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Singularly perturbed semilinear Neumann problem
with non-normally hyperbolic critical manifold*

Roébert Vrabel’

Abstract

In this paper, we investigate the problem of existence and asymptotic
behavior of the solutions for the nonlinear boundary value problem

e/ +ky=f(t,y), te€{ab), k>0, 0<e<<l1

satisfying Neumann boundary conditions and where critical manifold is not
normally hyperbolic. Our analysis relies on the method upper and lower
solutions.
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1 Introduction
We will consider the singularly perturbed Neumann problem
e +ky=f(t,y), telab), k>0 0<e<<l1 (1.1)

y'(a)=0, y'(b)=0. (1.2)

The qualitative behavior of the dynamical systems near a normally hyper-
bolic manifold of critical points is well known (Theorem on persistence of
normally hyperbolic manifold, see [2, 3, 5, 9, 12], for reference). However,
the framework of the geometric singular perturbation theory is not useful for
the non-hyperbolic critical manifolds, i.e. when the characteristic roots of the
linearization of (1.1) along a solution u of the reduced problem ku = f (¢, u)
lie on the imaginary axis.

The main result (Theorem 1) is the existence of a solution y.(t) for e
belonging to a non-resonant set and an estimate of the difference between the
solution y.(t) and a solution u(t) of the reduced problem. It is accomplished
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EJQTDE, 2010 No. 9, p. 1



by a construction of a lower and an upper solution for the corresponding
boundary value problem.

As usual, we say that a. € C?({a
1.2) if ed (t) + kae(t) > f(t, ac(t)) and ol(a) > 0, al(b) < 0 for every t €

(

,b)) is a lower solution for problem (1.1),

{a,b). An upper solution 8. € C?({a, b)) satisfies €87 (t) + kB:(t) < f(t, B(t))
and ((a) <0, B.(b) > 0 for every t € (a,b). Then

Lemma 1 ([1, 8]). If ae, Bc are lower and upper solutions for (1.1), (1.2) such
that a. < f¢, then there exists solution ye of (1.1), (1.2) with ae < y. < (.

Denote Ds(u) = {(t,y)] a <t <b,ly—u(t)] <d}, ¢ is a positive con-
stant and u € C? is a solution of reduced problem ku = f(t,u).

Let

and

)| cos [\/Z(b—1t)]
sin [/ (o)

Ule ‘u

cos [\/Z(t —a)]
JEin [/ -

v2e ‘u ‘

where m = k + w (for the constant w see Theorem 1 below).
Let

Tn(\) = _bea Y b-a )’ =0,1,2
n - m (’I’L—|—1)7T—>\ 7m ’I’L7T—|—)\ 9 n= Pl Rt I

A > 0 is an arbitrarily small, but fixed constant and

:{UJn,n:O,l,Q,...}.

The function vy () satisfies:

1.
2.

L

evﬁe +muvy =0
viela) = [u'(a)], v)(b) =0
v1,¢(t) be periodic in the variable ¢ with the period \7}/ — 0

. Ul,e,(t) converges uniformly to 0 for every sequence {e,},  , such that

€n € Jy and |v e, ()] < \/ﬁ\/s_ 5 t € (a,b).

The function vy ((t) satisfies:

—_

vy . +muge =0

- v (a) =0, v (b) = |u/(b)]

v2,¢(t) be periodic in the variable ¢ with the period Z% — 0

V2., (t) converges uniformly to 0 for every sequence {€,},-, such that

€n € Jy and |vg e, ()] < \/ﬁ\/;ﬂ’ € (a,b).
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Denote wp ((t) = va,(t) — v1,(t).
Let w1 ¢i(t) be a solution of the linear problem

e/ +my = teu(t), i=ae P

with the Neumann boundary condition (1.2), where the sign + and — is con-
sidered for ¢ = a, and 7 = [, respectively. These solutions may be computed
exactly

b
cos [/Z(t — a)] [ cos [{/Z(b— s)] (xu"(s))ds
el VEsin[VE( - )

t

N / sin [/ (t — 82 (+u(s)) ds

ds = O(e),e € M.

Obviously, wi eq,. (t) = —wi 4. (t) on (a,b).
Let re,i(t) is a continuous solution of the Fredholm equation of the first
kind
b

I'(e) /Ke(t, s)rei(s)ds + Qe i(t) = zei(t), 2zi(t) >0 i=oa[ (1.3)

a

ﬂ
L
O
I
S
D
“r'n
m
<

_ 1 1
where I'(e) = VEsin[\/2(b—a)] €’

and the kernel

K1.(t,s) = cos [\/? (t— a)} cos [\/?(b - s)] +
- [\/?(b - a)] - [\/@ (t - 5>]
K. (t,5) = cos [\/E (t - a>] [\/@ (b— sﬂ

for ¢ € M and a modulation function z;(t) is an appropriate continuous
nonnegative function such that r;(¢) < 0.

