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Abstract. In this paper, we study the singular behavior of solutions of a boundary value problem with mixed conditions
in a neighborhood of an edge. The considered problem is defined in a nonhomogeneous body of Rg, this is done in the
general framework of weighted Sobolev spaces. Using the results of Benseridi-Dilmi, Grisvard and Aksentian, we show that
the study of solutions’ singularities in the spatial case becomes a study of two problems: a problem of plane deformation

and the other is of normal plane deformation.

1 Introduction

Many research papers have been written recently, both on the singular behavior of solutions for elasticity
system in a homogeneous polygon or a polyhedron, see for example [2, 6, 7, 11] and the references
cited therein. In the homogeneous domain, in [14] it is introduced a unified and general approach
to the asymptotic analysis of elliptic boundary value problems in singularly perturbed domains. The
construction of this method capitalizes on the theory of elliptic boundary value problems with nonsmooth
boundary. On the other hand, in [15] the authors developed an asymptotic theory of higher-order operator
differential equations with nonsmooth nonlinearities.

The case of a nonhomogeneous polygon was already considered in [3]. The regularity of the solutions
of transmission problem for the Laplace operator in R? was studied in [4].

The aim of this paper, is to study the regularity of solutions for the following transmission problem:

pildu; + (N + pi) Vdivu; = f; in €y,
up =0 onI'y,
(Pl) UQ(UQ).NZO on FQ, 221,2

Uy = Ug = 0
(0 (11) — o5 (uz)) .N = 0 } on A xR,

where o; , (i = 1,2) designate the stress tensor with o; = (0yx), j, K = 1,2,3 and ¢ = 1,2. The oy
elements are given by the Hooke’s law

oijr(ui) = pi < (’)xlf +
J

a,’L'k ) + )\z div(ui)5jk,

and Q1, )y are two homogeneouse elastic and isotropic bodies occupying a domain of R? with a polyhedral

boundary. We suppose that the lateral surface I's forms an arbitrary angle ws (0 < wo < 27) to the surface

I';. In addition we suppose that 2 is an nonhomogeneous body constituted by two bodies (Q1 U Q5) rigidly

joined along the cylindrical surface A x R, which passes through the edge A. The generator of this surface

is inclined at an angle wy (0 < w1 < 27) to the surface of the first body. For a function w, defined on
s

Q, we designate by u; (resp. usg) its restriction on Q(resp. Q2). Let p; and v; = 2()\71) (i =1,2)
i T M

be, respectively, the shear modulus and Poisson’s ratio for the material of the body £2;, bounded by the

surfaces I'; and A x R, i =1,2.
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The vector N (resp. 7) denotes the normal (resp. the tangent) on A toward the interior of . B; is the
infinite subset of R? defined by: B; = Rx]0, w;[xR, i = 1,2. Let 6, 6 be two reals such that: 0y < 0,
we put 179 = 6p — 1 and 750 = 0 — 1.

The paper is organised as follows: In section 1 we recall some definitions and properties of Sobolev
spaces with double weights introduced by Pham The Lai [13]. In section 2 we transform the problem
(Py) using the partial complex Fourier transform with respect to the first variable, we obtain then a new
problem. In section 3 we prove a result of existence and uniqueness of the n— solutions according to
boundary conditions and we find transcendental equations which govern the singular behavior of solution,
then we compare these n— solutions. This comparison will be very useful because it allows us to find a
sufficient condition for the existence and the uniqueness of the solution of our initial problem. Finaly, we
state our main result on the regularity for the problem (P;).

