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Abstract. In this paper, we study the singular behavior of solutions of a boundary value problem with mixed conditions

in a neighborhood of an edge. The considered problem is defined in a nonhomogeneous body of R3, this is done in the

general framework of weighted Sobolev spaces. Using the results of Benseridi-Dilmi, Grisvard and Aksentian, we show that

the study of solutions’ singularities in the spatial case becomes a study of two problems: a problem of plane deformation

and the other is of normal plane deformation.

1 Introduction

Many research papers have been written recently, both on the singular behavior of solutions for elasticity
system in a homogeneous polygon or a polyhedron, see for example [2, 6, 7, 11] and the references
cited therein. In the homogeneous domain, in [14] it is introduced a unified and general approach
to the asymptotic analysis of elliptic boundary value problems in singularly perturbed domains. The
construction of this method capitalizes on the theory of elliptic boundary value problems with nonsmooth
boundary. On the other hand, in [15] the authors developed an asymptotic theory of higher-order operator
differential equations with nonsmooth nonlinearities.

The case of a nonhomogeneous polygon was already considered in [3]. The regularity of the solutions
of transmission problem for the Laplace operator in R3 was studied in [4].

The aim of this paper, is to study the regularity of solutions for the following transmission problem:

(P1)





µi∆ui + (λi + µi)∇div ui = fi in Ωi,
u1 = 0 on Γ1,
σ2(u2).N = 0 on Γ2,

u1 = u2 = 0
(σ1(u1) − σ2(u2)) .N = 0

}
on Λ × R,

i = 1, 2

where σi , (i = 1, 2) designate the stress tensor with σi = (σijk), j, k = 1, 2, 3 and i = 1, 2. The σijk

elements are given by the Hooke’s law

σijk(ui) = µi

(
∂uik

∂xj
+

∂uij

∂xk

)
+ λi div(ui)δjk,

and Ω1, Ω2 are two homogeneouse elastic and isotropic bodies occupying a domain of R3 with a polyhedral
boundary. We suppose that the lateral surface Γ2 forms an arbitrary angle ω2 (0 < ω2 ≤ 2π) to the surface
Γ1. In addition we suppose that Ω is an nonhomogeneous body constituted by two bodies (Ω1 ∪ Ω2) rigidly
joined along the cylindrical surface Λ×R, which passes through the edge A. The generator of this surface
is inclined at an angle ω1 (0 < ω1 ≤ 2π) to the surface of the first body. For a function u, defined on

Ω, we designate by u1 (resp. u2) its restriction on Ω1(resp. Ω2). Let µi and νi =
λi

2(λi + µi)
(i = 1, 2)

be, respectively, the shear modulus and Poisson’s ratio for the material of the body Ωi, bounded by the
surfaces Γi and Λ × R, i = 1, 2.
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The vector N (resp. τ) denotes the normal (resp. the tangent) on Λ toward the interior of Ω1. Bi is the
infinite subset of R3 defined by: Bi = R×]0 , ωi[×R, i = 1, 2. Let θ0, θ∞ be two reals such that: θ0 ≤ θ∞,
we put η0 = θ0 − 1 and η∞ = θ∞ − 1.

The paper is organised as follows: In section 1 we recall some definitions and properties of Sobolev
spaces with double weights introduced by Pham The Lai [13]. In section 2 we transform the problem
(P1) using the partial complex Fourier transform with respect to the first variable, we obtain then a new
problem. In section 3 we prove a result of existence and uniqueness of the η− solutions according to
boundary conditions and we find transcendental equations which govern the singular behavior of solution,
then we compare these η− solutions. This comparison will be very useful because it allows us to find a
sufficient condition for the existence and the uniqueness of the solution of our initial problem. Finaly, we
state our main result on the regularity for the problem (P1).

2 Preliminary results and lemma

In this section we give some basic tools and properties of the weighted Sobolev spaces used in the
next.
Definition 2.1. For s ∈ N, we define the spaces

Hs
θ0,θ∞

(Ω)=
{

u ∈ L2
loc(Ω) : rθ0−s+|α|(1 + r)θ∞−θ0Dαu (x1, x2, x3) ∈ L2(Ω), ∀α ∈ N

2, |α| ≤ s
}

,

equiped with the scalar product

〈u, v〉 =
∑

|α|≤s

∫∫

Ω

r2(θ0−s+|α|)(1 + r)2(θ∞−θ0)DαuDαv dx1dx2dx3.

