(u) = [ |8ul" @,
QO

then the following relations hold

Hqu <l(=1,>1)epmu)<l(=1>1), (2.6)
lully > 1=l < pr(u) < [lullf (2.7)
N _
luli <1 = Jullf <pi(u) < [lull] (2.8)
|y —ully = 0< p1(uy —u) — 0. (2.9)
Hereafter, let
( Npi() N
s _ ) N=2pi(x)’ prx) < 27
pi(x) = N
+OO, Pl(x> 2 E/
and )
Npa(x N
sy ) N=2py(x)’ pa(x) < 27
ps(x) = N
+OO, p2<x) 2 E

Remark 2.2. If h € C,(Q) and h(x) < p}(x) (i = 1 or 2) for any x € Q, by Theorem 3.2 in [3],
we deduce that X; is continuously and compactly embedded in L") (Q)).

Remark 2.3. Since py(x) < p1(x) for any x € Q it follows that p3(x) < pj(x), using condition
H(p1, p2, 41,92, &) we have a compact embedding X; — L1 (Q) and X; — L2()(Q) with
(i=1,2).

3 Main results and proofs

Since p2(x) < p1(x) for any x € Q) it follows that W&’p 1®) (Q) and W271(¥) () are continuously
embedded in Wé’p 2(x) (Q) and W2P2(¥)(Q)) respectively. Thus, a solution for a problem of type
(P) will be sought in the variable exponent space X; = Wé’p 1®) (Q) N W) ().

We say that A € R is an eigenvalue of problem (P) if there exists u € X;\{0} such that

/ (\Au|p1(")_2+|Au\”2(x)_2>AuAvdx+/ V(%) |u|* 2 y0dx
o o
- )\/ <|u|‘71(x)_2 + |u|’72(x)_2> uvdx =0,
0

for all v € X;. We point out that if A is an eigenvalue of problem (P), then the corresponding
eigenfunction u € X;\{0} is a weak solution of problem (P).
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Define

]u\“(")dx

Ay = inf fQ Pl ’Au’p dx + fQ p ‘Au’p dx+ fQ
LT ex\ (o) fQ \u|q dx+ fQ ]u\‘i

tX

Our main result is given by the following theorem.

Theorem 3.1. Assume that H(p1, p2, 91,92, &) holds. Then each A € [Aq, +0c0) is an eigenvalue of
problem (P). Furthermore, there exists a constant Ay such that Ag < Ay and any A € (—oo, Ag) is not
an eigenvalue of problem (P).

Proof. The proof is divided into the following five steps.

Step 1. For each € > 0, there exists c; > 0 such that

/QZ((;‘))W’&(X)M SS[/QM( )]Au\”l )dx + e )]Au\”z } -

Vi [ (Il + ") dx

for any u € Xj.

Since r(x) > r~ on Q, it follows that L'®)(Q) C L'®)" (Q). Note that r(x) > X for each
x € O, which implies that V € L (Q) and r~ > &,

Applying the Holder’s inequality, we get

ul®

L vl dx < v, = VI Il -y, 62

where %_ + (rl)/ =1.

Now for every ¢ > 0, we can show that for any s € (1, 75— ), there exists C, > 0 such that

uls < elAuly- + Clhlul,-,  Yu € Wp™ (Q) N W (Q). (3.3)

Indeed, assume it is not true for each ¢ > 0. Then there exists ¢ > 0 and a sequence
{v.} C W™ (Q) NW>* (Q) such that |v,]s = 1 and

€0|Avy |4 + n|onla- < 1, Vn € N.

So, sequence {v,} is bounded in Wy (Q) NW>* (Q) and |v,|,- — 0,as n — +oo. Thus,
up to a subsequence, still denote by {v,}, we may assume that there exists v € W™ (Q) N
W24 (Q)), such that v, — v in W&’“i (Q) NW** (Q) and actually v = 0. Since s € (1, F4—),
it follows by Remark 2.2 that W&’“i (Q) N W2 (Q) is compactly embedded in L*(Q)), which
implies that v, — 0 in L°(Q)). On the other hand, since |v,|s = 1 for each n € N, we deduce
that |v|; = 1, which is a contradiction. Hence (3.3) is true.