2 Preliminary results and lemma

In this section we give some basic tools and properties of the weighted Sobolev spaces used in the
next.
Definition 2.1. For s € N, we define the spaces

Hg o Q)= {u € L%OC(Q) : re"_sﬂo‘l(l + r)ew_eODau (x1,29,23) € LQ(Q), Vo € N2, la| < s} ,

equiped with the scalar product

(u,v) = Z /r2(9°75+‘°‘|)(1 + 7)20==00) Doy DY day daods.
la|<s” g
Hj 5. (B) = {u€Li(B) : ™" (L+e")’="%u (t,0,25) € H(B)},

equiped with the scalar product

(u,v) = Z /Da (eP0f (1+ )Py ) D (e (1 4 €')?>~0v) dtdOdas.
la|<s” g

Lemma 2.1 ( cf. [5, 10] ). Let 61, 02 be two reals, we assume that 01 < 6. Let s be a positive integer,
then f € Hg 4,(Q), if and only if,

f E Hgl,el (Q) m HgQ,GQ (Q)’
and we have

@ T las @]

02,02

115, e < € [If

01,01
c being a constant which depends only on 01, 0.

We define by the Fourier transform 7' with respect to the first variable in B.

The application T : H*(B) — V*(B) is an isomorphism, where V*(B) is a Hilbert space define by

Ve(B) = {u e L3(B): (1+&)5ue AR, HF(0,w]), for k=0,1, s}

Proposition 2.1. For s € N, 0y < 0 , the application
Q — B
(SC,y,Z) - (t797I3)5

defines an isomorphism

HOSU,OOO (Q> I Hesgferl,GoofSJrl(B)

U — u,
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where
u(t,0,23) = u(e *cosf ,e tsinf, z3).

Proof. Use cylindrical coordinates together with the change of variable r = e~

Definition 2.2. The application

Hg, 9. (B) — H*(B)

u — el (14 et)0==0)y

)

s an tsomorphism.

3 Transformation of the problem (P)

We look for a possible solution u = (u1,u2) in Hy o (Q1)*xHg o (Q2)® for f = (f1, f2) € L§, 4. (21)%x
L‘%O;Goo (€22)2 of the problem (Py).

3.1 Use cylindrical coordinates

We put 21 = rcos, 2 = rsinf and z3 = 23 with r = e~%. Let us write the equations of the Lamé’
system in this coordinates, the problem (P;) becames

2(1 — l/i) 82uir 3— 4Vi 6’&1'9 1 82ui9 62uir 1 _ 82@%, _ 62uir
S (_u_ )_ _ + e t 3 +e 2t =g,
1-— 2y e ot2 1—-2v; 00 1-—2u; Ot 902 1-—2u; Otdxs 0% ’

2(1 — Vi) (92’&1'9 1 (92’&“« 3 — 4I/i 8uir 82’[1,1',« 1 ¢ 82uix3 _ ot 82ui9
- —Uig+ + € te 7 = Yi2
1—-2y; 002 1-—2u; OtOl 1-2y; 00 ot 1—2uy 000z ox3

2 2 —t 2 2 2
0“u;, 0%y, e 0w Owiyr  O%uir 21 —v5) 5, 0%Uips

P. — — .
P)\ B0 T or T—00 000w, Oxs 0t0ws) 1—2ms ¢ a3 0
u =0 on Rx {0} xR
o2(u2). N =0 on R x {wa} xR
i (0 on Rx{w}xR
(0‘1(’&1) —O'Q(UQ)).N 0 1 ’
where

gi(t,0,23) = e* fi(e tcosh, e 'sinh, x3),

Uir, Uip and Uy, are the components of the displacement vector, taken in the directions of the introduced

coordinates.
Property 3.1. For u;(z1,x9,73) € Hy o (%)° and fi € Lg o ()%, wi(t,0,23) € Hy |\ (Bi)® and

gie L2, ()P i=1,2

Proof. For s € N and 6y < 6, the application

(.’I]l,.’L’g,ZEg) . (t595$3)5
defines an isomorphism

Hesoﬁoo (91)3 - HOSoferl,Gooferl(Bi)g

wi(wy, w2, w3) (. 0,x3),
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which gives the result for s = 2.

Property 3.2. The problems (Py) and (P) are equivalents.

Proof. It follows from property 3.1.

Remark 3.1

1- To express the behavior of the solution of the boundary value problem far away from the vertex, noting
that the neighborhood of A is sufficiently small so that terms containing the factor e~* may be neglected.
2- According to the mixed condition it is shown that the surface I's is free of stresses while the surface
T'; is rigidly clamped. Since I';, A x R and I'y are coordinate surfaces corresponding to = 0, § = w;
and 6 = ws respectively.

