
Electronic Journal of Qualitative Theory of Differential Equations

2010, No. 8, 1-12; http://www.math.u-szeged.hu/ejqtde/

Anti-Periodic Solutions for a Class of Third-Order Nonlinear

Differential Equations with a Deviating Argument∗

Qiyi Fan1, Wentao Wang2, Xuejun Yi 3, Lihong Huang3

1Department of Mathematics, Hunan University of Arts and Science,

Changde, Hunan 415000, P. R. China

2 College of Mathematics and Information Engineering, Jiaxing University,

Jiaxing, Zhejiang 314001, P. R. China

3 College of Mathematics and Econometrics,

Hunan University, Changsha, Hunan, 410082, P. R. China

E-mail: yixuejunhd@yahoo.cn

Abstract In this paper, we study a class of third-order nonlinear differential equations

with a deviating argument and establish some sufficient conditions for the existence and

exponential stability of anti-periodic solutions of the equation. These conditions are new

and complement to previously known results.

Keywords: Third-order nonlinear differential equation; Exponential stability; Anti-

periodic solutions; Deviating argument.

MR(2000) Subject Classification: 34C25, 34K13, 34K25

1. INTRODUCTION

Consider the following third-order nonlinear differential equations with a deviating argu-

ment

x′′′(t) + a(t)x′′(t) + b(t)x′(t) + g1(t, x(t)) + g2(t, x(t − τ(t))) = p(t), (1.1)
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where a, b and p are continuous functions on R = (−∞,+∞), g1 and g2 are continuous

functions on R2, τ ≥ 0 is a continuous function on R, and there exists a constant τ̄ such that

τ̄ = sup
t∈R

τ(t).

In applied science some practical problems are associated with equation (1.1), such as

nonlinear oscillations [1,2,3], electronic theory [4], biological model and other models [5, 6].

Just as above, in the past few decades, the study for third order differential equation has

been paid attention to by many scholars. Many results relative to the stability, instability

of solutions, boundedness of solutions, convergence of solutions and existence of periodic

solutions for equation (1.1) and its analogue equations have been obtained (see [7,8] and

references therein). However, as pointed out in [8], the results about the existence of anti-

periodic solutions for nonlinear differential equations whose orders are more than two are

relatively scarce. Moreover, it is well known that the existence of anti-periodic solutions

play a key role in characterizing the behavior of nonlinear differential equations (See [9−12]).

Thus, it is worthwhile to continue to investigate the existence and stability of anti-periodic

solutions of Eq. (1.1).

A primary purpose of this paper is to study the problem of anti-periodic solutions of (1.1).

We will establish some sufficient conditions for the existence and exponential stability of the

anti-periodic solutions of (1.1). Our results are new and complement to previously known

results. In particular, an example is also provided to illustrate the effectiveness of the new

results.

Let d1 and d2 be constants. Define

y(t) =
dx(t)

dt
+ d1x(t), z(t) =

dy(t)

dt
+ d2y(t), (1.2)

then we can transform (1.1) into the following equivalent system





dx(t)

dt
= −d1x(t) + y(t),

dy(t)

dt
= −d2y(t) + z(t),

dz(t)

dt
= −(a(t) − d1 − d2)z(t) + (−(a(t) − d1)d

2
1 + b(t)d1)x(t) − g1(t, x(t))

−g2(t, x(t − τ(t))) + ((a(t) − d1)(d1 + d2) − b(t) − d2
2)y(t) + p(t).

(1.3)

Throughout this article, it will be assumed that there exists a constant T > 0 such that

p(t + T ) = −p(t), g1(t + T, u) = −g1(t,−u), g2(t + T, u) = −g2(t,−u),
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a(t + T ) = a(t), b(t + T ) = b(t), τ(t + T ) = τ(t),∀ t, u ∈ R. (1.4)

We suppose that there exists a constant L+ such that

L+ > sup
t∈R

|p(t)|. (1.5)

It is known in [14−16] that for g1, g2, a, b, τ and p continuous, given a continuous initial

function ϕ ∈ C([−τ̄ , 0], R) and a vector (y0, z0) ∈ R2, then there exists a solution of (1.3)

on an interval [0, T ) satisfying the initial condition and satisfying (1.3) on [0, T ). If the

solution remains bounded, then T = +∞. We denote such a solution by (x(t), y(t), z(t)) =

(x(t, ϕ, y0, z0), y(t, ϕ, y0, z0), z(t, ϕ, y0, z0)) . Let y(s) = y(0) and z(s) = z(0) for all s ∈ [−τ̄ , 0]

. It follows that (x(t), y(t), z(t)) can be defined on [−τ̄ ,+∞).