Hs
θ0,θ∞

(B) =
{
u ∈ L2

loc(B) : eθ0 t (1 + et)θ∞−θ0u (t, θ, x3) ∈ Hs(B)
}

,

equiped with the scalar product

〈u, v〉 =
∑

|α|≤s

∫∫

B

Dα
(
eθ0 t (1 + et)θ∞−θ0u

)
Dα

(
eθ0 t (1 + et)θ∞−θ0v

)
dtdθdx3.

Lemma 2.1 ( cf. [5, 10] ). Let θ1, θ2 be two reals, we assume that θ1 ≤ θ2. Let s be a positive integer,

then f ∈ Hs
θ1,θ2

(Ω), if and only if,

f ∈ Hs
θ1,θ1

(Ω) ∩ Hs
θ2,θ2

(Ω),

and we have

‖f‖Hs
θ1,θ2

(Ω) ≤ c
[
‖f‖Hs

θ1,θ1
(Ω) + ‖f‖Hs

θ2,θ2
(Ω)

]
,

c being a constant which depends only on θ1, θ2.

We define by the Fourier transform T with respect to the first variable in B.
The application T : Hs(B) −→ V s(B) is an isomorphism, where V s(B) is a Hilbert space define by

V s(B) =
{
u ∈ L2(B) : (1 + ξ2)

k
2 u ∈ L2(R, Hs−k(]0, ω[)), for k = 0, 1, ...s

}
.

Proposition 2.1. For s ∈ N , θ0 ≤ θ∞ , the application

Ω −→ B

(x, y, z) −→ (t , θ, x 3),

defines an isomorphism

Hs
θ0,θ∞

(Ω) −→ Hs
θ0−s+1,θ∞−s+1(B)

u 7−→ ũ ,
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where

ũ(t, θ, x3) = u(e−t cos θ , e−t sin θ, x3).

Proof. Use cylindrical coordinates together with the change of variable r = e−t.
Definition 2.2. The application

Hs
θ0,θ∞

(B) −→ Hs(B)

u −→ eθ0 t (1 + et)(θ∞−θ0)u,

is an isomorphism.

3 Transformation of the problem (P1)

We look for a possible solution u = (u1, u2) in H2
θ0,θ∞

(Ω1)
3×H2

θ0,θ∞

(Ω2)
3 for f = (f1, f2) ∈ L2

θ0,θ∞

(Ω1)
3×

L2
θ0,θ∞

(Ω2)
3 of the problem (P1).

3.1 Use cylindrical coordinates

We put x1 = r cos θ , x2 = r sin θ and x3 = x3 with r = e−t. Let us write the equations of the Lamé’
system in this coordinates, the problem (P1) becames

(P2)





2(1 − νi)

1 − 2νi
(−uir+

∂2uir

∂t2
)−

3 − 4νi

1 − 2νi

∂uiθ

∂θ
−

1

1 − 2νi

∂2uiθ

∂t∂θ
+

∂2uir

∂θ2
+

1

1 − 2νi
e− t ∂2uix3

∂t∂x3
+e− 2t ∂

2uir

∂x2
3

= gi1

2(1 − νi)

1 − 2νi

∂2uiθ

∂θ2
−

1

1 − 2νi

∂2uir

∂t∂θ
−uiθ+

3 − 4νi

1 − 2νi

∂uir

∂θ
+

∂2uir

∂t2
+

1

1 − 2νi
e− t ∂

2uix3

∂θ∂x3
+e− 2t ∂

2uiθ

∂x2
3

= gi2

∂2uiz

∂θ2
+

∂2uiz

∂t2
−

e− t

1 − 2νi
(

∂2uiθ

∂θ∂x3
+

∂uir

∂x3
−

∂2uir

∂t∂x3
)+

2(1 − νi)

1 − 2νi
e− 2t ∂

2uix3

∂x2
3

= gi3

u1 = 0 on R × {0} × R

σ2(u2).N = 0 on R × {ω2} × R

(
u1 − u2

(σ1(u1) − σ2(u2)) .N

)
=

(
0
0

)
on R × {ω1} × R,

where
gi(t, θ, x3) = e2tf i( e−t cos θ, e−t sin θ, x3),

uir, uiθ and uix3
are the components of the displacement vector, taken in the directions of the introduced

coordinates.
Property 3.1. For ui(x1, x2, x3) ∈ H2

θ0,θ∞

(Ωi)
3 and fi ∈ L2

θ0,θ∞

(Ωi)
3, ui(t, θ, x3) ∈ H2

η0,η∞
(Bi)

3 and

gi ∈ L2
η0,η∞

(Ωi)
3, i = 1, 2.

