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1. Introduction

Consider the following model for nonlinear Duffing equation with a deviating argument

x′′(t) + cx′(t) − ax(t) + bxm(t − τ(t)) = p(t), (1.1)
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where τ(t) and p(t) are almost periodic functions on R, m > 1, a, b and c are constants.

In recent years, the dynamic behaviors of nonlinear Duffing equations have been widely

investigated in [1-4] due to the application in many fields such as physics, mechanics, engi-

neering, other scientific fields. In such applications, it is important to know the existence of

the almost periodic solutions for nonlinear Duffing equations. Some results on existence of

the almost periodic solutions were obtained in the literature. We refer the reader to [5−7]

and the references cited therein. Suppose that the following condition holds:

(H0) a = b = 1, c = 0, τ : R → R is a constant function, m > 1 is an integer, and

sup
t∈R

|p(t)| ≤ (
1

m
)

1

m−1 (1 − 1

m
). (1.2)

The authors of [6] and [7] obtained some sufficient conditions ensuring the existence of almost

periodic solutions for Eq. (1.1). However, to the best of our knowledge, few authors have

considered the problem of almost periodic solutions for Eq. (1.1) without the assumption

(H0). Thus, it is worthwhile to continue to investigate the existence of almost periodic

solutions Eq. (1.1) in this case.

A primary purpose of this paper is to study the problem of positive almost periodic

solutions of (1.1). Without assuming (H0), we derive some sufficient conditions ensuring the

existence of positive almost periodic solutions for Eq. (1.1), which are new and complement to

previously known results. Moreover, an example is also provided to illustrate the effectiveness

of our results.

Let Q1(t) be a continuous and differentiable function on R. Define

y =
dx

dt
+ ξx − Q1(t), Q2(t) = p(t) + (ξ − c)Q1(t) − Q′

1(t) (1.3)

where ξ > 1 is a constant, then we can transform (1.1) into the following system






dx(t)

dt
= −ξx(t) + y(t) + Q1(t),

dy(t)

dt
= −(c − ξ)y(t) + (a − ξ(ξ − c))x(t) − bxm(t − τ(t)) + Q2(t).

(1.4)

Definition 1 [see 8, 9]. Let u(t) : R −→ Rn be continuous in t. u(t) is said to be almost

periodic on R if, for any ε > 0, the set T (u, ε) = {δ : ‖u(t + δ) − u(t)‖ < ε for all t ∈ R}
is relatively dense, i.e., for any ε > 0, it is possible to find a real number l = l(ε) > 0,

for any interval with length l(ε), there exists a number δ = δ(ε) in this interval such that

‖u(t + δ) − u(t)‖ < ε for all t ∈ R.
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Throughout this paper, it will be assumed that τ,Q1, Q2 : R → [0, +∞) are almost

periodic functions. From the theory of almost periodic functions in [8,9], it follows that for

any ǫ > 0, it is possible to find a real number l = l(ǫ) > 0, for any interval with length l(ǫ),

there exists a number δ = δ(ǫ) in this interval such that

|Q1(t + δ) − Q1(t)| < ǫ, |Q2(t + δ) − Q2(t)| < ǫ, |τ(t + δ) − τ(t)| < ǫ, (1.5)

for all t ∈ R. We suppose that there exist constants L, L+ and τ̄ such that

L = min{inf
t∈R

Q1(t), inf
t∈R

Q2(t)} > 0, L+ > max{sup
t∈R

Q1(t), sup
t∈R

Q2(t)}, τ̄ = sup
t∈R

τ(t). (1.6)

Let C([−τ̄ , 0], R) denote the space of continuous functions ϕ : [−τ̄ , 0] → R with the

supremum norm ‖·‖. It is known in [1−4] that for τ,Q1 and Q2 continuous, given a continuous

initial function ϕ ∈ C([−τ̄ , 0], R) and a number y0, then there exists a solution of (1.4)

on an interval [0, T ) satisfying the initial condition and satisfying (1.4) on [0, T ). If the

solution remains bounded, then T = +∞. We denote such a solution by (x(t), y(t)) =

(x(t, ϕ, y0), y(t, ϕ, y0)). Let y(s) = y(0) for all s ∈ (−∞, 0] and x(s) = x(−τ̄) for all s ∈
(−∞,−τ̄ ]. Then (x(t), y(t)) can be defined on R.