Definition 1. Let u(t) : R −→ R be continuous in t. u(t) is said to be T-anti-periodic

on R, if

u(t + T ) = −u(t) for all t ∈ R.

Definition 2. Let Z∗(t) = (x∗(t), y∗(t), z∗(t)) be a T-anti-periodic solution of system

(1.3) with initial value (ϕ∗(t), y∗0, z∗0) ∈ C([−τ̄ , 0], R)×R×R. If there exist constants λ > 0

and M > 1 such that for every solution Z(t) = (x(t), y(t), z(t)) of system (1.3) with any

initial value ϕ = (ϕ(t), y0, z0) ∈ C([−τ̄ , 0], R) × R × R,

max{|x(t)−x∗(t)|, |y(t)−y∗(t)|, |z(t)−z∗(t)|} ≤ M max{‖ϕ(t)−ϕ∗(t)‖, |y0−y∗0|, |z0−z∗0 |}e
−λt,

for all t > 0 and ‖ϕ(t) − ϕ∗(t)‖ = sup
t∈[−τ̄ , 0]

|ϕ(t) − ϕ∗(t)|. Then Z∗(t) is said to be globally

exponentially stable.

We also assume that the following condition holds.

(C1) There exist constants L1 ≥ 0, L2 ≥ 0, d1 > 1, d2 > 1 and d3 > 0 such that

(i) |((−(a(t) − d1)d
2
1 + b(t)d1)u − g1(t, u)) − ((−(a(t) − d1)d

2
1 + b(t)d1)v − g1(t, v))|

≤ L1|u − v|, for all t, u, v ∈ R,

(ii) |g2(t, u)) − g2(t, v))| ≤ L2|u − v|, for all t, u, v ∈ R,

(iii) d3 = inf
t∈R

(a(t) − d1 − d2) − sup
t∈R

|(a(t) − d1)(d1 + d2) − b(t) − d2
2| > L1 + L2.

The paper is organized as follows. In Section 2, we establish some preliminary results,

which are important in the proofs of our main results. Based on the preparations in Section

2, we state and prove our main results in Section 3. Moreover, an illustrative example is

given in Section 4.
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2. Preliminary Results

The following lemmas will be useful to prove our main results in Section 3.

Lemma 2.1. Let (C1) hold. Suppose that (x̃(t), ỹ(t), z̃(t)) is a solution of system (1.3)

with initial conditions

x̃(s) = ϕ̃(s), ỹ(0) = y0, z̃(0) = z0, max{|ϕ̃(s)|, |y0|, |z0|} <
L+

η
, s ∈ [−τ̄ , 0], (2.1)

where η = min{d1 − 1, d2 − 1, d3 − (L1 + L2)}. Then

max{|x̃(t)|, |ỹ(t)|, |z̃(t)|} <
L+

η
for all t ≥ 0. (2.2)

Proof. Assume, by way of contradiction, that (2.2) does not hold. Then, one of the

following cases must occur.

Case 1: There exists t1 > 0 such that

max{|x̃(t1)|, |ỹ(t1)|, |z̃(t1)|} = |x̃(t1)| =
L+

η
and max{|x̃(t)|, |ỹ(t)|, |z̃(t)|} <

L+

η
, (2.3)

where t ∈ [−τ̄ , t1).

Case 2: There exists t2 > 0 such that

max{|x̃(t2)|, |ỹ(t2)|, |z̃(t2)|} = |ỹ(t2)| =
L+

η
and max{|x̃(t)|, |ỹ(t)|, |z̃(t)|} <

L+

η
, (2.4)

where t ∈ [−τ̄ , t2).

Case 3: There exists t3 > 0 such that

max{|x̃(t3)|, |ỹ(t3)|, |z̃(t3)|} = |z̃(t3)| =
L+

η
and max{|x̃(t)|, |ỹ(t)|, |z̃(t)|} <

L+

η
, (2.5)

where t ∈ [−τ̄ , t3).