Proof. For s ∈ N and θ0 ≤ θ∞ , the application

Ωi −→ Bi

(x1, x2, x3) −→ (t , θ, x3),

defines an isomorphism

Hs
θ0,θ∞

(Ωi)
3 −→ Hs

θ0−s+1,θ∞−s+1(Bi)
3

ui(x1, x2, x3) 7−→ ui(t, θ, x3),
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which gives the result for s = 2.
Property 3.2. The problems (P1) and (P2) are equivalents.
Proof. It follows from property 3.1.
Remark 3.1

1- To express the behavior of the solution of the boundary value problem far away from the vertex, noting
that the neighborhood of A is sufficiently small so that terms containing the factor e−t may be neglected.
2- According to the mixed condition it is shown that the surface Γ2 is free of stresses while the surface
Γ1 is rigidly clamped. Since Γ1, Λ × R and Γ2 are coordinate surfaces corresponding to θ = 0, θ = ω1

and θ = ω2 respectively.
3- The boundary conditions are






σ1θθ = τ1rθ = τ1x3θ = 0 on Γ1

u2r = u2θ = u2x3
= 0 on Γ2

σ1θθ = σ2θθ, τ1rθ = τ2rθ and τ1x3θ = τ2x3θ

u1r = u2r, u1θ = u2θ and u1x3
= u2x3

}
on Λ × R.

4- The indicated stresses, in terms of displacements in the above coordinate system, are given by:






σiθθ =
2µi et

1 − 2νi

(
(1 − νi)

∂uiθ

∂θ
+ (1 − νi)uir − νi

∂uir

∂t

)
,

τirθ = µi et

(
∂uir

∂θ
−

∂uiθ

∂t
− uiθ

)
,

τix3θ = µi et ∂uix3

∂θ
,

where, τirθ and σiθθ, are the tangential stress tensor and the normal stress tensor respectively.

3.2 Fourier transform of (P2)

With the condition fi ∈ L2
θ0,θ∞

(Ωi)
3 the function gi(t, θ, x3) admits a Fourier transform ĝi(ξ, θ, x3) for

any ξ in the strip Cη0,η∞
defined by

Cη0,η∞
= {ξ ∈ C / η0 ≤ Im ξ ≤ η∞} .

This strip is not empty since it was assumed that θ0 ≤ θ∞. On the other hand ui(x1, x2, x3) ∈
H2

θ0,θ∞

(Ωi)
3, ui and its derivatives of order ≤ 2 admit a Fourier transform in the same strip.

Applying the Fourier transform on (P2) and taking into account the smallness of the neighborhood, we
obtain the following problem

(P3)






(1 − 2νi) û′′
ir − 2(1 − νi)(1 + ξ2) ûir − (3 − 4νi − iξ) û

′

iθ = ĝi1 (I)

2(1 − νi) û′′
iθ − (1 − 2νi)(1 + ξ2) ûiθ + (3 − 4νi + iξ) û

′

ir = ĝi2 (II)

û′′
ix3

− ξ2 ûix3
= ĝi3 (III)

û1 = 0 for θ = 0
σ̂2(u2) = 0 for θ = ω2(

û1 − û2

σ̂1(u1) − σ̂2(u2)

)
=

(
0
0

)
for θ = ω1,
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where ûi and σ̂i are the Fourier transforms of ui and σi respectively. More exactly we have:





σ̂1θθ = τ̂1rθ = τ̂1x3θ = 0 on Γ1

û2r = û2θ = û2x3
= 0 on Γ2

σ̂1θθ = σ̂2θθ, τ̂1rθ = τ̂2rθ and τ̂1x3θ = τ̂2x3θ

û1r = û2r, û1θ = û2θ and û1x3
= û2x3

}
on Λ × R

(BC)

with 



σ̂iθ = 0 ⇔ (1 − νi)û
′

iθ + (1 − νi − iξνi)ûir = 0,

τ̂irθ = 0 ⇔ û
′

ir − (1 + iξ)ûiθ = 0,

τ̂ix3θ = 0 ⇔ û
′

ix3
= 0.

Remark 3.2

1- From equations of (P3) it can be seen that the problem (P1) can be divided into two problems: The
first is a plane deformation to which correspond the two first equations (I) and (II), while the second is
a normal plane deformation, expressed by the third equation (III).
2- Finally, we get the following problem: for a fixed ξ in the strip Cη0,η∞

, we look for a possible solution
û = (û1, û2) in H2(]0, ω1[)

3 × H2(]0, ω2[)
3 for (P3).