3- The boundary conditions are

0100 = Tirg = Tizg0 = 0 on I
U2y = U20 = U2g3 = 0 on FQ
0190 = O Tirg = Torg and T =T
1600 200, T1r6 276 1x36 2230 on A x RR.
Ulr = Ugp, Ulg = U2e and Uiy, = Uy,
4- The indicated stresses, in terms of displacements in the above coordinate system, are given by:
2p; €' Ouig Oy
Ti00 = 1—vy; + (1 — v)usyr — vy
‘ 1—2y; (=) g + A= viur —viTg )
o t auir auig
Tirg = i € - — Uip )

00 ot

¢ 8uixa

20’

Tixzz60 = Hi €

where, 7;.9 and 099, are the tangential stress tensor and the normal stress tensor respectively.

3.2 Fourier transform of (F)

With the condition f; € Lj , (;)? the function g;(t,6,z3) admits a Fourier transform g;(¢, 0, z3) for
any & in the strip Cj, .. defined by

Croe =16€C [ o< Im & <ot

This strip is not empty since it was assumed that 0y < 6. On the other hand w;(z1,z2,23) €
Hj 4. ()2, u; and its derivatives of order < 2 admit a Fourier transform in the same strip.

Applying the Fourier transform on (P,) and taking into account the smallness of the neighborhood, we
obtain the following problem

(1—2u) @ —2(1— ) (1 +€2) Uy — (3 — 4wy —i€) Ty =g (I)
2(1 — ;) @y — (1= 203) (1 + €2) Tip + (3 — 4w i) Uy = iz (D)
(P3) al,, — & Uiw, = Gis (I11)

u =0 for =0
oa(ug) = for 0 =ws

Uy — Us (0 _
( 31(“1)* 32(”2) ) B ( 0 ) for §=uwi,
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where 4; and &; are the Fourier transforms of u; and o; respectively. More exactly we have:

01660 = Tirg = Tizgo =0 on I}
Ugr = Uz = U2z, = 0 on I (BC)
109 = O Tire = Torg aNd Tig.0 = Tou.
9 1606 ~ 299/3\ 17"9/\ 2r6 - 1z3/9\ 2x360 on A xR
ULy = Ugp, U1g = U2g and Uiy, = Uy,
with ,
g0 = 0< (1 — I/i)uw + (1 —V; — ’Lgl/i)’uir = 0,
o~ /\, . o~
Tiro =0 & Uy, — (1 +i€)up = 0,
o~ /\/
Tizs0 = 0 Uiy = 0.
Remark 3.2

1- From equations of (Ps) it can be seen that the problem (P;) can be divided into two problems: The
first is a plane deformation to which correspond the two first equations (I) and (II), while the second is
a normal plane deformation, expressed by the third equation (IIT).

2- Finally, we get the following problem: for a fixed £ in the strip Cy, ... , we look for a possible solution
U = (U1, Uz2) in H?(]0,w1])? x H?(]0,ws])? for (Ps).

The study of the homogeneous problem corresponding to (Ps) gives the following results.
Proposition 3.1. The transcendental equations governing the singular behavior of the problem (Ps)
given by:

Problem of plane deformation

it )ty =) (s gy - AL Een )

3—41n
(11 — p12) (3 = 4w2) (1 — w2) (sin? fwy — €2 sin® wy) sin® € (wz — wi)+
g (i — 2)(3 — Av)2(sin? €y — € sin® 1) sin® £y — 1)
=201 (1 — 1) (1 — 12)(3 — 4uz) sin €wy sin & (wa — wy) cos€(2wy — wa)
(1 = p2)(1 = 11)(3 — 4v2)? sin® Ewy sin® € (w2 — wi)+
=213 (1 — p2)*(sin® Ewy — €2 sin” wy) sin® (wa — w1)
4o (1 — v1)(1 — 1)(3 — dvp)(sin Ewy sin € (wg — wy))?+
=& (1 — p2)(1 — 1) sin® Ewn sin®(wo — wi)+
—2pu1(1 = v1)(1 — v2) €2 sin(wy — wy) sinwy cosws
—p2(1 = v1)*(3 — 4wp) sin® E(w2 — wr)
+E212(1 — v1)? sin2(w2 —wp) =0.