If Case 1 holds, calculating the upper left derivative of |x̃(t)|, together with (C1), (1.3)

and (2.3) imply that

0 ≤ D+(|x̃(t1)|) ≤ −d1|x̃(t1)| + |ỹ(t1)| ≤ −(d1 − 1)
L+

η
< 0,

which is a contradiction and implies that (2.2) holds.

If Case 2 holds, calculating the upper left derivative of |ỹ(t)|, together with (C1), (1.3)

and (2.4) imply that

0 ≤ D+(|ỹ(t2)|) ≤ −d2|ỹ(t2)| + |z̃(t2)| ≤ −(d2 − 1)
L+

η
< 0,
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which is a contradiction and implies that (2.2) holds.

If Case 3 holds, calculating the upper left derivative of |z̃(t)|, together with (C1), (1.3)

and (2.5) imply that

0 ≤ D+(|ỹ(t3)|)

≤ −(a(t3) − d1 − d2)|z̃(t3)| + |(−(a(t) − d1)d
2
1 + b(t3)d1)x̃(t3) − g1(t3, x̃(t3))

−g2(t3, x̃(t3 − τ(t3))) + ((a(t3) − d1)(d1 + d2) − b(t) − d2
2)ỹ(t3) + p(t3)|

≤ − inf
t∈R

(a(t) − d1 − d2)|z̃(t3)| + L1|x̃(t3)| + L2|x̃(t3 − τ(t3))|

+ sup
∈R

|(a(t) − d1)(d1 + d2) − b(t) − d2
2||ỹ(t3)| + |p(t3)|

≤ −(d3 − (L1 + L2))
L+

η
+ |p(t3)|

< 0,

which is a contradiction and implies that (2.2) holds. The proof of Lemma 2.1 is now complete.

Remark 2.1. In view of the boundedness of this solution, from the theory of functional

differential equations in [15], it follows that (x̃(t), ỹ(t), z̃(t)) can be defined on [0,∞).

Lemma 2.2. Let (C1) hold. Moreover, assume that Z∗(t) = (x∗(t), y∗(t), z∗(t)) is

a solution of system (1.3) with initial value (ϕ∗(t), y∗0, z∗0) ∈ C([−τ̄ , 0], R) × R × R. Then,

there exist constants λ > 0 and M > 1 such that for every solution Z(t) = (x(t), y(t), z(t))

of system (1.3) with any initial value ϕ = (ϕ(t), y0, z0) ∈ C([−τ̄ , 0], R) × R × R,

max{|x(t)−x∗(t)|, |y(t)−y∗(t)|, |z(t)−z∗(t)|} ≤ M max{‖ϕ(t)−ϕ∗(t)‖, |y0−y∗0|, |z0−z∗0 |}e
−λt,

for all t > 0.

Proof. Since min{d1−1, d2−1, d3−(L1 +L2)} > 0, it follows that there exist constants

λ > 0 and γ > 0 such that

γ = min{((d1 − 1) − λ, (d2 − 1) − λ, d3 − L1 − L2e
λτ̄ − λ} > 0. (2.6)

Let Z∗(t) = (x∗(t), y∗(t), z∗(t)) be the solution of system (1.3) with initial value (ϕ∗(t), y∗0, z∗0) ∈

C([−τ̄ , 0], R) × R × R, and Z(t) = (x(t), y(t), z(t)) be an arbitrary solution of system (1.3)

with any initial value ϕ = (ϕ(t), y0, z0) ∈ C([−τ̄ , 0], R)×R×R. Set ū(t) = x(t)−x∗(t), v̄(t) =
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y(t) − y∗(t), w̄(t) = z(t) − z∗(t). Then





dū(t)

dt
= −d1ū(t) + v̄(t),

dv̄(t)

dt
= −d2v̄(t) + w̄(t),

dw̄(t)

dt
= (−(a(t) − d1 − d2)z(t) + (−(a(t) − d1)d

2
1 + b(t)d1)x(t) − g1(t, x(t))

−g2(t, x(t − τ(t))) + ((a(t) − d1)(d1 + d2) − b(t) − d2
2)y(t))

−(−(a(t) − d1 − d2)z
∗(t) + (−(a(t) − d1)d

2
1 + b(t)d1)x

∗(t) − g1(t, x
∗(t))

−g2(t, x
∗(t − τ(t))) + ((a(t) − d1)(d1 + d2) − b(t) − d2

2)y
∗(t)).