The study of the homogeneous problem corresponding to (P3) gives the following results.
Proposition 3.1. The transcendental equations governing the singular behavior of the problem (P3)
given by:
Problem of plane deformation

µ2(1 − ν2)
2(4ν1 − 3)

(
sin2 ξω1 −

4(1 − ν1)
2 − ξ2 sin2 ω1

3 − 4ν1

)
+

(µ1 − µ2)(3 − 4ν2)(1 − ν2)(sin
2 ξω1 − ξ2 sin2 ω1) sin2 ξ(ω2 − ω1)+

+
1

4
µ−1

2 (µ1 − µ2)
2(3 − 4ν2)

2(sin2 ξω1 − ξ2 sin2 ω1) sin2 ξ(ω2 − ω1)

−2µ1(1 − ν1)(1 − ν2)(3 − 4ν2) sin ξω1 sin ξ(ω2 − ω1) cos ξ(2ω1 − ω2)

+(µ1 − µ2)(1 − ν1)(3 − 4ν2)
2 sin2 ξω1 sin2 ξ(ω2 − ω1)+

−ξ2 1
4µ−1

2 (µ1 − µ2)
2(sin2 ξω1 − ξ2 sin2 ω1) sin2(ω2 − ω1)

+4µ2(1 − ν1)(1 − ν2)(3 − 4ν2)(sin ξω1 sin ξ(ω2 − ω1))
2+

−ξ2(µ1 − µ2)(1 − ν1) sin2 ξω1 sin2(ω2 − ω1)+

−2µ1(1 − ν1)(1 − ν2) ξ2 sin(ω2 − ω1) sin ω1 cosω2

−µ2(1 − ν1)
2(3 − 4ν2) sin2 ξ(ω2 − ω1)

+ξ2µ2(1 − ν1)
2 sin2(ω2 − ω1) = 0.

(3.1)

Problem of normal plane deformation

µ1 sin ξω1 sin ξ(ω2 − ω1) − µ2 cos ξω1 cos ξ(ω2 − ω1) = 0 . (3.2)

Proof. Using the boundary conditions on Γ1, Γ2 and Λ × R, we obtain a system of homogeneous
equations. The condition of the vanishing of the system’s determinant gives the transcendental equations
with respect to ξ.
Proposition 3.2. Let F and G be the zeros of (3.1) and (3.2) repectively, then the homogeneous

problem (P3) admits a unique solution, if and only if, ξ /∈ (F ∪ G).

EJQTDE, 2010 No. 13, p. 5



Proof. It follows immediately from the proposition 3.1.
Proposition 3.3. For all ξ ∈ C/ (F ∪ G) and ĝi ∈ L2(]0, ωi[)

3, there exists one and only one

ûi ∈ H2(]0, ωi[)
3 solution for the problem (P3). In addition, the resolvant of (P3),

Rξ : L2(]0, ωi[)
3 −→ H2(]0, ωi[)

3

ĝi 7−→ Rξ(gi) = ûi

such that the map

C/ (F ∪ G) −→ L
(
L2(]0, ωi[)

3 −→ H2(]0, ωi[)
3
)

ξ 7−→ Rξ

is analytical.

Remark 3.3. The above proposition is similar to that of [5, 10].

4 The main result

In this section, we are going to prove a result of existence and uniqueness of the η− solutions and
then, we compare them η− solutions. This comparison will be very useful because it allows us to find a
sufficient condition for the existence and the uniqueness of the solution of our initial problem (P1). It is
important to introduce the following definition.
Defnition 4.1. Let η ∈ [η0, η∞] , we call η−solutions for the problem (P1), all elements u = (u1, u2) of

H2
η+1,η+1(Ω1)

3 × H2
η+1,η+1(Ω2)

3, verifying (P1).
The following property is a straightforward consequence of lemma 2.1.
Property 4.1. u is a solution for the problem (P1), iff, u is a η0−solutions and η∞−solutions of (P1).
Proof. Let u be a solution of (P1), then

u ∈ H2
θ0,θ∞

(Ω1)
3 × H2

θ0,θ∞
(Ω2)

3 = H2
η0+1,η∞+1(Ω1)

3 × H2
η0+1,η∞+1(Ω2)

3,

and from lemma 2.1, we have

u ∈ H2
η0+1,η0+1(Ω1)

3 × H2
η0+1,η0+1(Ω2)

3

and

u ∈ H2
η∞+1,η∞+1(Ω1)

3 × H2
η∞+1,η∞+1(Ω2)

3.

Then u is a η0−solution and η∞−solution of the (P1).�
Property 4.2. If the transcendental equations (3.k), k = 1, 2 have no zeros of imaginary part η, the

problem (P1) has a unique η− solutions, in addition there exists a positive constant c such that

‖u‖H2
η+1,η+1

(Ω1)3×H2
η+1,η+1

(Ω2)3 ≤ c ‖f‖L2
θ0,θ∞

(Ω1)3×L2
θ0,θ∞

(Ω2)3 .