Note that r= > “ﬂ, and (r7),a” < N 5= From (3.2) and (3.3), we have

L VeIl dx < Vi, jul

< |V, (e|duly- + CLldul, ) (34)
<28 |V, Al 42 TL(CH |V, [ult,
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for all u € W™ (Q) N W24 (Q).
Combining the similar arguments as those used in the proof of relation (3.4) with r~ > %
We know that there exists C/ > 0 such that

+_
/ V()| Ju)* dx < 2% e |V, |Au|“++2"‘ e vy, |u]a+, (3.5)

for all u € W (Q) N W22 (Q).

By virtue of hypothesis H(p1, p2, 41,42, &), we deduce that a~ < a™ < p;(x) forany x € Q
and thus X; € Wy (Q) N W2 (Q) and X; C W&”"+ (Q) N W2 (). Hence, relations (3.4)
and (3.5) are true for any u € Xj.

On the other hand, by pa(x) < &~ < a(x) < at < p1(x) for each x € O, we deduce that

‘/ (x)|u|* dx

) 1 1
Aul® + [Aul<") dx < 2pF / ( Au|Pr® Au PZ(X))dx. 3.7
o (o 8y e < 2pf [ { sl @ 4 sl 67)
From (3.4), (3.5), (3.6) and (3.7), we have

‘/ (x)]u|* dx

< 7/ V([ + [u])dx,  Yue X (3.6)

and

< = [ VOl + [l )i

1 - _ _ _ _ _
e R N S CON

+ﬂ*wﬂvwmmﬁ+ﬂ*%qw7wrMﬁ}
(3.8)

zpﬁillv‘r’ a a at myat a at
< | & ([Bufp +[Aufe) + ()" (Julp + |ulz)
at—1
< 2V gt [ (St + o
& o \p1(x) pa(x)
€ [ (e -+l s,
Combining the last inequality with arbitrariness of ¢, we infer that relation (3.1) is true.
Step 2. We show that
Jastm e ]Au\” dx+fQ o |Au\F’ dx+fQ e \u|"‘(x)dx . 69)
llufl 1= +-o0 fQ dx + fQ |”|q2 .
and
. Joyt gldulPWdx + [ s Pl o [BulP ) dx + fQ ol |u|”‘(")dx . 6.10)
[t —0 fQ |u|‘71 dx—i—fQ |u|‘12 ’ ’

Since q1(x) < a”,a™ < ga(x),Vx € O, we deduce that for every x € Q and u € X,

()] 4 ()" < 2(Ju(x)|) + fu(x) 20,
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which implies that
Jou@)|* + [u(x)[*")dx

3.11
TGO+ ) = -
From Step 1, we find that for ¢ € (0,1) there exists ¢, > 0 such that
fQ e |Au|p dx+f0 o |Au|P dx+fQ a( |u|“(x)dx
T TR T
f (|Au|P(x dx + |Au|P2())dx — eVl Jo(Jul® + lu|*" )dx
(3.12)

- qi fQ || 1) 4 |u|92())dx
2

for any u € Xj.
By (3.11) and (3.12), there exist some positive constants c; and ¢, such that

Jamm |Au|p1 dx+f0 o ol aulP dx+f0 . |u|“(x)dx
fQ ]u\ql dx—i—fﬂ ’u“h )dx
[ (|Au|Pr®dx 4 | Au |2 ())dx

fQ(’u“h(x) -+ |u"h(x))dx

i 5| _CZ‘V|r(x) (313)

for any u € Xj.
Note that g7, g5 < NI\_[’;;(;()X) < NI\_’glp(lx()x), Vx € Q. So the embedding X; — L‘hi(Q) (i=1,2)

is continuous and compact. Thus, for any u € Xj, there positive constant c3, such that

‘”Lﬁ < c3|u|;. (3.14)

Thus, by (3.14), we have
1 1
u| 2 dx + u| () dx
bt 030"
< /(,u‘ql(x)+|u,qz(ﬂ)dx
Q