(2.7)

We consider the Lyapunov functional

V1(t) = |ū(t)|eλt, V2(t) = |v̄(t)|eλt, V3(t) = |w̄(t)|eλt. (2.8)

Calculating the upper left derivative of Vi(t) (i = 1, 2, 3) along the solution (ū(t), v̄(t), w̄(t))

of system (2.7) with the initial value (ϕ(t) − ϕ∗(t), y0 − y∗0, z0 − z∗0), we have

D+(V1(t)) = λeλt|ū(t)| + eλtsign(ū(t)){−d1ū(t) + v̄(t)}

≤ eλt{(λ − d1)|ū(t)| + |v̄(t)|}, (2.9)

D+(V2(t)) = λeλt|v̄(t)| + eλtsign(v̄(t)){−d2v̄(t) + w̄(t)}

≤ eλt{(λ − d2)|v̄(t)| + |w̄(t)|}, (2.10)

and

D+(V3(t))

= λeλt|w̄(t)| + eλtsign(w̄(t)){(−(a(t) − d1 − d2)z(t) + (−(a(t) − d1)d
2
1 + b(t)d1)x(t)

−g1(t, x(t)) − g2(t, x(t − τ(t))) + ((a(t) − d1)(d1 + d2) − b(t) − d2
2)y(t))

−(−(a(t) − d1 − d2)z
∗(t) + (−(a(t) − d1)d

2
1 + b(t)d1)x

∗(t) − g1(t, x
∗(t))

−g2(t, x
∗(t − τ(t))) + ((a(t) − d1)(d1 + d2) − b(t) − d2

2)y
∗(t))}

≤ eλt{(λ − (inf
t∈R

(a(t) − d1 − d2)))|w̄(t)| + L1|ū(t)| + L2|ū(t − τ(t))|

+ sup
t∈R

|(a(t) − d1)(d1 + d2) − b(t) − d2
2||v̄(t)|}. (2.11)

Let M > 1 denote an arbitrary real number and set

Θ = max{‖ϕ − ϕ∗‖, |y0 − y∗0|, |z0 − z∗0 |} > 0.
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It follows from (2.8) that

V1(t) = |ū(t)|eλt < MΘ, V2(t) = |v̄(t)|eλt < MΘ, and V3(t) = |w̄(t)|eλt < MΘ,

for all t ∈ [−τ̄ , 0].

We claim that

V1(t) = |ū(t)|eλt < MΘ, V2(t) = |v̄(t)|eλt < MΘ, and V3(t) = |w̄(t)|eλt < MΘ, (2.12)

for all t > 0. Contrarily, one of the following cases must occur.

Case I: There exists T1 > 0 such that

V1(T1) = MΘ, and Vi(t) < MΘ, for all t ∈ [−τ̄ , T1), i = 1, 2, 3. (2.13)

Case II: There exists T2 > 0 such that

V2(T2) = MΘ, and Vi(t) < MΘ, for all t ∈ [−τ̄ , T2), i = 1, 2, 3. (2.14)

Case III: There exists T3 > 0 such that

V3(T3) = MΘ, and Vi(t) < MΘ, for all t ∈ [−τ̄ , T3), i = 1, 2, 3. (2.15)

If Case I holds, together with (C1) and (2.9), (2.13) implies that

0 ≤ D+(V1(T1)) ≤ (λ − d1)|ū(T1)|e
λT1 + |v̄(T1)|e

λT1 ≤ [λ − (d1 − 1)]MΘ. (2.16)

Thus,

0 ≤ λ − (d1 − 1),

which contradicts (2.6). Hence, ( 2.12) holds.

If Case II holds, together with (C1) and (2.10), (2.14) implies that

0 ≤ D+(V2(T2)) ≤ (λ − d2)|v̄(T2)|e
λT2 + |w̄(T2)|e

λT2 ≤ [λ − (d2 − 1)]MΘ. (2.17)

Thus,

0 ≤ λ − (d2 − 1),

which contradicts (2.6). Hence, ( 2.12) holds.
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If Case III holds, together with (C1) and (2.11), (2.15) implies that

0 ≤ D+(V3(T3))

≤ (λ − inf
t∈R

(a(t) − d1 − d2))|w̄(T3)|e
λT3 + L1|ū(T3)|e

λT3 + L2|ū(T3 − τ(T3)|

·eλ(T3−τ(T3))eλτ(T3) + sup
t∈R

|(a(t) − d1)(d1 + d2) − b(t) − d2
2||v̄(T3)|e

λT3

≤ [λ − (d3 − L1 − L2e
λτ̄ )]MΘ. (2.18)