The proof of this property is based on the following lemmas.
Lemma 4.1. K is a compact containing no zeros of (3.k), k = 1, 2, then there exist a constant c
depending on K such that for all u and all ξ ∈ K:

‖ûi‖H2(]0,ωi[)3
≤ c ‖̥(ûir, ûiθ, ûix3

)‖L2(]0,ωi[)3
,

where

̥(ûir, ûiθ, ûix3
) =




(1 − 2νi) û′′

ir − 2(1 − νi)(1 + ξ2) ûir − (3 − 4νi − iξ) û
′

iθ

2(1 − νi) û′′
iθ − (1 − 2νi)(1 + ξ2) ûiθ + (3 − 4νi + iξ) û

′

ir

û′′
ix3

− ξ2 ûix3



 .
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Lemma 4.2. Let R > 0, there exists α > 0 and c > 0 such that for any ξ verifying |Reξ| ≥ α, |Imξ| ≤ R
and for all ûi of H2(]0, ωi[)

3, we have

‖ûi‖H2(]0,ωi[)3
+ |ξ|4 ‖ûi‖L2(]0,ωi[)3

≤ c ‖̥(ûir, ûiθ, ûix3
)‖L2(]0,ωi[)3

.

Remark 4.1. For the proof of the two first lemmas we refer the reader to [10] .

Lemme 4.3. For a given η1, η2 ∈ R such that, η1 ≤ η2. If g ∈ L2
η1,η2

(B1)
3 × L2

η1,η2
(B2)

3
, one has





∀η ∈ [η1, η2] , eη tg ∈ L2 (B1)
3 × L2 (B2)

3

and
‖eη tg‖L2(B1)3×L2(B2)3 ≤ ‖g‖L2

η1,η2
(B1)

3×L2
η1,η2

(B2)
3 .

Proof. Let g ∈ L2
η1,η2

(B1)
3 × L2

η1,η2
(B2)

3, then

eη t
(
1 + et

)η2−η1
g ∈ L2 (B1)

3 × L2 (B2)
3 .

It suffies to show that ∣∣ eη tg
∣∣ ≤

∣∣∣eη1 t
(
1 + et

)η2−η1
g
∣∣∣ . (4.1)

Indeed, for t ∈ R+, we have

(1 + et)η2−η1 ≥ e(η2−η1) t and eη2 t ≥ eη t,

as ∣∣ eη tg
∣∣ ≤

∣∣∣eη t
(
1 + et

)η2−η1
g
∣∣∣ ,

and for t ≤ 0
(1 + et)η2−η1 ≥ 1 and eη1 t ≥ eη t.

Then ∣∣ eη tg
∣∣ ≤

∣∣∣eη t
(
1 + et

)η2−η1
g
∣∣∣ .

Hence the inequality (4.1).
Therefore,

eη tg ∈ L2 (B1)
3 × L2 (B2)

3 and
∥∥eη tg

∥∥
L2(B1)3×L2(B2)3

≤ ‖g‖L2
η1,η2

(B1)
3×L2

η1,η2
(B2)

3 .�

Proof. (property 4.2). This amounts to showing that the problem (P2) admits a unique η− solution,
i.e. that there exists one and only one u = (u1, u2) in H2

η,η(B1)
3 × H2

η,η(B2)
3 verifying (P2).

Existence. The hypothesis that (3.k) has no zeros on the half plane R+ iη ensures that the problem (P3)
admits a solution

û ∈ H2(]0, ω1[)
3 × H2(]0, ω2[)

3,

where
û(ξ = ρ + iη, θ, x3) ∈ V 2(B1)

3 × V 2(B2)
3.

We set

u(t, θ, x3) = e−η tT−1(û)(t, θ, x3),

where T−1 is the inverse Fourier transform with respect to ρ. One can easily verify that u is a solution
of (P2) and

u ∈ H2
η,η(B1)

3 × H2
η,η(B2)

3.
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Uniqueness. Let u1 and u2 two solutions of the problem (P1), then û1 and û2 are two solutions of (P3).

It follows from the proposition 3.3, that û1 = û2, now applying the inverse Fourier transform to both
sides of this equality, we obtain u1 = u2, hence the uniqueness.
We show now that

‖u‖H2
η+1,η+1

(Ω1)3×H2
η+1,η+1

(Ω2)3 ≤ c ‖f‖L2
θ0,θ∞

(Ω1)3×L2
θ0,θ∞

(Ω2)3 .