< [ Qul o+ Jul -+ fuffz 4 Jul )
QO

(3.15)

I TPTL R A TRRTT S P TITT S -TRRIL 4
< cg' lullyh + e [lully" +eg® flully® +cs® [full*-
Hence, from (3.13) and (3.15), for any u € X; with ||u||; > 1, there exists positive constant
¢4, such that

Jovtm jlAulm® dx+f0 ool o[ BulP dx+fQ ol |u!"‘(x)dx
fQ |”|q1 dx+fQ |”|q2
Jo
>0 — 0|V
|Au|pl (316)
Z fQ 9 9 9 ~e2lVlr
lullt" + [[ully +||MH1 + [lully
P
u
> o el o[V

— — —
T+ [l + el + (]l
— 400, as |jul|; = Foo,
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because p; > q{ > q; > g, > g, . So, the relation (3.9) holds.
On the other hand, using (3.13) and (3.14), for any u € X; with |ju]|; < 1 small enough,
there exists positive constant cs, such that

fQ o ]Au|” dx-l—fQ ol |Au\p2 dx-l—fQ al |u|”‘(")dx
o ok dx+f0 ol
Joo 18]
> — (2 |4
Jo gyl dx+f0 Sl Vi
(3.17)
fQ ’AMVJZ
> Cs P P q+ 0 _CZIV‘r(x)
laelly" =+ [laelly" - [laelly + [laelly®
o172
> Cy ! T _C2|V|r(x)

a5 qf >
el [l [fael 32+ [Jae]l32

Since py < q, < q5 <gq; <gq{, passing to the limit as ||u|[; — 0 in the above inequality we
deduce that relation (3.10) holds true.

Step 3. There exists 1y € X;\{0} such that

Jor oy [ ButolP Fddx + [ s Ao |2 dx+f0 v ol Wdx R
= A1
o Ol 1 Jy o e
In fact, let {u,} C Xi \ {0} be a minimizing sequence for A, that is,
. Jor 5| B |1 dx+fg ot By P2 dx—i—fQ P |y 2 . 618
n—oco fQ ;i ’un’lh dx_|_ fQ |un|f12

By Step 2, we have {u,} is bounded in Xj. Since X is reflexive it follows that there exists

ug € Xji such that u, — ug in X;. On the other hand, the function fQ |Au|p1 )dx +
fQ |Au|’”2 Jdx : X; — R is a convex function, hence it is weakly lower semi-continuous,
that 1s
o 1 N 1

lim inf / | At |1 dx + | Aut, |72 dx

e \Jo pi(x) a p2(x) (3.19)
1 1 '
> (/ | Autg| P dx + | Aug|P2* dx)
a p1(x) a p2(x)
Note that X; is compactly embedded in L% (Q)(i = 1,2), thus,

Uy, — ug  in L% (Q) (i = 1,2). (3.20)

y (2.9) and (3.20), it is easy to see that

nreo [%2 )
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On the other hand, by X; < L™ ()(Q)), we know that

’/ x) |ty — ug|*®dx < 2|V |ty — 11p|*)
r'(x)
< 2| V() [t = 0l )
— 0, asn — oo,
where
L {Jn [un — o a(yr(x) = 1,
=, Jun — ol <1,
which implies that
lim [V ()t = /Q V() o)™ dx. (3.22)

In view of (3.19), (3.21) and (3.22), we obtain

Jou ok 1o [P0 + [ s Aug [P + [y T fug |+ dx

— Ay
qu |ug |1 (> dx—i—fQ |u0]”/2 )dx !

if Uup ;ﬁ 0.
It remains to show that u( is nontrivial. Assume the contrary. Then u, — 0 in X; and
uy — 0 in L&) (Q) for any § € C(Q) with 1 < 6(x) < pi(x) on Q. Thus, we have

1 1
lim / 1y |1 dx 4 Uy QZ(X)dx} =0 3.23
and v
im [ Y8 00 — o, (3.24)

n=eo Jo a(x)