This is an integral equation of the kernel K,(t, s) that is continuous on the
square (a,b) x {(a,b). The problem (1.3) is defined as ill-posed and, in general,
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may be described numerically with Tikhonov regularization ([6, 7, 10, 11]).
By substituing zc;(t) = re;(t) + Ze,i(t), i = ae, B into (1.3) we obtain

e)/KE(t, S)rei(s)ds + Qm(t) =7ei(t), i=ae,/fe,

i.e. r¢;(t) is a solution of Fredholm integral equation of second kind
b

['(e) /Kg(t, s)y(s)ds + Qei(t) = y(t), = ae b, (1.4)
where Q;(t) = Qci(t) — Ze4(t) and Z;(t) is an appropriate chosen function
such that

ge,i(t) > _Te,i(t)’ (15)
rei(t) <0, (1.6)
€ (a,b), i = a, Je.
The kernel K, is semiseparable ([4]), therefore the equation (1.4) can be
rewritten as

3 t b
V(0= 3 At / Bica(s)y()ds + Ar ot / Br.cals)y(s)ds + Qeul?)
where
Aral) =T cos [\ 20— 0)
Aaal) =T sin [/ 0 - )] sn [ /2]
Asalt) = ~D(@)sin [ 20— ) cos [\ /2]
Laal) =T cos [ 20— )
Brals) = cos ||/ 20~ )
Bycals) = cos [\/?s}
By eals) =sin [\/?s]
Biey(s) = cos [\/? (b— s)}
:

y(t) = ZAk,E,a(t)Xk eaz( ) + Al € b( ) 1 e,b,i(t) + Qe,i(t)a 1= ae,ﬂe (17)
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where

t b

Xk,s,a,i(t) = /Bk,s,a(s)y(s)dS, 1,E,bz / 1€, b S S, k= 1a 25 3.

a t

Multiply both sides of the integral equation (1.7) by B ¢ o(t) and integrate
from a to t and by B ¢;(t) and integrate from t to b, respectively. We obtain

k=17,

3 t t t
],e,al Z/Ak,e,aBj,e,an,e,a,idt+/Al,s,bBl,e,aXl,E,b,idt+/B
a a

3
l,e,b ) 5

k=1

~—

b
Ak,e,aBl,e,ka,e,a,idt+/Al,e,bBl,e,le,e,b,idt+/Bl,e,bﬁgidt
t

J=12,3,i= oS
Differentiating these equations and taking into consideration the definition

of Xj ¢, X1, we obtain the boundary value problem for the system of linear
differential equations

3

, ~
Xj757a7z‘ = Z Ak,s,aBj,e,an,E,a,i + Al,e,bBl,e,an,e,b,i + Bj,e,aQe,i (18)
k=1
3
, ~
Xlepi=— Z Ak e.aB1,es Xk e.ai — ALepB1epXi,ebi — Blepfei (1.9)
k=1

ijéva,i(a) = 0’ Xl,e,b,i(b) =0 (110)

7=1,2,3,i = ag, B or in the block matrix notation

i Pre(t) Pse(t) |
oo ( P;s(t) Pig(t) )X + Dei(t)

where
X = (Xicailt), Xocailt), Xs.eai(t), X1.epi()T,

Al,e,a( )Bl,s,a(t) AZ,E,a(t)Bl,E,a( ) (
Pl,e(t) = Al,e,a( )B2,e,a(t) A2,e,a(t)B2,e,a(t) AB € a(
Al,e,a(t)B?),E,a(t) AZ,E,a(t)B?),E,a(t) (

P2,e(t) ( Al ea(t)Bl,E,b(t) A2,e,a(t)Bl,e,b(t) A3,e,a(t)B1,E,b(t) ) )

Al J€ b(t)Bl € a(t)
P3,e(t) = Al J€ b(t)B2 € a(t) ) P4,€(t) = - (Al,e,b(t)Bl,e,b(t))
Al J€ b(t)B?) € a(t)
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and
De,i(t) = Qs,i(t) (Bl,s,a(t)7 BQ,e,a(t)7 B3,e,a(t)a _Bl,e,b(t))T )
i = Q, B¢. Thus,

rei(t) =re,i (Zei(t))
3
= Z Ape,at) Xke,a,i(t) + Arep(t) X epi(t) + Qei(t)  (1.11)
k=1

where X is a solution of the linear boundary value problem (1.8), (1.9), (1.10).
The conditions (1.5), (1.6) we may write in the form