Problem of normal plane deformation

1 sin &ws sin &(wa — wy) — po coswy cosE(wa —wy) =0. (3.2)

Proof. Using the boundary conditions on I'y, I's and A x R, we obtain a system of homogeneous
equations. The condition of the vanishing of the system’s determinant gives the transcendental equations
with respect to &.

Proposition 3.2. Let I and G be the zeros of (3.1) and (3.2) repectively, then the homogeneous
problem (Ps) admits a unique solution, if and only if, £ ¢ (FUG).
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Proof. It follows immediately from the proposition 3.1.
Proposition 3.3. For all ¢ € C/(FUG) and g; € L2*(]0,w;[)3, there exists one and only one
u; € H?()0,w;|)? solution for the problem (Ps). In addition, the resolvant of (P3),

Re : L*(J0,wil)’ — H?(J0,w;])°
gi r— Re(gi) =1
such that the map

C/(FUG) — L(L*(0,wi])’ — H?(]0,wi)?)
§ — R

is analytical.
Remark 3.3. The above proposition is similar to that of [5, 10].

4 The main result

In this section, we are going to prove a result of existence and uniqueness of the n— solutions and
then, we compare them n— solutions. This comparison will be very useful because it allows us to find a
sufficient condition for the existence and the uniqueness of the solution of our initial problem (P;). It is
important to introduce the following definition.

Defnition 4.1. Let n € [1o, o], we call n—solutions for the problem (Py), all elements u = (u1,ua) of
Hiy i1 () X HE Ly (Q2), verifying ().

The following property is a straightforward consequence of lemma 2.1.

Property 4.1. u is a solution for the problem (P1), iff, u is a ng—solutions and ne—solutions of (Py).
Proof. Let u be a solution of (Py), then

u € Hgo,eoo ()% x Hgo,eoo (Q2)? = H12m+1,nw+1(91)3 x H20+1,nw+1(92)3a

and from lemma 2.1, we have

2 3 2 3
u € H770+17770+1(Ql) XHU0+11770+1(QQ)

and

voe Hgooﬂv"voH(Ql)s X H§m+1,nw+1(92)3-

Then u is a no—solution and 1.,—solution of the (P;).H
Property 4.2. If the transcendental equations (3.k), k = 1,2 have no zeros of imaginary part 7, the
problem (Py) has a unique n— solutions, in addition there exists a positive constant ¢ such that

lellz,, o @xrz,, @0 = WFlleg |, @uxrs, , @22

The proof of this property is based on the following lemmas.
Lemma 4.1. K is a compact containing no zeros of (3.k), k = 1, 2, then there exist a constant ¢
depending on K such that for all u and all £ € K:

||ai||H2(]0,wi[)3 <c HF(azra ai07 a”z)”L?(]o,wi[)S >

where ,
(1 —2u) @ —2(1 — i) (1 + €2) Uiy — (3 — duy — i€) Uy
F(Uir, Wi, iy) = | 2(1 — 1) Uy — (1 — 203) (1 + €2) Uip + (3 — 4v; + i€) Ty,
0l — €2 U,
1T3 1T 3
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Lemma 4.2. Let R > 0, there exists a > 0 and ¢ > 0 such that for any & verifying |Re&| > a, |[Im&| < R
and for all U; of H?*(]0,w;[)?, we have

~ 4~ ~ ~ ~
HuiHHQ(]O,w.L-[)S + €] ||uiHL2(]O,wi[)3 <c ||F(Uirvuw,Uz‘ms)”ﬂ(]o,wi[)s :

Remark 4.1. For the proof of the two first lemmas we refer the reader to [10].