Let ¢ € (0, A1) be fixed. By (3.18) we deduce that for n large enough we have

/ | A, |P1 ) dx + | Au, | P2 dx+/ *)dx
Q Pl( ) Q p2 ( )
—A1</ |, | 1 dx—l—/ |un\”’2(x)dx>’
0 q1(x)
s(/ ! |t |16 dx+/ 1]un]‘72(x)dx>,
o q1(x) 0 q2(x)
which yields that
()\1_5)</ 1|un|‘71(")dx+/ 1\un\‘72(x)dx>
Qq (x) a q2(x)
< / | Aty |1 dx+/ oyl 2 dx+/ (x) 7 A[E (3.25)
o pi(x) (x)
<(A1+e)</ L|un\ Y dx + 1|1,tn|‘72"dx>.
0 q1(x) 0 q2(x)
Combining (3.23), (3.24) and (3.25), we have
lim Aty PO dx 4 / |Aun|’7 dx = 0, (3.26)
n—oo JO Pl( )
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By (2.9) and (3.26), we have
up, -0 in Xy, thatis ||u,ly — 0.
From this information and relation (3.10), we get

. fQ e |Aun|P dx+fQ e |Aun|i7 dx+f01x |11, |#(%) x:+oo
14 [0 qu |14y, |71 (x dx—l—fQ \un\‘iz

and this is a contradiction. Thus ug # 0.
By Step 3, we conclude that there exists up € Xj \ {0} such that

|u0|”‘(x)dx

fﬂp | Aug|Prx dx+f0p | Aug|P2(x dx+f0
fQ ’uO"h dx_|_f0 |u0"72

o pr% ]Au|”1 dx—i—pr | Au|p2(x dx+fQ
ueX;\{0} Ja s luln® dx+fo ol =)

(X

M=

\u|"‘(x)dx

06

Then for any v € X; we have

Jo = e \A(uo +t0) | Mdx + [ = ol |A(uo +tv)|P2Mdx + [ V(x)| (1o + tv)|*®dx
=0.
dl‘ fQ e |u0+tv|‘71( dx—i—fQ ) |uo+tv|‘72 0
A simple computation yields
</ (|Ato |2 4 | A |2 ) )Aquvdx+/ x)| | *) uovdx>
@)
</ @) x—}—/ |uo|‘72 dx)
(3.27)

1
— AuglP'®dx + [ ——|Aug|P2* dx+/ o |4 >

X </ |u0|‘71(x)_2uovdx+/ 1o |72 x)_zuovdx>
0 0

for any v € Xj.
Returning to (3.27) and using

fﬂp | Aug|Pr dx+f0p | Aug|P2(x dx+f0a \u0|"‘(x)dx

fQ |u0|’11 dx+fQ |u0|‘72 )dx

=\

and fQ o |u0\‘7 )dx + fQ e |u0\q2 )dx # 0, we obtain A; is an eigenvalue of problem (P).

Step 4. We will show that any A € (A1, +00) is an eigenvalue of problem (P).
Let A € (Aq, +0c0) be arbitrary but fixed. Define D, : X; — R by

Da(u) = /Qpl( Sl dx+/ L dx+/

11%(%) 45
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Clearly, D, € C}(X3,R) with
(D) (u),v) = /Q(|Au\p1(x)’2 + | Au|P?)=2) AuAvdx) + / ) |u* ¥ 2yvdx
—/\/Q || 1) =2 3| 200 72) iy, Yu,v € X;.
Thus, A is an eigenvalue of problem (P) if and only if there exists u, € Xj \ {0} a critical

point of D,.
It follows from Step 1 and (3.15) that

1 (x)
D — / AulPr®) g *) dx / a(x) 4
)\(u) Qpl(x)| Ll| X+ apo ( ) + x | | X

1 1
_A</ 1) gy 4 umwm>
on " 0 20"
LJF ulPr) | Au|p2 > dx+/ (x) | |*(9) dx
Pq (x)