We also assume that the following conditions hold.

(C1) η = min{ξ − 1, (c − ξ) − |a − ξ(ξ − c)| − |b|} ≥ L+ > 0.

(C2) a − ξ(ξ − c) ≥ 0, b ≤ 0.

(C3) (c − ξ) > |a − ξ(ξ − c)| + m|b|(2L+

η
)m−1.

2. Preliminary Results

The following lemmas will be useful to prove our main results in Section 3.

Lemma 2.1. Let (C1) hold. Suppose that (x̃(t), ỹ(t)) is a solution of system (1.4) with

initial conditions

x̃(s) = ϕ̃(s), ỹ(0) = y0,max{|ϕ̃(s)|, |y0|} <
L+

η
, s ∈ [−τ̄ , 0]. (2.1)

Then

max{|x̃(t)|, |ỹ(t)|} <
L+

η
for all t ≥ 0. (2.2)

Proof. Assume, by way of contradiction, that (2.2) does not hold. Then, one of the

following cases must occur.
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Case 1: There exists t1 > 0 such that

max{|x̃(t1)|, |ỹ(t1)|} = |x̃(t1)| =
L+

η
and max{|x̃(t)|, |ỹ(t)|} <

L+

η
for all t ∈ [−τ̄ , t1).

(2.3)

Case 2: There exists t2 > 0 such that

max{|x̃(t2)|, |ỹ(t2)|} = |ỹ(t2)| =
L+

η
and max{|x̃(t)|, |ỹ(t)|} <

L+

η
for all t ∈ [−τ̄ , t2).

(2.4)

If Case 1 holds, calculating the upper right derivative of |x̃(t)|, together with (C1), (1.4),

(1.6) and (2.3) imply that

0 ≤ D+(|x̃(t1)|) ≤ −ξ|x̃(t1)| + |ỹ(t1)| + Q1(t1) ≤ −(ξ − 1)
L+

η
+ Q1(t1) < 0,

which is a contradiction and implies that (2.2) holds.

If Case 2 holds, calculating the upper right derivative of |ỹ(t)|, together with (C1), (1.4),

(1.6) and (2.4) imply that

0 ≤ D+(|ỹ(t2)|)

≤ −(c − ξ)|ỹ(t2)| + |a − ξ(ξ − c)||x̃(t2)| + |b||x̃m(t2 − τ(t2))| + Q2(t2)

≤ −[(c − ξ) − |a − ξ(ξ − c)| − |b|(L
+

η
)m−1]

L+

η
+ Q2(t2)

≤ −[(c − ξ) − |a − ξ(ξ − c)| − |b|]L
+

η
+ Q2(t2)

< 0,

which is a contradiction and implies that (2.2) holds. The proof of Lemma 2.1 is now com-

pleted.

Lemma 2.2. Suppose that (C1) and (C2) hold. Moreover, we choose a sufficiently large

constant θ > 0 such that for all t > 0, ζ = L+

ηθ
< L+

η
, and

−Q1(t) < −ξζ + ζ, and − Q2(t) < −(c − ξ)ζ + (a − ξ(ξ − c))ζ − bζm. (2.5)

If (x(t), y(t)) is a solution of system (1.4) with initial conditions

x(s) = ϕ(s), y(0) = y0, min{ϕ(s), y0} > ζ, s ∈ [−τ̄ , 0]. (2.6)

Then

min{x(t), y(t)} > ζ, for all t ≥ 0. (2.7)
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Proof. Contrarily, one of the following cases must occur.

Case I: There exists t3 > 0 such that

min{x(t3), y(t3)} = x(t3) = ζ, and min{x(t), y(t)} > ζ for all t ∈ [−τ̄ , t3). (2.8)

Case II: There exists t4 > 0 such that

min{x(t4), y(t4)} = y(t4) = ζ, and min{x(t), y(t)} > ζ for all t ∈ [−τ̄ , t4). (2.9)

If Case I holds, together with (C1), (1.4), (2.5) and (2.8) imply that

0 ≥ x′(t3) = −ξx(t3) + y(t3) + Q1(t3) ≥ −ξζ + ζ + Q1(t3) > 0,

which is a contradiction and implies that (2.7) holds.