Lemme 4.3. For a given 11, 12 € R such that, ; <na. If g€ L2 (B1)* x L2 (B3)?, one has

Vi € [m,m2), e'g € L? (By)® x L? (By)®
and

||€ntg||L2(B1)3><L2(BQ)3 = ||9||L3M2(B1)3xL%MQ(Bz)S'

Proof. Let g € L%hm (31)3 X L72]1,772

(Bg)?, then
et (14+e)” " ge L*(B1)® x L* (B.)’.

It suffies to show that
le"tg| < ‘emt(l—l—et)m_mg‘ . (4.1)

Indeed, for t € R4, we have

(14 et)mr==m > e(m=m)t and et > et

as
|€"tg| < ’ent (1 +et)nz—m ql,
and for t <0
(14+e")™™™M > 1 and e™? > "
Then

lemty| <

ent (1 + et)nrm g’ .
Hence the inequality (4.1).

Therefore,

2 3 2 3
€"t9€L (B1)” x L*(Bg)” and HentgHLQ(Bl)stz(B2)s < ||9||L%m2(Bl)stglm(BZ)S u

Proof. (property 4.2). This amounts to showing that the problem (P2) admits a unique n— solution,
i.e. that there exists one and only one u = (u1, ug) in Hy, (B1)® x Hy (Ba)? verifying (P).
Existence. The hypothesis that (3.%) has no zeros on the half plane R + in ensures that the problem (Ps)
admits a solution

u € H?()0,w1])® x H2(]0,ws])?,

where
U = p+in,0,x3) € V(B1)® x V?(Ba)®.

We set

u(t,0,23) = e TH(U)(t, 0, x3),

where T~ is the inverse Fourier transform with respect to p. One can easily verify that u is a solution
of (P,) and
2 3 2 3
u € H77177(B1) X H77777(B2) .
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Uniqueness. Let u! and u? two solutions of the problem (P;), then 4! and u? are two solutions of (P).

It follows from the proposition 3.3, that u' = %2,

sides of this equality, we obtain u! = u2, hence the uniqueness.
We show now that

lellz,, o @xrz,, @0 = Wz |, @uoxrs, , @22

For this, it suffies to show that

Vel sz e < N9llis | mosxas, e

First recall that the application
H?,(B)) — V?*(Bj)
U a(p + ’an 97 :C3) = T(entu) (p + ’LT], 97 :C3)7

is an isomorphism, this allows us to write
. s <clla . 5.
”uHH%m(Bl)dxH%m(BZ)J > C||U||v2(31)sxv2(32)s
We have then

2
lellig oo e < 2 /”aﬂ'(p+in’e’z3>||§12<]o,wj[>3dp +
=1 \'r

2
4 ~ .
161 S| 1500+ i 0,23) oy oo
Jj=1 R

Let R = || and « as defined in lemma 4.2, then for all p, |p| > «
~ , 40~ ,
[u(p + in, 0, $3)||%r2(]o,w1[)SxHZ(]o,wZDS + &7 (e + in, 0, ‘T3)||2L2(]0,w1[)3><L2(]O,wz[)3

~ . 2
< cllglp+in,0,23) 7210 w1 )5 x L2(0,wa])? -

Set K ={{=p+in:|p| <a}, which is a compact set containing no zeros of (3.k).
It comes from lemma 4.1 that
~ . ~ . 2
[@(p + i1, 0, 25) |32 0,01 02 x 2 (0,022 < € 1900 + 1,6, 3) 2210 .01 )3 x L2 (10,02 -
But
[@(p +in, 0, 23) 17210, 2 x £2(0,wapy> < TP+ 050, 23) T2 10 wn o x 112 10,00

we deduce that (4.2) is valid for p such that |p| < «, so it is also valid for any p € R.
By integrating both members of (4.2) with respect to p, we find

[@lly2(Byysxve(mays < €l r2ipyyexr2(ma)s -
thus
HUHH%W(Bl)k”'xH%YTI(BZ)S < CHQHLgm(Bl)Bngm(Bz)z,

