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Abstract

Some existence criteria are established for a class of fourth-order m-point boundary value prob-
lem by using the upper and lower solution method and the Leray-Schauder continuation principle.
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1 Introduction

Boundary value problems (BVPs for short) of fourth-order differential equations have been used to
describe a large number of physical, biological and chemical phenomena. For example, the deforma-
tions of an elastic beam in the equilibrium state can be described as some fourth-order BVP. Recently,
fourth-order BVPs have received much attention. For instance, [3, 5, 6, 7] discussed some fourth-order
two-point BVPs, while [1, 2, 4, 9] studied some fourth-order three-point or four-point BVPs. It is
worth mentioning that Ma, Zhang and Fu [7] employed the upper and lower solution method to prove
the existence of solutions for the BVP

ul(t) = f(
/(1

and Bai [3] considered the existence of a solution for the BVP

uM(t) = f(t,u(t), o (t),u” (t),u" (t)), t € (0,1),
uw(0)=u'(1)=u"(0)=4"(1)=0

by using the upper and lower solution method and Schauder’s fixed point theorem.
Although there are many works on fourth-order two-point, three-point or four-point BVPs, a
little work has been done for more general fourth-order m-point BVPs [8]. Motivated greatly by the

*Supported by the National Natural Science Foundation of China (10801068).

EJQTDE, 2010 No. 14, p. 1



above-mentioned excellent works, in this paper, we will investigate the following fourth-order m-point

BVP

u® () + f(t,u (), (t),u" (t),u" (t) =0, t € [0,1],
m—2
_ ‘ ‘ / _
U(O) - z; a;u (772)? U (1) - 0’ (11)
m—2
u’(0) = 32 b (mi), u" (1) = 0.
i=1
Throughout this paper, we always assume that 0 < 71 < 72 < -+ < Np—2 < 1, a; and b; (i =
1,2,- - -,m — 2) are nonnegative constants and f : [0,1] x R* — R is continuous. Some existence

criteria are established for the BVP (1.1) by using the upper and lower solution method and the
Leray-Schauder continuation principle.

2 Preliminaries

Let £ = C'[0,1] be equipped with the norm |[|v||, = m[ax] |v(t)] and
t€[0,1

K={veFE|v(t)>0fortel01]}.

Then K is a cone in F and (F, K) is an ordered Banach space. For Banach space X = C1[0,1], we
use the norm ||v|| = max {|v||, [|v'[|} -

2

m—
Lemma 2.1 Let Y a; # 1. Then for any h € E, the second-order m-point BVP
i=1

_u/l (t)

w(©) = 2 au(n), v (1) =0

h(t), tel0,1],

i
[\
—
o
[
SN—

has a unique solution

1
u(t) :/0 G (t,s) h(s)ds,

where
1 m—2
Gi(t,s)=K(t,s)+ ———— > aiK (;,5),
1-— Z a; i=1
i=1
here

S <s<t<
K(t’s)_{ t0<t<s<l

is Green’s function of the second-order two-point BVP

EJQTDE, 2010 No. 14, p. 2



Proof. If u is a solution of the BVP (2.1), then we may suppose that

/ K(t,s)h(s)ds + At + B.

By the boundary conditions in (2.1), we know that

m—2 1
1
A=0and B = — Zai/ K(n;,s)h(s)ds
1-— Z a; =1 0

1
u(t) = /Kts s)ds + ———— Zal K (ni,s)h (s)ds

1
= / G1 (t,s)h(s)ds.
0

O
In the remainder of this paper, we always assume that Z a; < 1 and Z b; < 1, which imply
=1 =1
that Gy (¢,s) and Gs (t,s) are nonnegative on [0, 1] x [0, 1], where
1 &
Go(t,s) =K (t,s) + ———— > biK (i, 9)
— 3 b =1
i=1
Now, we define operators A and B : E — E as follows:
/ G (t,s)v(s)ds, t €[0,1] (2.2)
and .
(Bv) (t) = —/ v(s)ds, t€[0,1]. (2.3)
¢
Remark 2.1 A and B are decreasing operators on E.
Lemma 2.2 If the following BVP
v(t )+f( ( v) (t), (Bv) (t),v (t),v' () =0, ¢t €[0,1],
(2.4)

v(0) = Z biv (m:), v' (1) =0
has a solution, then does the BVP (1.1).