If Case II holds, together with (C2) , (1.4), (2.5) and (2.9) imply that

0 ≥ y′(t4)

= −(c − ξ)y(t4) + (a − ξ(ξ − c))x(t4) − bxm(t4 − τ(t4)) + Q2(t4)

≥ −(c − ξ)ζ + (a − ξ(ξ − c))ζ − bζm + Q2(t4)

> 0,

which is a contradiction and implies that (2.7) holds. The proof of Lemma 2.2 is now com-

pleted.

Lemma 2.3. Suppose that (C1), (C2) and (C3) hold. Moreover, assume that (x(t), y(t))

is a solution of system (1.4) with initial conditions

x(s) = ϕ(s), y(0) = y0, ζ < min{ϕ(s), y0} ≤ max{ϕ(s), y0} <
L+

η
, s ∈ [−τ̄ , 0]. (2.10)

Then for any ǫ > 0, there exists l = l(ǫ) > 0, such that every interval [α,α + l] contains at

least one number δ for which there exists N > 0 satisfies

max{|x(t + δ) − x(t)|, |y(t + δ) − y(t)|} ≤ ǫ for all t > N. (2.11)

Proof. Since

min{ξ − 1, (c − ξ) − |a − ξ(ξ − c)| − m|b|(2L+

η
)m−1} > 0,

it follows that there exist constants λ > 0 and γ such that

γ = min{(ξ − 1) − λ, ((c − ξ) − |a − ξ(ξ − c)| − m|b|(2L+

η
)m−1eλτ̄ ) − λ} > 0. (2.12)
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Let




ǫ1(δ, t) = Q1(t + δ) − Q1(t),

ǫ2(δ, t) = −b[xm(t − τ(t + δ) + δ) − xm(t − τ(t) + δ)] + Q2(t + δ) − Q2(t).
(2.13)

By Lemmas 2.1 and 2.2, the solution (x(t), y(t)) is bounded and

ζ < min{x(t), y(t)} ≤ max{x(t), y(t)} <
L+

η
, for all t ∈ [0, +∞). (2.14)

Thus, the right side of (1.4) is also bounded, which implies that x(t) and y(t) are uniformly

continuous on [−τ̄ ,+∞) . From (1.5 ), for any ǫ > 0, there exists l = l(ǫ) > 0, such that

every interval [α,α + l], α ∈ R, contains a δ for which

|ǫi(δ, t)| ≤
1

2
γǫ, i = 1, 2, t ≥ K0, where K0 ≥ 0 is a sufficently large constant. (2.15)

Denote u(t) = x(t + δ) − x(t) and v(t) = y(t + δ) − y(t). Let K1 > max{K0,−δ}. Then,

for t ≥ K1, we obtain

du(t)

dt
= −ξ[x(t + δ) − x(t)] + y(t + δ) − y(t) + ǫ1(δ, t), (2.16)

and
dv(t)

dt
= −(c − ξ)[y(t + δ) − y(t)] + [a − ξ(ξ − c)][x(t + δ) − x(t)]

−b[xm(t − τ(t) + δ) − xm(t − τ(t))] + ǫ2(δ, t). (2.17)

Calculating the upper right derivative of eλs|u(s)| and eλs|v(s)|, in view of (2.16), (2.17),

(C1), (C2) and (C3), for t ≥ K1, we have

D+(eλs|u(s)|)|s=t

= λeλt|u(t)| + eλt sgn(u(t)){−ξ[x(t + δ) − x(t)] + y(t + δ) − y(t) + ǫ1(δ, t)}

≤ eλt{(λ − ξ)|u(t)| + |v(t)|} +
1

2
γǫeλt, (2.18)

and

D+(eλs|v(s)|)|s=t

= λeλt|v(t)| + eλt sgn(v(t)){−(c − ξ)[y(t + δ) − y(t)] + (a − ξ(ξ − c))[x(t + δ) − x(t)]

−b[xm(t − τ(t) + δ) − xm(t − τ(t))] + ǫ2(δ, t)}

≤ eλt{(λ − (c − ξ))|v(t)| + |a − ξ(ξ − c)||u(t)|

+|b||xm(t − τ(t) + δ) − xm(t − τ(t))|} +
1

2
γǫeλt. (2.19)
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Let

M(t) = max
−τ̄≤s≤t

{eλs max{|u(s)|, |v(s)|}}. (2.20)

It is obvious that eλt max{|u(t)|, |v(t)|} ≤ M(t), and M(t) is non-decreasing.