—Zei(t) S 7ei(t) <0, i=ac, B (1.12)

or
3
0< Z Ak e.a) Xpea,i(t) + Arep(t) X ep,i(t) + Qei(t) < Zei(t).  (1.13)
k=1

Remark 1. The matrix

< Pl,&(t) P3,€(t) )
P27E(t) P47e(t)

of the system is periodic with period p tendings to 0 for ¢ — 0, ¢ € M and
using the Floquet theory, then the solution of the linear homogeneous system

I Pl,e(t) P3,e(t)
X = < P2,e(t) P4,e(t) >X

can be written as Xpom.¢(t) = pe(t)e®<! where p(t) is a periodic function and
a matrix ©,. is time independent. This fact is instructive for the numerical
description and the computer simulation of the system (1.8), (1.9).

Remark 2. The condition (1.13) is the fundamental assumption for existence
of the barrier functions a., G, for proving Theorem 1.

Now let v.(t) be a solution of Neumann boundary value problem (1.2)
for Diff. Eq.
ey + my =rei(t), i=ae b (1.14)
ie.
b
cos [\/2(t —a)] [ cos [\/2(b—s)] LE(S)dS
VEsin [\/2(b—a)
t

. m rei(s)
m(; _ )] il
+/ Sin [\/j( S)] € Sds =0 (Te,i(t)) €€ M.

Ve,eit) =

m

€
a

As follows from (1.3), the functions v, () must appear in the region as
illustrated in Figure 1.1.

Now we may state the main result of this article.
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Figure 1.1: The region for v, ;(t)

2 Main result

Theorem 1.
(A1) Let Z¢(t), € € (0,e0] N M, i = a, Bc be the continuous functions such
that (1.13) holds.

(A2) Let f € CY(Ds(u)) satisfies the condition

t

W‘ <w <k forevery (t,y)€ Ds(u)
Yy

(nonhyperbolicity condition)

where

§ > max {wo () + wiei(t) + Veei(t) 11 = e, Pt € (a,b);e € (0,¢0) N M}

Then the problem (1.1), (1.2) has for € € (0,e9] N M a solution satisfying the
inequality

—w0,e(t) = Wieac(t) = Veeac(t) < ye(t) = u(t) < woet) +wrep.(t) + veep(t)

on (a,b).

Proof. We define the lower solutions by
ae(t) = u(t) — (Wo,e(t) + wieac(t) + veeac(t))
and the upper solutions by

Pe(t) = u(t) + (wo,e(t) + wrep.(t) + Ve (t)) -
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After simple algebraic manipulation we obtain
wO,e(t) + wl,e,i(t) + vc,e,i(t) = Ze,i(t) > 0, 1= O, ﬁe

n (a,b). The functions «., O, satisfy the boundary conditions prescribed for
the lower and upper solutions of (1.1), (1.2) and a.(t) < B(t) on (a,b).
Now we show that
eald (t) + kae(t) > f(t, ae(t)) (2.1)
and
eﬁg(t) + kﬁe(t) < f(tv ﬁe(t)) (2'2)
Denote h(t,y) = f(t,y) — ky. From the assumption (.A2) on the function
f(t,y) we have
Oh(t,y)
Ay
in Ds(u). By the Taylor theorem we obtain
ca (t) — h(t, ae(t)) = eag (t) — [A(t, ae(t)) — h(t, u(t))]

1"

- Eul/(t) - Ewo,e(t) - 6(“)l,e,c\ze (t) - 6Uc,e,cue (t)

_ %Ze(t)) (—wo.e(t) — wieac(t) = veeac(t))

> e (8) — e (t) — €t oo (1) — €Ul (1)
+ (=m) (wo,e(t) + Wi eac(t) + Veeac(t))
(

-m < <2w—m<0

)
= _ev;:/,e,ae (t) — mUC,e,ae( ) = —Te Ot t).
From the condition (1.6) is —r¢ o () > 0 therefore ea/(t) — h(t, a.(t)) > 0 on
(a,b).

