
Electronic Journal of Qualitative Theory of Differential Equations

2010, No. 15, 1-12; http://www.math.u-szeged.hu/ejqtde/

Extinction and non-extinction of solutions for a nonlocal

reaction-diffusion problem

Wenjun Liu

College of Mathematics and Physics, Nanjing University of Information Science and

Technology, Nanjing 210044, China.

E-mail: wjliu@nuist.edu.cn.

Department of Mathematics, Southeast University, Nanjing 210096, China.

Abstract

We investigate extinction properties of solutions for the homogeneous Dirichlet bound-
ary value problem of the nonlocal reaction-diffusion equation ut−d∆u+kup =

∫

Ω
uq(x, t) dx

with p, q ∈ (0, 1) and k, d > 0. We show that q = p is the critical extinction exponent.
Moreover, the precise decay estimates of solutions before the occurrence of the extinction
are derived.
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1 Introduction and main results

This paper is devoted to the extinction properties of solutions for the following diffusion equa-

tion with nonlocal reaction

ut − d∆u+ kup =

∫

Ω
uq(x, t) dx, x ∈ Ω, t > 0, (1.1)

subject to the initial and boundary value conditions

u(x, t) = 0, x ∈ ∂Ω, t > 0, (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)

where p, q ∈ (0, 1), k, d > 0, Ω ⊂ R
N (N > 2) is an bounded domain with smooth boundary

and u0(x) ∈ L∞(Ω) ∩W 1,2
0 (Ω) is a nonzero non-negative function.

Many physical phenomena were formulated into nonlocal mathematical models ([2, 3, 6, 7])

and there are a large number of papers dealing with the reaction-diffusion equations with

nonlocal reactions or nonlocal boundary conditions (see [18, 20, 21, 23] and the references

therein). In particular, M. Wang and Y. Wang [23] studied problem (1.1)–(1.3) for p, q ∈

[1,+∞) and concluded that: the blow-up occurs for large initial data if q > p ≥ 1 while all

solutions exist globally if 1 ≤ q < p; in case of p = q, the issue depends on the comparison of

|Ω| and k. For further studies of problem (1.1)–(1.3) we refer the read to [1, 13, 14, 19, 26]

and the references therein. In all the above works, p, q ∈ [1,+∞) was assumed.
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Extinction is the phenomenon whereby the evolution of some nontrivial initial data u0(x)

produces a nontrivial solution u(x, t) in a time interval 0 < t < T and then u(x, t) ≡ 0 for all

(x, t) ∈ Ω × [T,+∞). It is an important property of solutions for many evolution equations

which have been studied extensively by many researchers. Especially, there are some papers

concerning the extinction for the following semilinear parabolic equation for special cases

ut − d∆u+ kup = λuq, x ∈ Ω, t > 0, (1.4)

where p ∈ (0, 1) and q ∈ (0, 1]. In case λ = 0, it is well-known that solutions of problem

(1.2)–(1.4) vanishes within a finite time. Evans and Knerr [9] established this for the Cauchy

problem by constructing a suitable comparison function. Fukuda [10] studied problem (1.2)–

(1.4) with λ > 0 and q = 1 and concluded that: when λ < λ1, the term ∆u dominates the

term λu so that solutions of problem (1.2)–(1.4) behave the same as those of (1.2)–(1.4) with

λ = 0; when λ > λ1 and
∫

Ω u0φ(x)dx > (λ − λ1)
− 1

1−p , solutions of problem (1.2)–(1.4) grow

up to infinity as t → ∞. Here, λ1 is the first eigenvalue of −∆ with zero Dirichlet boundary

condition and φ(x) > 0 in Ω with max
x∈Ω

φ(x) = 1 is the eigenfunction corresponding to the

eigenvalue λ1. Yan and Mu [24] investigated problem (1.2)–(1.4) with 0 < p < q < 1 and

N > 2(q− p)/(1− p) and obtained that the non-negative weak solution of problem (1.2)–(1.4)

vanishes in finite time for any initial data provided that k is appropriately large. For papers

concerning the extinction for the porous medium equation or the p-Laplacian equation, we

refer the reader to [8, 11, 12, 15, 16, 22, 25] and the references therein. Recently, the present

author [17] considered the extinction properties of solutions for the homogeneous Dirichlet

boundary value problem of the p-Laplacian equation

ut − div
(

|∇u|p−2∇u
)

+ βuq = λur, x ∈ Ω, t > 0.