Hence,

0 ≤ λ − (d3 − L1 − L2e
λτ̄ ),

which contradicts (2.6). Hence, ( 2.12) holds. It follows that

max{|x(t) − x∗(t)|, |y(t) − y∗(t)|, |z(t) − z∗(t)|}

≤ M max{‖ϕ(t) − ϕ∗(t)‖, |y0 − y∗0|, |z0 − z∗0 |}e
−λt,∀t > 0. (2.19)

This completes the proof of Lemma 2.2.

Remark 2.2. If Z∗(t) = (x∗(t), y∗(t), z∗(t)) be the T-anti-periodic solution of system

(1.3), it follows from Lemma 2.2 and Definition 2 that Z∗(t) is globally exponentially stable.

3. Main Results

In this section, we establish some results for the existence, uniqueness and exponential

stability of the T-anti-periodic solution of (1.3).

Theorem 3.1. Suppose that (C1) is satisfied. Then system (1.3) has exactly one T-

anti-periodic solution Z∗(t) = (x∗(t), y∗(t), z∗(t)). Moreover, Z∗(t) is globally exponentially

stable.

Proof. Let v(t) = (v1(t), v2(t), v3(t)) = (x(t), y(t), z(t)) be a solution of system (1.3)

with initial conditions (2.1). By Lemma 2.1, the solution (x(t), y(t), z(t)) is bounded and

(2.2) holds. From (1.4), for any natural number k, we obtain

((−1)k+1x(t + (k + 1)T ))′ = (−1)k+1x′(t + (k + 1)T )

= (−1)k+1[−d1x(t + (k + 1)T ) + y(t + (k + 1)T )]

= −d1((−1)k+1x(t + (k + 1)T )) + (−1)k+1y(t + (k + 1)T ), (3.1)
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((−1)k+1y(t + (k + 1)T ))′ = (−1)k+1y′(t + (k + 1)T )

= (−1)k+1[−d2y(t + (k + 1)T ) + z(t + (k + 1)T )]

= −d2((−1)k+1y(t + (k + 1)T )) + (−1)k+1z(t + (k + 1)T ), (3.2)

and

((−1)k+1z(t + (k + 1)T ))′

= (−1)k+1z′(t + (k + 1)T )

= (−1)k+1[−(a(t + (k + 1)T ) − d1 − d2)z(t + (k + 1)T ) + (−(a(t + (k + 1)T ) − d1)d
2
1

+b(t + (k + 1)T )d1)x(t + (k + 1)T ) − g1(t + (k + 1)T, x(t + (k + 1)T ))

−g2(t + (k + 1)T, x(t + (k + 1)T − τ(t + (k + 1)T ))) + ((a(t + (k + 1)T ) − d1)(d1 + d2)

−b(t + (k + 1)T ) − d2
2)y(t + (k + 1)T ) + p(t + (k + 1)T )]

= −(a(t) − d1 − d2)((−1)k+1z(t + (k + 1)T )) + (−(a(t) − d1)d
2
1

+b(t)d1)((−1)k+1x(t + (k + 1)T )) − g1(t, (−1)k+1x(t + (k + 1)T ))

−g2(t, (−1)k+1x(t + (k + 1)T − τ(t))) + ((a(t) − d1)(d1 + d2)

−b(t) − d2
2)((−1)k+1y(t + (k + 1)T )) + p(t). (3.3)

Thus, for any natural number k, (−1)k+1v(t + (k + 1)T ) are the solutions of system (1.3) on

R. Then, by Lemma 2.2, there exists a constant M > 0 such that

|(−1)k+1vi(t + (k + 1)T ) − (−1)kvi(t + kT )|

≤ Me−λ(t+kT ) sup
−τ̄≤s≤0

max
1≤i≤3

|vi(s + T ) + vi(s)|

≤ 2e−λ(t+kT )M
L+

η
for all t + kT > 0, i = 1, 2, 3. (3.4)

Hence, for any natural number m, we obtain

(−1)m+1vi(t + (m + 1)T ) = vi(t) +
m∑

k=0

[(−1)k+1vi(t + (k + 1)T )− (−1)kvi(t + kT )], (3.5)

where i = 1, 2, 3.