The inequality for F¢(t) :

oh (t 0, (t))
fﬁﬂﬁ»—ﬁ%)-—77——WMU+WmMﬂ+%mﬁD
— eu () — ew () — el g, (1) — €vpe 5, (1)
> (=m (WO E( ) + w1 6,66( )+ Uc,e,ﬁe(t))

— e (t) — ewy () — ewy g, (1) — €v, g (1)
= _Evc,e,ﬁe( ) — MV, (1) = —Tep(t) 20

where (t,0.(t)) is a point between (t,a.(t)) and (¢,u(t)), (¢,0.(t)) € Ds(u).
Analogously, (t,0.(t)) is a point between (t,u(t)) and (t,5(t)), (t,0.(t)) €

Ds(u) for € € (0, 0] N M. The existence of a solution for (1.1), (1.2) satisfying
the inequality above follows from Lemma 1.

Remark 3. We note, that if there exists the solution of (1.3) such that
rei(t) = O(€”), v > 0 then for every sequence{e,}, e, € (0,e0) " M, €, € J,
we have

|Yen (t) — u(?)] ( | + ‘u ‘)O(\/a)—i—Muu(’)(en)—i—(’)(eZ),
M, = max {|u”(t)| ,t € {a,b)} on (a,b).
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Remark 4. In the trivial case, when u(t) = ¢ =const is wp ((t) = w1 ¢, (t) d 0,

Te,i(t) g Oa 1= ae’ﬁe and
[ye(t) = u(t)] <0
ie. y.(t) =wu(t) on (a,b).
Example 1. Consider nonlinear problem (1.1), (1.2) with f(t,vy) = y*+g(t),
le.
ey +ky=v9y>+g(t), te{abd), k>0 0<e<<l
y'(a) =0, ¥'(b)=0.
For 0 < g(t) < ’1—2 on (a,b) the solution

u(t) = 5 (k— VI~ 4900))

of the reduced problem ku = u? + g(t) satisfies the assumption (.A2) of Theo-
rem 1. Let Zc;(t), € € (0,e0] N M, i = a., O, are the functions satisfying (1.13)
(the assumption (A1)).

Thus, according to Theorem 1 above, there is for € € (0, 9] N M a solution
ye(t) of the considered boundary value problem satisfying the inequality

_WO,E(t) — Wle,ac (t) — Ve, e, 0t (t) < ye(t) —u(t) < WO,E(t) + Wie, B (t) + Ve, e,Be (t)

on (a,b).

3 Generalization of the assumption (A1)

The assumption of nonnegativity of z.;(¢) in (1.3) and the condition (1.12)
may be generalized in the following sense.
Denote

I+,e,i - {t € <(I, b> : Ze,i(t) 2 0}, 1= O‘eaﬁe

and
I_ci={te(a,b):z;(t) <0}, i=a,/fe.

Let there exist the functions Z ;(¢) such that

re,i(t) S 0 on I+,6,i, 1= ae,ﬁe (31)

and
Tei(t) < 2wz i(t) on I_.; = ae, [ (3.2)

and
Vee,ae (t) + Ve p. (1) > —2woe(t) on I_ .o Ul 3, (3.3)

where 7¢;(t) is from (1.11) and z¢;(t) = 7ei(t) + Zci(t), i = e, Be.
Taking into consideration the fact that

WO,E(t) + wl,s,i(t) + Uc,s,i(t) - Zs,i(t) < 0 on I—,E,ia 1= Qe ﬁey (34)
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for the required inequality (2.1) for a.(t) on the interval I_ ., (in the case
of the inequality for fc(t) i.e. (2.2) on I_ g, we proceed analogously) we
obtain

" 1"

caf (t) = ht, ac(t)) = eu"(t) — cwp () = € (o, (t) = €V, (t)

> e () = e (t) = ] 0, (1) = €V, ()
+ (—m + 2w) (w07e(t) + Wi 6,00 (t) + Ve,e,ae (1))
= —Tea.(t) + 2w (wo,e(t) + wieac(t) + Veeac(t)) -

From (3.2) and (3.4), —rca. (t) + 2w (wo,e(t) + wie,a. () + Veca (t)) > 0 for
t € I_  q.. The condition (3.3) guarantees that a.(t) < fc(t) on (a,b). Hence,
Theorem 1 holds.

From (3.2), we get

(1 —2w)re;(t) < 2wz ;(t) < —2wre;(t) (3.5)

and we may generalize the assumption (A1) as follows.

(A1) Let Z;(t), i = a, B be the continuous functions such that

[(1:12)] V [(35) A (Ve (1) + Ve (1) = ~2w0.(1))]

on (a,b), € € (0,€p] N M holds.
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