For this, it suffies to show that

‖u‖H2
η,η(B1)3×H2

η,η(B2)3 ≤ c ‖g‖L2
η0,η∞

(B1)3×L2
η0,η∞

(B2)3.

First recall that the application

H2
η,η(Bi) −→ V 2(Bi)

u 7−→ û(ρ + iη, θ, x3) = T (eηtu)(ρ + iη, θ, x3),

is an isomorphism, this allows us to write

‖u‖H2
η,η(B1)3×H2

η,η(B2)3 ≤ c ‖û‖V 2(B1)3×V 2(B2)3 .

We have then

‖u‖H2
η,η(B1)3×H2

η,η(B2)3 ≤
2∑

j=1




∫

R

‖ûj(ρ + iη, θ, x3)‖
2
H2(]0,ωj[)3

dρ


 +

+ |ξ|4
2∑

j=1




∫

R

‖ûj(ρ + iη, θ, x3)‖
2
L2(]0,ωj [)3

dρ


 .

Let R = |η| and α as defined in lemma 4.2, then for all ρ, |ρ| ≥ α

‖û(ρ + iη, θ, x3)‖
2
H2(]0,ω1[)3×H2(]0,ω2[)3

+ |ξ|4 ‖û(ρ + iη, θ, x3)‖
2
L2(]0,ω1[)3×L2(]0,ω2[)3

≤ c ‖ĝ(ρ + iη, θ, x3)‖
2
L2(]0,ω1[)3×L2(]0,ω2[)3

. (4.2)

Set K = {ξ = ρ + iη : |ρ| ≤ α} , which is a compact set containing no zeros of (3.k).
It comes from lemma 4.1 that

‖û(ρ + iη, θ, x3)‖
2
H2(]0,ω1[)3×H2(]0,ω2[)3 ≤ c ‖ĝ(ρ + iη, θ, x3)‖

2
L2(]0,ω1[)3×L2(]0,ω2[)3

.

But
‖û(ρ + iη, θ, x3)‖

2
L2(]0,ω1[)3×L2(]0,ω2[)3

≤ ‖û(ρ + iη, θ, x3)‖
2
H2(]0,ω1[)3×H2(]0,ω2[)3

,

we deduce that (4.2) is valid for ρ such that |ρ| ≤ α, so it is also valid for any ρ ∈ R.
By integrating both members of (4.2) with respect to ρ, we find

‖û‖V 2(B1)3×V 2(B2)3
≤ c ‖ĝ‖L2(B1)3×L2(B2)3 ,

thus
‖u‖H2

η,η(B1)3×H2
η,η(B2)3

≤ c ‖g‖L2
η,η(B1)3×L2

η,η(B2)3.

Moreover, from lemma 4.3

‖g‖L2
η,η(B1)3×L2

η,η(B2)3 ≤ c ‖g‖L2
η0,η∞

(B1)3×L2
η0,η∞

(B2)3
.
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Hence
‖u‖H2

η,η(B1)3×H2
η,η(B2)3 ≤ c ‖g‖L2

η0,η∞
(B1)3×L2

η0,η∞
(B2)3 .

Finally, from the proposition 2.1, we deduce that

‖u‖H2
η +1,η +1

(Ω1)3×H2
η +1,η +1

(Ω2)3 ≤ c ‖f‖L2
θ0,θ∞

(Ω1)3×L2
θ0,θ∞

(Ω2)3 .�

The following proposition is devoted to the decomposition of the solution of the problem (P1) to a
singular and a regular parts.
Proposition 4.1. η1, η2 ∈ [η0, η∞] , η1 ≤ η2. We assume that (3.k) have no zeros of imaginary part

η1 or η2, then

uη1
− uη2

= i
∑

ξ0∈(F∪G)∩{η1≤Imξ≤η2}

Res(eiξ tRξ(ĝ))/
ξ=ξ0

.

Proof. We note first that the sum has a meaning because the set (F ∪ G) ∩ {η1 ≤ Imξ ≤ η2} is finite
and the residuals are well defined.
Let γ be the domain defined in the half plane, by R + iη1 and R + iη2. We know that Rξ is analytical on
C/(F ∪ G), hence

∫

γ

eitξRξ(ĝ)dξ = 2πi
∑

ξ0∈(F∪G)∩{η1≤Imξ≤η2}

Res(ei tξRξ(ĝ)) |ξ=ξ0
,

and
∫

γ

eitξRξ(ĝ)dξ =

∫

[−ε+iη1,ε+iη1]

eitξRξ(ĝ)dξ +

∫

[ε+iη1,ε+iη2]

eitξRξ(ĝ)dξ

+

∫

[ε+iη2,−ε+iη2]

eitξRξ(ĝ)dξ +

∫

[−ε+iη2,−ε+iη1]

eitξRξ(ĝ)dξ

going to the limit when ε goes to infinity, we obtain

lim
ε→∞

∫

γ

eitξRξ(ĝ)dξ =

+∞∫

−∞

eit(ρ+iη1)R(ξ+iη1)(ĝ)dρ −

+∞∫

−∞

eit(ρ+iη2)R(ξ+iη2)(ĝ)dρ.