Now, we consider two cases.

Case (i):

M(t) > eλt max{|u(t)|, |v(t)|} for all t ≥ K1. (2.21)

We claim that

M(t) ≡ M(K1) is a constant for all t ≥ K1. (2.22)

Assume, by way of contradiction, that (2.22) does not hold. Then, there exists t5 > 0 such

that M(t5) > M(K1). Since

eλt max{|u(t)|, |v(t)|} ≤ M(K1) for all − τ̄ ≤ t ≤ K1.

There must exist β ∈ (K1, t5) such that

eλβ max{|u(β)|, |v(β)|} = M(t5) ≥ M(β),

which contradicts (2.21). This contradiction implies that (2.22) holds. It follows that there

exists t6 > K1 such that

max{|u(t)|, |v(t)|} ≤ e−λtM(t) = e−λtM(K1) < ǫ for all t ≥ t6. (2.23)

Case (ii): There is a point t0 ≥ K1 such that M(t0) = eλt0 max{|u(t0)|, |v(t0)|}. Then,

if M(t0) = eλt0 max{|u(t0)|, |v(t0)|} = eλt0 |u(t0)|, in view of (2.18) and (2.19), we get

D+(eλs|u(s)|)|s=t0 ≤ [λ − ξ]|u(t0)|eλt0 + |v(t0)|eλt0 +
1

2
γǫeλt0

≤ [λ − (ξ − 1)]M(t0) +
1

2
γǫeλt0

< −γM(t0) + γǫeλt0 , (2.24)

and

D+(eλs|v(s)|)|s=t0

≤ [λ − (c − ξ)]|v(t0)|eλt0 + |a − ξ(ξ − c)||u(t0)|eλt0

+|b||xm(t0 − τ(t0) + δ) − xm(t0 − τ(t0))|eλ((t0−τ(t0))eλτ(t0) +
1

2
γǫeλt0

≤ [λ − (c − ξ)]|v(t0)|eλt0 + |a − ξ(ξ − c)||u(t0)|eλt0 + |b|m|(x(t0 − τ(t0))

+h(t0)(x(t0 − τ(t0) + δ) − x(t0 − τ(t0))))
m−1(x(t0 − τ(t0) + δ)

−x(t0 − τ(t0)))|eλ((t0−τ(t0))eλτ(t0) +
1

2
γǫeλt0 ,
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where 0 < h(t0) < 1, it follows that

D+(eλs|v(s)|)|s=t0

≤ [λ − (c − ξ)]|v(t0)|eλt0 + |a − ξ(ξ − c)||u(t0)|eλt0 + |b|m|(1 − h(t0))x(t0 − τ(t0))

+h(t0)x(t0 − τ(t0) + δ))m−1||u(t0 − τ(t0))|eλ((t0−τj(t0))eλτj(t0) +
1

2
γǫeλt0

≤ [λ − (c − ξ)]|v(t0)|eλt0 + |a − ξ(ξ − c)||u(t0)|eλt0 + |b|m(2
L+

η
)m−1|u(t0 − τ(t0))|

·eλ((t0−τj(t0))eλτj (t0) +
1

2
γǫeλt0

≤ [λ − ((c − ξ) − |a − ξ(ξ − c)| − |b|m(2
L+

η
)m−1eλτ̄ )]M(t0) +

1

2
γǫeλt0

< −γM(t0) + γǫeλt0 . (2.25)

In addition, if M(t0) ≥ ǫeλt0 , (2.24) and (2.25) imply that M(t) is strictly decreasing in a

small neighborhood (t0, t0 + δ0). This contradicts that M(t) is non-decreasing. Hence,

eλt0 max{|u(t0)|, |v(t0)|} = M(t0) < ǫeλt0 , and max{|u(t0)|, |v(t0)|} < ǫ. (2.26)

For any t > t0, by the same approach used in the proof of (2.26), we have

eλt max{|u(t)|, |v(t)|} < ǫeλt, and max{|u(t)|, |v(t)|} < ǫ if M(t) = eλt max{|u(t)|, |v(t)|}.
(2.27)

On the other hand, if M(t) > eλt max{|u(t)|, |v(t)|} for all t > t0, we can choose t0 ≤ t7 < t

such that

M(t7) = eλt7 max{|u(t7)|, |v(t7)|} < eλt7ǫ and M(s) > eλs max{|u(s)|, |v(s)|} for all s ∈ (t7, t].