But as far as we know, no work is found to deal with the extinction properties of solutions for

problem (1.1)–(1.3) which contains a nonlocal reaction term.

The purpose of the present paper is to investigate the extinction properties of solutions for

the nonlocal reaction-diffusion problem (1.1)–(1.3). Our results below show that q = p is the

critical extinction exponent for the weak solution of problem (1.1)–(1.3): if 0 < p < q < 1, the

non-negative weak solution vanishes in finite time provided that |Ω| is appropriately small or

k is appropriately large; if 0 < q < p < 1, the weak solution cannot vanish in finite time for

any non-negative initial data; if 0 < q = p < 1, the weak solution cannot vanish in finite time

for any non-negative initial data when k <
∫

Ω ψ
q(x)dx/M q (≤ |Ω|), while it vanishes in finite

time for any initial data u0 when k > |Ω|. Here ψ(x) is the unique positive solution of the

linear elliptic problem

−∆ψ = 1 in Ω; ψ = 0 on ∂Ω (1.5)

and M = max
x∈Ω

ψ(x). This is quite different from that of local reaction case, in which the first

eigenvalue of the Dirichlet problem plays a role in the critical case (see [8, 12, 15, 22, 25]).
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Moreover, the precise decay estimates of solutions before the occurrence of the extinction will

be derived.

We now state our main results.

Theorem 1 Assume that 0 < p < q < 1.

1) If N < 4(q − p)/[(1 − p)(1 − q)], the non-negative weak solution of problem (1.1)–(1.3)

vanishes in finite time provided that the initial data u0 (or |Ω|) is appropriately small or k is

appropriately large.

2) If N = 4(q − p)/[(1 − p)(1 − q)], the non-negative weak solution of problem (1.1)–(1.3)

vanishes in finite time for any initial data provided that |Ω| is appropriately small or k is

appropriately large.

3) If N > 4(q − p)/[(1 − p)(1 − q)], the non-negative weak solution of problem (1.1)–(1.3)

vanishes in finite time for any initial data provided that |Ω| is appropriately small or k is

appropriately large.

Moreover, one has























‖u(·, t)‖2 ≤ ‖u0‖2 e
−α1t, t ∈ [0, T1),

‖u(·, t)‖2 ≤

[(

||u(·, T1)||
2−θ2

2 +
k2

d1λ1

)

e−(2−θ2)d1λ1 (t−T1) −
k2

d1λ1

]
1

2−θ2

, t ∈ [T1, T
∗
1 ),

‖u(·, t)‖2 ≡ 0, t ∈ [T ∗
1 ,+∞),

for N < 4(q − p)/[(1 − p)(1 − q)],















‖u(·, t)‖2 ≤

[(

||u0||
1−q
2 +

k1 − |Ω|
3−q

2

d1λ1

)

e−(1−q)d1λ1 t −
k1 − |Ω|

3−q

2

d1λ1

]
1

1−q

, t ∈ [0, T ∗
2 ),

‖u(·, t)‖2 ≡ 0, t ∈ [T ∗
2 ,+∞),

for N = 4(q − p)/[(1 − p)(1 − q)],











‖u(·, t)‖2 ≤

[(

||u0||
2−θ2

2 +
k3

d3λ1

)

e−(2−θ2)d3λ1 t −
k3

d3λ1

]
1

2−θ2

, t ∈ [0, T ∗
3 ),

‖u(·, t)‖2 ≡ 0, t ∈ [T ∗
3 ,+∞),

for N > 4(q−p)/[(1−p)(1− q)], where d1, d3, T1, T
∗
i and ki (i = 1, 2, 3) are positive constants

to be given in the proof, α1 > d1λ1 and

θ2 =
2N(1 − p) + 4(1 + p)

N(1 − p) + 4
∈ (1, 2).

Remark 1 One can see from the proof below that the restriction N > 4(q− p)/[(1− p)(1− q)]

in the case 3) can be extended to N > 2(q − p)/(1 − p). This has been proved in [24] for the

local reaction case.
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Theorem 2 Assume that 0 < p = q < 1.

1) If k > |Ω|, the non-negative weak solution of problem (1.1)–(1.3) vanishes in finite time

for any initial data u0. Moreover, one has











‖u(·, t)‖2 ≤

[(

||u0||
1−q
2 +

k4

d4λ1

)

e−(1−q)d4λ1 t −
k4

d4λ1

]
1

1−q

, t ∈ [0, T ∗
2 ),

‖u(·, t)‖2 ≡ 0, t ∈ [T ∗
2 ,+∞),

where d4 and k4 are positive constants to be given in the proof.