In view of (3.4), we can choose a sufficiently large constant N > 0 and a positive constant

α such that

|(−1)k+1vi(t+(k+1)T )−(−1)kvi(t+kT )| ≤ α(e−λT )k for all k > N, i = 1, 2, 3, (3.6)
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on any compact set of R. It follows from (3.5) and (3.6) that {(−1)mv(t + mT )} uniformly

converges to a continuous function Z∗(t) = (x∗(t), y∗(t), z∗(t))T on any compact set of R.

Now we will show that Z∗(t) is T-anti-periodic solution of system (1.3). First, Z∗(t) is

T-anti-periodic, since

Z∗(t + T ) = lim
m→∞

(−1)mv(t + T + mT ) = − lim
(m+1)→∞

(−1)m+1v(t + (m + 1)T ) = −Z∗(t).

Next, we prove that Z∗(t) is a solution of (1.1). In fact, together with the continuity of the

right side of (1.3), (3.1), (3.2) and (3.3) imply that{((−1)m+1v(t + (m + 1)T ))′} uniformly

converges to a continuous function on any compact set of R. Thus, letting m −→ ∞, we

obtain




dx∗(t)

dt
= −d1x

∗(t) + y∗(t),

dy∗(t)

dt
= −d2y

∗(t) + z∗(t),

dz∗(t)

dt
= −(a(t) − d1 − d2)z

∗(t) + (−(a(t) − d1)d
2
1 + b(t)d1)x

∗(t) − g1(t, x
∗(t))

−g2(t, x
∗(t − τ(t))) + ((a(t) − d1)(d1 + d2) − b(t) − d2

2)y
∗(t) + p(t).

(3.7)

Therefore, Z∗(t) is a solution of (1.3). Finally, by Lemma 2.2, we can prove that Z∗(t) is

globally exponentially stable. This completes the proof.

4. An Example

Example 4.1. The following third-order nonlinear differential equation

x′′′(t) + (9 −
1

| sin t| + 1
)x′′(t) + (

−4

| sin t| + 1
+ 23)x′(t) + (18 −

4

| sin t| + 1
)x(t)

+ sin x(t) + (cos t) cos x(t − e2| sin t|) = sin t, (4.1)

has exactly one π-anti-periodic solution, which is globally exponentially stable.

Proof. Set

y(t) =
dx(t)

dt
+ 2x(t), z(t) =

dy(t)

dt
+ 2y(t) (4.2)

then we can transform (3.1) into the following equivalent system




dx(t)

dt
= −2x(t) + y(t),

dy(t)

dt
= −2y(t) + z(t),

dz(t)

dt
= −(5 −

1

| sin t| + 1
)z(t) − sinx(t) − (cos t) cos x(t − e2| sin t|) + y(t) + sin t.

(4.3)
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Then

(i) |((−(a(t) − d1)d
2
1 + b(t)d1)u − g1(t, u)) − ((−(a(t) − d1)d

2
1 + b(t)d1)v − g1(t, v))|

= |(− sin u) − (− sin v)| ≤ |u − v|, for all t, u, v ∈ R,

(ii) |g2(t, u)) − g2(t, v))| = |(cos t) cos u − (cos t) cos v| ≤ |u − v|, for all t, u, v ∈ R,

(iii) d3 = inf
t∈R

(a(t) − d1 − d2) − sup
t∈R

|(a(t) − d1)(d1 + d2) − b(t) − d2
2|

= inf
t∈R

(5 − 1
| sin t|+1) − 1| > 1 + 1.

This implies that all assumptions needed in Theorem 3.1 are satisfied. Hence, system (4.3)

has exactly one π-anti-periodic solution. Moreover, the π-anti-periodic solution is globally

exponentially stable. It follows that equation (4.1) has exactly one π-antiperiodic solution,

and all solutions of Eq. (4.1) exponentially converge to this π-anti-periodic solution.

Remark 4.1. Since Eq. (4.1) is a form of third-order nonlinear differential equation

with varying time delays. One can observe that all the results in [8-13] and the references

cited therein can not be applicable to prove that Eq. (4.1) has a unique anti-periodic periodic

solution which is globally exponentially stable. Moreover, we propose a totally new approach

to proving the existence of anti-periodic solutions of third-order nonlinear differential equa-

tion, which is different from [8] and the references therein. This implies that the results of

this paper are essentially new.
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