Using a similar argument as in the proof of Case (i) , we can show that

M(s) ≡ M(t7) is a constant for all s ∈ (t7, t], (2.28)

which implies that

max{|u(t)|, |v(t)|} < e−λtM(t) = e−λtM(t7) < ǫ.

In summary, there must exist N > 0 such that max{|u(t)|, |v(t)|} ≤ ǫ holds for all t > N.

The proof of Lemma 2.3 is now completed.

3. Main Results
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In this section, we establish some results for the existence of the positive almost periodic

solution of system (1.4).

Theorem 3.1. Suppose that (C1), (C2) and (C3) are satisfied. Then system (1.4) has

at least one positive almost periodic solution Z∗(t) = (x∗(t), y∗(t)).

Proof. Let (x(t), y(t)) be a solution of system (1.4) with initial conditions (2.10). Set





ǫ1,k(t) = Q1(t + tk) − Q1(t),

ǫ2,k(t) = −b[xm(t − τ(t + tk) + tk) − xm(t − τ(t) + tk)]

+Q2(t + tk) − Q2(t),

(3.1)

where tk is any sequence of real numbers. By Lemmas 2.1 and 2.2, the solution (x(t), y(t)) is

bounded and (2.14) holds. Again from (1.5), we can select a sequence {tk} → +∞ such that

|ǫ1,k(t)| ≤
1

k
, |ǫ2,k(t)| ≤ 1

k
for all t ≥ 0. (3.2)

Since {(x(t+tk), y(t+tk))}+∞
k=1 is uniformly bounded and equiuniformly continuous, by Arzela-

Ascoli Lemma and diagonal selection principle, we can choose a subsequence {tkj
} of {tk},

such that (x(t + tkj
), y(t + tkj

))(for convenience, we still denote by (x(t + tk), y(t + tk))) uni-

formly converges to a continuous function Z∗(t) = (x∗(t), y∗(t)) on any compact set of R,

and

ζ ≤ min{x∗(t), y∗(t)} ≤ max{x∗(t), y∗(t)} ≤ L+

η
, for all t ∈ R. (3.3)

Now, we prove that Z∗(t) is a positive solution of (1.4). In fact, for any t > 0 and ∆t ∈ R,

we have

x∗(t + ∆t) − x∗(t)

= lim
k→+∞

[x(t + ∆t + tk) − x(t + tk)]

= lim
k→+∞

∫ t+∆t

t
{−ξx(µ + tk) + y(µ + tk) + Q1(µ + tk)}dµ

=

∫ t+∆t

t
{−ξx∗(µ) + y∗(µ) + Q1(µ)}dµ + lim

k→+∞

∫ t+∆t

t
ǫ1,k(µ)dµ

=

∫ t+∆t

t
{−ξx∗(µ) + y∗(µ) + Q1(µ)}dµ, (3.4)

and

y∗(t + ∆t) − y∗(t)

= lim
k→+∞

[y(t + ∆t + tk) − y(t + tk)]
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= lim
k→+∞

∫ t+∆t

t
{−(c − ξ)y(µ + tk) + (a − ξ(ξ − c))x(µ + tk)

−bxm(µ − τ(µ + tk) + tk) + Q2(µ + tk)}dµ

=

∫ t+∆t

t
{−(c − ξ)y∗(µ) + (a − ξ(ξ − c))x∗(µ) − b(x∗(µ − τ(µ)))m + Q2(µ)}dµ

+ lim
k→+∞

∫ t+∆t

t
ǫ2,k(µ)dµ

=

∫ t+∆t

t
{−(c − ξ)y∗(µ) + (a − ξ(ξ − c))x∗(µ) − b(x∗(µ − τ(µ)))m + Q2(µ)}dµ, (3.5)

which imply that





dx∗(t)

dt
= −ξx∗(t) + y∗(t) + Q1(t),

dy∗(t)

dt
= −(c − ξ)y∗(t) + (a − ξ(ξ − c))x∗(t) − b(x∗(t − τ(t)))m + Q2(t).

(3.6)

Therefore, Z∗(t) is a positive solution of (1.4).