[ (1
—A(/ e )\u|‘41 dx+/ \u|‘72 dx>

1— _
e AU +|Aurw>dx—ce|vwr<x> [l yax
1

+ - - + +
— Ak Jullfr +Cgl |7+ 22 |2+ c§2 [ullP
1-—
Pl
- - + + - - + +
— A [Jull T+ e |7+ c2 w2+ |ul|f?
1—e, . N _
Nl = e VI Cellully +cllulld™) — Ak [Juffr +C31 ||H||q1
1
+ e Jlul|P +ng Hull
—00, as |lull; = +oo,

>

v

Y]

- +
© L 18 P — e Vg (uly- + [uls?)

since 1 < g, <gqy <a” <at <gy <qf <py,ie im0 Di(u) = oo

On the other hand, with similar arguments as in the proof of Step 3, we can show that the
functional D, is weakly lower semi-continuous. So by the Weierstrass theorem, there exists
uy € Xi a global minimum point of D, and thus, a critical point of D). Next we prove that u,
is nontrivial.

Indeed, since

Javtm e \Au|7” dx+f0p | Au|P2(x dx+an )30 dx
dx+fQ |u|‘12 )dx

A = inf
' uex\(o) ol

and A > A it follows that there exists v, € Xj such that D, (v,) < 0, that is

V(x)
Av Y dx + A 2 dx+/ a(x)
/Qp()’ )" Qp()| ol oc(x|A|

<A</ ! o, |1 dx+/ ]v)\|‘72 dx>
o q1(x)
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Thus, we conclude that
inf Dy(u) <0

ueXy
and u, is a nontrivial critical point of D), and then A is an eigenvalue of problem (P).
Step 5. We will show that any A € (0, Ap) is not an eigenvalue of problem (P), where Ag is
given by
N " Jo(|Au[Pr®dx + |AulP2))dx [ V(x)[u|*¥)dx
= in
O exi\(o) Jo lu|n®dx + [ [u]2(*)dx

Firstly, we verify that Ag < Ay. Due to Step 2, A1 and ug is an eigenvalue and is an

eigenfunction corresponding to A of (P), then for every v € X; we have

/ (| Aug|Pr¥) =2 4| Aug| P2 =2) Aug Avdx +/ x) o) * ¥ 2ugvdx
0
= A1</ ]uo|‘7l x _Zuovdx+/ |uo|‘72(x)_2uovdx>, (3.28)
0 0
which implies that

/ (| Aug| P72 1| Aug |29 =2) Aug Augdx —1—/ x) |uo | 2 ugugdx
0

(/ |u| 1) uouodx+/ || 72() uouodx>
that is

/(\Auo\pl + |Aug P2 dx—i—/ x) |ug |4 dx—/\1</ |u| dx—I—/ |u| 12 (x dx)

Then, it follows that Ay < Aq.
Now we prove our assertion. Arguing by contradiction: assume that there exists A €
(0, Ap) is an eigenvalue of problem (P). Thus, there exists u, € X; \ {0} such that

/(]AuA|p1(x)’2+|AuA]p2 )AuAAvdx—k/ x)|up [*) 20 vdx
o

IA( / | |72 0, vdx + / \m\‘h(")zuwdx) (3.29)
QO Q

for any v € Xj. Thus, for v = u) we have

/(|AuA|p1 + |Auy P2 dx+/ X)|up|*®dx = A (/ |uA|‘71(x)dx—|—/ \uA|‘72(x)dx>.
o o

The fact that u, € X \ {0} assures that [, [ur|"®dx + [ [uy|2¥dx > 0. Since A < Ao, the
above information yields

/(|Au2\’p1 + | Auy P2 dx+/ x) |y |*)
> Ao [ (a0 4 1 20 dx
>/\/ (Jn |7 4 iy |20 dx

—/ (|Aup PP | Auy P2 dx+/ x) | |*Fdx.
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Obviously, this is contradiction. Therefore, we deduce that each A € (—oo,Ag) is not an
eigenvalue of problem (P). O

Remark 3.2. In Theorem 3.1, we are not able to deduce whether Ag = A or Ag < Aq. In the
latter case an interesting question concerns the existence of eigenvalue of the problem (P) in
the interval [Ag, A1).
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