Moreover, from lemma 4.3

Ills ,mosxes s < €llles | i, 2
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Hence

lullz sz a0 < €N9llis, | mosxis, .m0

Finally, from the proposition 2.1, we deduce that

||UHH3+1,W w1 (@) xHp 1 (Q2)3 Sc ||fHL2 (922)3 -

2000 (213X L3

00,000
The following proposition is devoted to the decomposition of the solution of the problem (P;) to a
singular and a regular parts.
Proposition 4.1. 71, 72 € [0, Moo , M < 12. We assume that (3.k) have no zeros of imaginary part
N1 or n2, then
Uy — gy = ) Res(e™'Re (3)

EoE(FUG)N{n1 <Im€<mz}

/5:50 ’

Proof. We note first that the sum has a meaning because the set (F'UG) N {m < Im& < ny} is finite
and the residuals are well defined.

Let v be the domain defined in the half plane, by R +in; and R +47,. We know that R¢ is analytical on
C/(F UG), hence

[esre@ie=2m S Res( " Ref@) s,
¥ So€(FUG)N{m <Im&<n2}
and
/ CRe(G)de = / ¢ Re (§)de + / ¢ Re()de
Y [—e+in1,e+in] [e+in,e+in2]

+ / ¢ Re()de + / ¢ Re (§)de

[e4in2,—e+inz] [—e+inz,—e+in]

going to the limit when e goes to infinity, we obtain

+o0 +oo
Jim [ " Re(9)d = / MM R iy (§)dp — / e R ying) (§)dp-
¥ —© -
The integrals J e Re(9)d¢ and J e Re(9)d¢,
[e+iny,e+inz] [—e+ing,—e+im]
tends to zero, thus
1 o 1 o
i Res(e “Re(@) ety = 5= [ 5 Bipuiny @3- [ 5 B @)
Eo€(FUG)N{n1 <ImE<n2} Z oo Yo
but
efnlt—i_oo " e~ 2t e it
U = - /ez Rprin) (9)dp and uy, = /ez *Ripiny) (@)dp.
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Which ends the proof.l

Now, our aim is to prove a theorem of existence, uniqueness and regularity of the solution of our initial
problem (P).
Theorem 4.1. Let 6y, 0o be two reals such that Oy < 0. We assume that (3.k), k = 1, 2 have no zeros
in the strip Cy, ..., then for all f € L‘%Oa‘goo (1)3 x Lgo,ém (22)3, there exists one and only one solution
win H o (1) x Hi o (Q2)? for the problem (Py) and we have

lulltrg |, @uoxmz, , @02 < Cllfllez | @oxez , (a2

Proof. (1) Euzistence. The hypothesis that (3.k) has no zeros on the strip C,, ensures the existence
of ng—solution and the 7 —solution of (P;), that we note uy,, ..

In addition (FUG) N {ny < Imé < 1} = 0, the proposition 4.1 implies that

Upy — Uny, =1 Z Res(ei t£R€ (@) le=eo0 -
€0€(FUG)N {10 <Tmé<rjoc }

0,70

This shows that u,, = u,_. We put now u = u,,, it is clear that
(RS H920,90 (Ql)g X H920700(QQ)3 and u € HOQOC7900 (Ql)g X HOQOC7900 (92)3.

The lemma 2.1, shows that u € Hg , (Q1)® x Hy 4 (€2)*. Thus u is a solution of (P1) by construction.

(2) Uniqueness. We assume that there exist two solutions u' and v? in Hg , (Q1)*xHg , (Q2)°. Then

ul, u? are ng—solutions and 7., —solutions ( property 4.1 ). It follows from the uniqueness of n—solutions

that u! = 2.

(3) Continuity with respect to the data. We deduce from property 4.2, that

HUHHgO,eO(91)3ng0,90(92)3 = C||f|\L50’9w(91)3xL§0’9w(92)3a
lullzrz , @oexm_, @r = clfllez | @iexr @2

and from lemma 2.1, we get

lulltrg |, @uexmz, , o2 <Cllfllez | @oxez , (a2

Which proves the theorem.Hl

5 Singularity solutions of the homogeneous elasticity system

Let us now examine the case of a homogeneous plate, the side surface of which makes an angle w with
the plane of the face. This case may be obtained by setting: v =11 = vs, = 1 = o and w = wy = wo
in the relations previously derived.