Secondly, we prove that Z∗(t) is a positive almost periodic solution of (1.4). From Lemma

2.3, for any ǫ > 0, there exists l = l(ǫ) > 0, such that every interval [α,α + l] contains at

least one number δ for which there exists N > 0 satisfies

max{|x(t + δ) − x(t)|, |y(t + δ) − y(t)|} ≤ ǫ for all t > N. (3.7)

Then, for any fixed s ∈ R, we can find a sufficient large positive integer N0 > N such that

for any k > N0

s + tk > N, max{|x(s + tk + δ) − x(s + tk)|, |y(s + tk + δ) − y(s + tk)|} ≤ ǫ. (3.8)

Let k → +∞, we obtain

|x∗(s + δ) − x∗(s)| ≤ ǫn and |y∗(s + δ) − y∗(s)| ≤ ǫ,

which imply that Z∗(t) is a positive almost periodic solution of (1.4). This completes the

proof.

4. An Example

Example 4.1. Nonlinear Duffing equation with a deviating argument

x′′(t)+28x′(t)−192x(t)+2x3(t−sin2(t)) = 12(1+0.9 sin t)+1.8 cos t+1+0.01 sin
√

2t, (4.1)

has at least one positive almost periodic solution x∗(t) .
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Proof. Set

y =
dx

dt
+ 16x − 1 − 0.9 sin t, (4.2)

we can transform (4.1) into the following system





dx(t)

dt
= −16x(t) + y(t) + 1 + 0.9 sin t,

dy(t)

dt
= −12y(t) + 2x3(t − sin2(t)) + 1 + 0.9 cos t + 0.01 sin

√
2t.

(4.3)

Since

a = 192, b = −2, c = 28, m = 3, ξ = 16,

Q1(t) = 1 + 0.9 sin t, Q2(t) = 1 + 0.9 cos t + 0.01 sin
√

2t.

Then

η = min{ξ − 1, (c − ξ) − |a − ξ(ξ − c)| − |b|} = 10 > 0,

L+ = 2, a − ξ(ξ − c) = 0, b = −2 ≤ 0,

(c − ξ) > |a − ξ(ξ − c)| + m|b|(2L+

η
)m−1 = 11.04 > 0.

It is straightforward to check that all assumptions needed in Theorem 3.1 are satisfied. Hence,

system (4.3) has at least one positive almost periodic solution. It follows that nonlinear

Duffing equation (4.1) has at least one positive almost periodic solution.

Remark 4.1. Since

τ(t) = sin2 t, p(t) = 12(1 + 0.9 sin t) + 1.8 cos t + 1 + 0.01 sin
√

2t,

it is clear that the condition (H0) is not satisfied. Therefore, all the results in [1-7] and the

references therein can not be applicable to prove that the existence of positive almost periodic

solutions for nonlinear Duffing equation (4.1). Moreover, we propose a totally new approach

to proving the existence of positive almost periodic solutions of nonlinear Duffing equation,

which is different from [1-9] and the references therein. This implies that the results of this

paper are essentially new.

Acknowledgement The authors would like to thank the referees very much for the

helpful comments and suggestions.

EJQTDE, 2010 No. 6, p. 11



References

[1] T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Aca-

demic Press, Orland, FL., 1985.

[2] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.

[3] T. Yoshizawa, Asymptotic behaviors of solutions of differential equations, in: Differential Equation:

Qualitative Theory (Szeged, 1984), pp. 1141-1164, Colloq. Math. Soc. János Bolyai, Vol.47, North-

Holland, Amsterdam, 1987.

[4] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New

York, 1993.

[5] M. S. Berger, Y. Y. Chen, Forced quasi periodic and almost periodic oscillations of nonlinear Duffing

equations. Nonlinear Analysis, 19(3) (1992) 249-257.

[6] W. Y. Zeng, Almost periodic solutions for nonlinear Duffing equations. Acta Mathematica Sinica, New

Series, 13(3) (1997) 373-380.

[7] Q. Y. Wang, The existence and uniqueness of almost periodic solutions for nonlinear differential equations

with time lag. Acta Mathematica Sinica, 42(3) (1999) 511-518. [In Chinese]

[8] A. M. Fink, Almost periodic differential equations, Lecture Notes in Mathematics, Vol. 377, Springer,

Berlin, 1974 pp. 80-112

[9] C. Y. He, Almost periodic differential equation, Higher Education Publishing House, Beijing, 1992 pp.

90-100. [In Chinese]

(Received March 18, 2009)

EJQTDE, 2010 No. 6, p. 12