Proof. Suppose that v is a solution of the BVP (2.4). Then it is easy to prove that v = Av is a
solution of the BVP (1.1). O
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Definition 2.1 If o € C?|0,1] satisfies

o' (t) + F(t, (Aa) (1), (Ba) (1), o (t) ;o (1) 20, tel0,1],

a(0) <5 tialn) (1) <0, (29)
then o is called a lower solution of the BVP (2.4).
Definition 2.2 If 8 € C?[0,1] satisfies

BY(t) + f(t,(AB) (t), (BB) (1), B(t), 5 (t)) <0, t€[0,1], 26

ﬁ«»zéﬁmﬂmxﬁ%nzm
then (3 is called an upper solution of the BVP (2.4).
Remark 2.2 If the inequality in Definition (2.1)
&(t) + (¢, (Aa) (8), (Ba) (1), (), o/ (1) > 0, t € [0,1]

1s replaced by
o'(t) + f(t, (Aa) (1), (Ba) (t) ,a (1), (t)) > 0, t € [0,1],

then « is called a strict lower solution of the BVP (2.4). Similarly, we can also give the definition of
a strict upper solution for the BVP (2.4).

Definition 2.3 Assume that f € C([0,1] x R, R), a, 8 € E and a(t) < B(t) for t € [0,1]. We
say that f satisfies Nagumo condition with respect to o and 3 provided that there exists a function

h € C([0,400),(0,+00)) such that
|f(t,$1,$2,$3,$4)| S h(|$4|),

Jor all (t,1,@2,23,24) € [0,1] x [(AB) (1), (Aa) (8)] x [(BB) (), (Ba) ()] x [a(t), B(t)] x R, and

+oo s ]
/)\ - (S)ds > trél[(fﬁ(] B(t) — trer[%%} a(t), (2.7)
where X\ = max {|6 (1) — @ (0)] 18 (0) — o (1)} .

Lemma 2.3 Assume that o and (3 are, respectively, the lower and the upper solution of the BVP
(2.4) with a(t) < B(t) fort € [0,1], and f satisfies the Nagumo condition with respect to o and (3.
Then there exists N > 0 (depending only on « and (3) such that any solution w of the BVP (2.4) lying
in [o, B] satisfies

| (t)] < N, t€0,1].

Proof. It follows from the definition of A and the mean-value theorem that there exists to € (0,1)
such that

!w' (to)‘ =lw(l)—w(0) <A (2.8)
By (2.7), we know that there exists N > X such that
Nos
/}\ n(s) ds > tgl[a}f} B(t) — tg%oig] a(t). (2.9)
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Now, we will prove that |w' (t)] < N for any ¢ € [0,1]. Suppose on the contrary that there exists
t1 € [0, 1] such that
|’ (t1)| > N. (2.10)

In view of (2.8) and (2.10), we know that there exist ta,t3 € (0,1) with t3 < t3 such that one of the
following cases holds:

Case 1. A < W' (t) < N for t € (t2,t3), w' (t2) and W’ (t3) = N;

Case 2. A < W' (t) < N for t € (ta,t3), W' (t2) = N and o' (t3) = \;

Case 3. —N<w’()<—)\fort€(t2,t3), '( ):—Nandw( 3) = =\

Case 4. —N < W' (t) < =\ for t € (ta,1t3), ' (t2) = =X and W' (t3) = —N.
Since the others is similar, we only consider Case 1. By the Nagumo condition, we have

W (] (1) = [F(E (Aw) (1), (Bw) (1) 0 (1) o (£))] - (2)
< h(\w’(t)\)-w (1), t€ [tz ts].

So,
% </ (1), tE [tats],
and so,
W (1) - (1) | (1) (1) o
/m Wdt‘g/m W‘dtg/tQ W (t)dt,

which implies that

N
S
ds < ta) — to) < t) — i t
A s < (t) = (t2) < max 5(0)~ min a (1),

which contradicts with (2.9) and the proof is complete. O
3 Main result

Theorem 3.1 Assume that a and 3 are, respectively, the strict lower and the strict upper solution of
the BVP (2.4) with o (t) < (t) fort € [0,1], and f satisfies the Nagumo condition with respect to «
and 3. Then the BVP (2.4) has a solution vy and

a(t) <wv(t) <p(t) fortel0,1].

Proof. It follows from Lemma 2.3 that there exists N > 0 such that any solution w of the BVP (2.4)
lying in [o, (] satisfies
| (t)] < N for t € [0,1].

We denote C' = max {N m[gulc] o/ (t)], m[0>1<] |6’ (t )|} and define the auxiliary functions fi, f2, f3
¢ te

and F:[0,1] x R* — R as follows:

f(t?xlnyax?nC), 'I4>C>
fl(t,$1,$2,$3,1'4) = f(t,$1,$2,£63,£64), —CS:C4§C,
f(t,xl,fEQ,,Ig, _C)a Ty < _Ca

EJQTDE, 2010 No. 14, p. 5



and

f1t, (Aa) (), z9,23,24), 21 > (Aa) (1),
fo(t, w1, 22, 23,24) = { f1(t, 21,22, 3, 4), (AB) (t) <21 < (Aa) (t),
Si(t, (AB) (), @2, w3, 34), 71 < (AB) (t);
fa(t, 1, (Ba) (t) 3, 24), 22 > (Ba) (t),
f3(t,x1, 22,03, 24) = fo(t, w1, 20,23, 24), (BB) (1) <22 < (Ba)(t),
fat,x1, (BB) (t), 23, 24), w2 < (BP) (¢)

f3(t,$1,$2,/3(t) 71.4)7 xr3 > ﬁ(t) s
F(t,x1, 2, 23,24) = f3(t, 71,22, 73,24), a(t) <z3 < B(1),
fa(t,x1, e, (), 24), x3 < a(t).