The integrals
∫

[ε+iη1,ε+iη2 ]

eitξRξ(ĝ)dξ and
∫

[−ε+iη2,−ε+iη1]

eitξRξ(ĝ)dξ,

tends to zero, thus

i
∑

ξ0∈(F∪G)∩{η1≤Imξ≤η2}

Res(e
i tξ

Rξ(ĝ)) |ξ=ξ0
=

1

2π

+∞∫

−∞

e(iξ−η1)tR(ρ+iη1)(ĝ)dρ−
1

2π

+∞∫

−∞

e(iξ−η2)tR(ρ+iη2)(ĝ)dρ

but

uη1
=

e−η1t

2π

+∞∫

−∞

eitξR(ρ+iη1)(ĝ)dρ and uη2
=

e−η2t

2π

+∞∫

−∞

eitξR(ρ+iη2)(ĝ)dρ.
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Which ends the proof.�
Now, our aim is to prove a theorem of existence, uniqueness and regularity of the solution of our initial

problem (P1).
Theorem 4.1. Let θ0, θ∞ be two reals such that θ0 ≤ θ∞. We assume that (3.k), k = 1, 2 have no zeros

in the strip Cη0,η∞
, then for all f ∈ L2

θ0,θ∞

(Ω1)
3 × L2

θ0,θ∞

(Ω2)
3, there exists one and only one solution

u in H2
θ0,θ∞

(Ω1)
3 × H2

θ0,θ∞

(Ω2)
3 for the problem (P1) and we have

‖u‖H2
θ0,θ∞

(Ω1)3×H2
θ0,θ∞

(Ω2)3
≤ c ‖f‖L2

θ0,θ∞
(Ω1)3×L2

θ0,θ∞
(Ω2)3 .

Proof. (1) Existence. The hypothesis that (3.k) has no zeros on the strip Cη0,η∞
ensures the existence

of η0−solution and the η∞−solution of (P1), that we note uη0
, uη∞

.
In addition (F ∪ G) ∩ {η0 ≤ Imξ ≤ η∞} = ∅, the proposition 4.1 implies that

uη0
− uη∞

= i
∑

ξ0∈(F∪G)∩{η0≤Imξ≤η∞}

Res(ei tξRξ(ĝ)) |ξ=ξ0
.

This shows that uη0
= uη∞

. We put now u = uη0
, it is clear that

u ∈ H2
θ0,θ0

(Ω1)
3 × H2

θ0,θ0
(Ω2)

3 and u ∈ H2
θ∞,θ∞

(Ω1)
3 × H2

θ∞,θ∞
(Ω2)

3.

The lemma 2.1, shows that u ∈ H2
θ0,θ∞

(Ω1)
3 ×H2

θ0,θ∞

(Ω2)
3. Thus u is a solution of (P1) by construction.

(2) Uniqueness. We assume that there exist two solutions u1 and u2 in H2
θ0,θ∞

(Ω1)
3×H2

θ0,θ∞

(Ω2)
3. Then

u1, u2 are η0−solutions and η∞−solutions ( property 4.1 ). It follows from the uniqueness of η−solutions
that u1 = u2.

(3) Continuity with respect to the data. We deduce from property 4.2, that

‖u‖H2
θ0,θ0

(Ω1)3×H2
θ0,θ0

(Ω2)3 ≤ c ‖f‖L2
θ0,θ∞

(Ω1)3×L2
θ0,θ∞

(Ω2)3 ,

‖u‖H2
θ∞,θ∞

(Ω1)3×H2
θ∞,θ∞

(Ω2)3 ≤ c ‖f‖L2
θ0,θ∞

(Ω1)3×L2
θ0,θ∞

(Ω2)3 ,

and from lemma 2.1, we get

‖u‖H2
θ0,θ∞

(Ω1)3×H2
θ0,θ∞

(Ω2)3
≤ c ‖f‖L2

θ0,θ∞
(Ω1)3×L2

θ0,θ∞
(Ω2)3 .