Proposition 5.1. The transcendental equations governing the singular behavior of the problem (Py) take
the form

401 —v)? — sin*w

3—4v
coséw =0, problem of normal plane deformation.

sin? w —

=0, problem of plane deformation, (5.1)

Proof. Setting in (3.1) and (3.2): v = v = va, g = 1 = p2 and w = wy = wo we obtain the characteristic
equations (5.1).

The singular solutions of the problem (P;) are given in the following proposition:
Proposition 5.2. Let & denote the zeros of the transcendental equation (5.1), then the singular solutions
of the problem (Py) are given by
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W (0, x3), if £ is a simple root of (5.1),
O (r*We(0,x3))
0¢ ’

Sy(r, 0, 23) =
b b %2 —

if € is a double oot of (5.1).

a- w €0, w[U]m,27]

_ (v — i — 3) (Le(w) cos(1 + i) — Me(w) sin(1 + i€)0)
S(r,0,x3) = er % (—4v — i€ + 3) (Le(w) sin(1 (—i— 195))9 + M¢(w) cos(1 + i&)0)
cos (&
_ Le(w)(1 —i€) cos(l — i) — Me(w)(1 + &) sin(1 — i£)0
—er7® | —Le(w)(1 — i) sin(1 — &) — Me(w)(1 + i) cos(1 —i&)0 |,
0
where
Le(w) = (2v—1i€—2)sinwcos(iéw) — (1 — 2v) cos(w) sin(i€w).
Me(w) = —(2v—if—1)sinwsin(ifw) — 2(1 — v) cos(w) cos(i€w) .
b- w=27

(4v — i€ — 3) cos(1 +i€)8 — (1 — &) cos(1 — i&)0
S(r0,23) = cr™ | —(dv+i€ = 3)sin(1 +i€)0 + (1 — i) sin(1 —i)o |,
(3 +ie) cos(9)

—(4v — i& — 3)sin(1 + i€)0 + (1 + i€) sin(1 — i€)0

' (r,0,23) = cr—i (4v + i€ — 3) cos(1 + i£)0 + (1 + &) cos(1 — i&)0
0

Proof. Let § denote the zeros of the equation (5.1) in the strip Cy, .. . A general solution of homogeneous
system (Ps) is given by

4
U= E axer,
k=1

where
er = (ch(€—1i)0,~i sh((€—1)0),
ea = (ish(§€—1i)0,ch(€—1)0),
- % (A ch (6 —i)8— B ch (€ +14)),—i A(sh(€ — )0 + sh( +)6)),
e4 = % (—iB (sh(€ — )8 + sh(€ +1)0), B ch(€ —i)8 — A ch(€ + 1)),
with

A=3—-4v+if, B=3—4v—if and = —1.

By setting 6 = 0 and § = w in the boundary conditions (BC), we obtain a system of homogeneous
equations. The condition of the vanishing of the system’s determinant gives the transcendental equations
(5.1) with respect to . So for any & a complex solution of (5.1), the solutions of this system give the
singular solution (r, 0, z3) for w €10, 7[U]r, 27].

In the same way setting 6 = 27 in (BC), we obtain the component of the singular solution for w = 2.

This ends the proof.l
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6

Conclusion and perspectives

The purpose of this paper is to study the singular behavior of solutions of a boundary value problem
with mixed conditions in a neighborhood of an edge in the general framework of weighted Sobolev spaces.
This work is an extension to similary ones in Sobolev spaces with null and single weight. In the non
homogeneous case, it’s not easy to solve the transcendental equations defined in the proposition 3.1, this
does not permit us to find the singular solutions.

We will devote a further paper for the generalization of the results obtained here for the non-homogeneous
case with presence of discontinuity of the boundary value on the intersection surface.
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