Consider the following auxiliary BVP

v (t) + FEtQ, (Av) (t), (Bv) (t),v(t),v' (t)) =0, t € [0,1],
v(0) = El biv (i), v' (1) = 0.

If we define an operator T': X — X by

/ Gy (t,5) F(s,(Av) (s), (Bv) (s),v (s),v (s))ds, t €[0,1],

then it is obvious that fixed points of T' are solutions of the BVP (3.1). Now, we will apply the

Leray-Schauder continuation principle to prove that the operator T" has a fixed point. Since it is easy

to verify that T : X — X is completely continuous by using the Arzela-Ascoli theorem, we only need

to prove that the set of all possible solutions of the homotopy group problem v = AT'v is a priori
bounded in X by a constant independent of A € (0,1). Denote

IN

IN

apy = min «(t), By = max G(t),

t€0,1] te[0,1]
(A),, = min (46) (1), (Aa)y = max (4e) (t),
(BB) = min (BB) (1), (Ba)y = max (Ba) (1),

L = sup{|f(t,z1, 22, 3, 24)| : (t, 21,22, 23,24) € [0,1] X [(43),,, (Aa),,]
X [(BB), » (Ba) pf] X [oum, Bu] X [=C, C]}

. Then we have

A (Tv) (1)
/ Gs (t,s) F(s,(Av) (s),(Bv) (s),v (s),v (s))ds

1
[ o+ —— S B () | [Fs,(40) (9. (B) (5).0(5) 0! (5)] s
0 1— Z b; =1
=1

L

—— =R, t€[0,1]
1= b,

=1
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and
[V ()] = [ATv) (@)

= A

! S
/ wQT(?)F(S’ (Av) (s), (Bv) (s), v (s) v (s))ds
0

1
< /t |F (s, (Av) (s), (Bv) (s),v (s), 0" (s))| ds
< L<R, tel0,1],

which imply that

lv]| = max {lv]l .

U/Hoo} S R.

It is now immediate from the Leray-Schauder continuation principle that the operator 7" has a fixed
point vg, which solves the BVP (3.1).

Now, let us prove that vy is a solution of the BVP (2.4). Therefor, we only need to verify that
a(t) <wv(t) <B(t) and v (t)| < C for t € [0,1].

First, we will verify that vy (t) < §(¢) for ¢ € [0,1]. Suppose on the contrary that there exists
to € [0, 1] such that

vo (to) — B (to) = max {vo (t) — B (t)} > 0.

te(0,1]

We consider the following three cases:
Case 1: If tg € (0,1), then vy (to) > B (to), v (to) = B (to) and v{ (to) < B (to). Since § is a
strict upper solution of the BVP (2.4), one has

vg (to) = —F(to, (Avo) (to) , (Buwo) (to) ,vo (to) , vp (to))
— f3(to, (Avo) (to) , (Bwo) (to) , B (to) , B (to))
— fa(to, (Avo) (to) , (BB) (to) , B (to) , B’ (o))
— f1(to, (AB) (to) , (BB) (to) , B (to) , B (t0))
= —f(to, (A8) (to) , (BB) (to) , B (to) , B’ (to))
> 3" (to),

which is a contradiction.

m—2 m—2
Case 2: If tg = 0, then v (0) > £ (0). On the other hand, vy (0) = > bjvg (m;) < > biB () <
i=1 i=1

£ (0). This is a contradiction.
Case 3: If tg =1, then v (1) — 8 (1) = m[gb)l(} {vo (t) — B (t)} > 0, which shows that v (1) > 4’ (1).
te

)

On the other hand, v{ (1) = 0 < ' (1) . Consequently, vj (1) = (1), and so, vj (1) < " (1). With
the similar arguments as in Case 1, we can obtain a contradiction also.

Thus, vg (t) < B(t) for t € [0,1]. Similarly, we can prove that a (t) < v (t) for t € [0,1].

Next, we will show that |vf (t)| < C for t € [0,1]. In fact, since f satisfies the Nagumo condition
with respect to « and 3, with the similar arguments as in Lemma 2.3, we can obtain that

lvg (£)] < N < C for t € [0,1]..

Therefore, vy is a solution of the BVP (2.4) and « (t) < v (t) < g (t) for ¢t € [0,1]. O
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