Which proves the theorem.�

5 Singularity solutions of the homogeneous elasticity system

Let us now examine the case of a homogeneous plate, the side surface of which makes an angle ω with
the plane of the face. This case may be obtained by setting: ν = ν1 = ν2, µ = µ1 = µ2 and ω = ω1 = ω2

in the relations previously derived.
Proposition 5.1. The transcendental equations governing the singular behavior of the problem (P1) take

the form




sin2 ξω −
4(1 − ν)2 − ξ2 sin2 ω

3 − 4ν
= 0, problem of plane deformation,

cos ξω = 0, problem of normal plane deformation.

(5.1)

Proof. Setting in (3.1) and (3.2): ν = ν1 = ν2, µ = µ1 = µ2 and ω = ω1 = ω2 we obtain the characteristic
equations (5.1).

The singular solutions of the problem (P1) are given in the following proposition:
Proposition 5.2. Let ξl denote the zeros of the transcendental equation (5.1), then the singular solutions

of the problem (P1) are given by
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ℑl(r, θ, x3) =





rξΨξ(θ, x3), if ξ is a simple root of (5.1),

ℑ′
l =

∂
(
rξΨξ(θ, x3)

)

∂ξ
, if ξ is a double root of (5.1).

a- ω ∈ ]0, π[∪ ]π, 2π[

ℑ(r, θ, x3) = cr−iξ




(4ν − iξ − 3) (Lξ(ω) cos(1 + iξ)θ − Mξ(ω) sin(1 + iξ)θ)
(−4ν − iξ + 3) (Lξ(ω) sin(1 + iξ)θ + Mξ(ω) cos(1 + iξ)θ)

cos(iξθ)




−cr−iξ




Lξ(ω)(1 − iξ) cos(1 − iξ)θ − Mξ(ω)(1 + iξ) sin(1 − iξ)θ
−Lξ(ω)(1 − iξ) sin(1 − iξ)θ − Mξ(ω)(1 + iξ) cos(1 − iξ)θ

0


 ,

where

Lξ(ω) = (2ν − iξ − 2) sin ω cos(iξω) − (1 − 2ν) cos(ω) sin(iξω).

Mξ(ω) = −(2ν − iξ − 1) sinω sin(iξω) − 2(1 − ν) cos(ω) cos(iξω) .

b- ω = 2π

ℑ(r, θ, x3) = cr−iξ




(4ν − iξ − 3) cos(1 + iξ)θ − (1 − iξ) cos(1 − iξ)θ
−(4ν + iξ − 3) sin(1 + iξ)θ + (1 − iξ) sin(1 − iξ)θ

r( 1
4
+iξ) cos( θ

4 )


,

ℑ′(r, θ, x3) = cr−iξ




−(4ν − iξ − 3) sin(1 + iξ)θ + (1 + iξ) sin(1 − iξ)θ
(4ν + iξ − 3) cos(1 + iξ)θ + (1 + iξ) cos(1 − iξ)θ

0



.

Proof. Let ξl denote the zeros of the equation (5.1) in the strip Cη0,η∞
. A general solution of homogeneous

system (P3) is given by

̂̃u =

4∑

k=1

akek,

where

e1 = (ch (ξ − i) θ,−i sh((ξ − i) θ) ,

e2 = (i sh (ξ − i) θ, ch (ξ − i) θ) ,

e3 =
1

ξ
((A ch (ξ − i) θ − B ch (ξ + i)),− i A(sh(ξ − i)θ + sh(ξ + i)θ)) ,

e4 =
1

ξ
(−iB (sh(ξ − i)θ + sh(ξ + i)θ), B ch(ξ − i)θ − A ch(ξ + i)θ) ,

with
A = 3 − 4ν + iξ, B = 3 − 4ν − iξ and i2 = −1.

By setting θ = 0 and θ = ω in the boundary conditions (BC), we obtain a system of homogeneous
equations. The condition of the vanishing of the system’s determinant gives the transcendental equations
(5.1) with respect to ξ. So for any ξ a complex solution of (5.1), the solutions of this system give the
singular solution ℑ(r, θ, x3) for ω ∈ ]0, π[∪ ]π, 2π[.

In the same way setting θ = 2π in (BC), we obtain the component of the singular solution for ω = 2π.

This ends the proof.�
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6 Conclusion and perspectives

The purpose of this paper is to study the singular behavior of solutions of a boundary value problem
with mixed conditions in a neighborhood of an edge in the general framework of weighted Sobolev spaces.
This work is an extension to similary ones in Sobolev spaces with null and single weight. In the non
homogeneous case, it’s not easy to solve the transcendental equations defined in the proposition 3.1, this
does not permit us to find the singular solutions.

We will devote a further paper for the generalization of the results obtained here for the non-homogeneous
case with presence of discontinuity of the boundary value on the intersection surface.
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