2) If k <
∫

Ω ψ
q(x)dx/M q (≤ |Ω|), then the weak solution of problem (1.1)–(1.3) cannot

vanish in finite time for any non-negative initial data.

3) If k =
∫

Ω ψ
q(x)dx/M q , then the weak solution of problem (1.1)–(1.3) cannot vanish in

finite time for any identically positive initial data.

Theorem 3 Assume that 0 < q < p < 1, then the weak solution of (1.1)–(1.3) cannot vanish

in finite time for any non-negative initial data.

Remark 2 One can conclude from Theorems 1–3 that q = p is the critical extinction exponent

of solutions for problem (1.1)–(1.3).

The rest of the paper is organized as follows. In Section 2, we will give some preliminary

lemmas. We will prove Theorems 1–3 in Section 3-5.

2 Preliminary

Let ‖ · ‖p and ‖ · ‖1,p denote Lp(Ω) and W 1,p(Ω) norms respectively, 1 ≤ p ≤ ∞. Before proving

our main results, we will give some preliminary lemmas which are of crucial importance in the

proofs. We first give the following comparison principle, which can be proved as in [22, 23, 25].

Lemma 1 Suppose that u(x, t), u(x, t) are a subsolution and a supersolution of problem (1.1)–

(1.3) respectively, then u(x, t) ≤ u(x, t) a.e. in ΩT .

The following inequality problem is often used to derive extinction of solutions (see [22, 25]).

dy

dt
+ αyk ≤ 0, t ≥ 0; y(0) ≥ 0,

where α > 0 is a constant and k ∈ (0, 1). Due to the nature of our problem, we would like to

use the following lemmas which are of crucial importance in the proofs of decay estimates.

Lemma 2 [5] Let y(t) be a non-negative absolutely continuous function on [0,+∞) satisfying

dy

dt
+ αyk + β y ≤ 0, t ≥ T0; y(T0) ≥ 0, (2.1)
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where α, β > 0 are constants and k ∈ (0, 1). Then we have decay estimate











y(t) ≤

[(

y1−k(T0) +
α

β

)

e(k−1)β (t−T0) −
α

β

]
1

1−k

, t ∈ [T0, T∗),

y(t) ≡ 0, t ∈ [T∗,+∞),

where T∗ =
1

(1 − k)β
ln

(

1 +
β

α
y1−k(T0)

)

.

Lemma 3 [15] Let 0 < k < m ≤ 1, y(t) ≥ 0 be a solution of the differential inequality

dy

dt
+ αyk + βy ≤ γ ym, t ≥ 0; y(0) = y0 > 0, (2.2)

where α, β > 0, γ is a positive constant such that γ < αyk−m
0 . Then there exist η > β, such

that

0 ≤ y(t) ≤ y0 e
−ηt, t ≥ 0.

Consider the following ODE problem

dy

dt
+ αyk + βy = γ ym, t ≥ 0; y(0) = y0 ≥ 0; y(t) > 0, t > 0. (2.3)

If α = 0, β > 0 and γ > 0, we can easily derive that the non-constant solution of this problem

is

y(t) =

[(

y1−m
0 −

γ

β

)

e−(1−m)β t +
γ

β

]
1

1−m

> 0, ∀ t > 0.

If α, β, γ > 0, we have

Lemma 4 [17] Let α, β, γ > 0 and 0 < m < k < 1. Then there exists at least one non-constant

solution of the ODE problem (2.3).

Proof. It is easy to prove that the following algebraic equation

αyk + βy = γ ym

has unique positive solution (denoted by y∗).

We first consider the case y0 > 0. By considering the sign of y′(t) via y(t) at [0, y∗), we

see that: if 0 < y0 < y∗, then y(t) is increasing with respect to t > 0; if y0 > y∗, then y(t) is

decreasing with respect to t > 0. Therefore, solution with non-negative initial value y0 remains

positive and of course approaches y∗ as t→ +∞.

When y0 = 0, we choose a sufficiently small constant ε ∈ (0, y∗) and consider the following

problem
dz

dt
+ αzk + βz = γ zm, t ≥ 0; z(0) = ε > 0; z(t) > 0, t > 0. (2.4)

Then problem (2.4) exists at least one non-constant solution z = z(t) satisfying z′(t) > 0 for

all t ∈ R. We continue the proof based on the following claim: there is a time t0 ∈ (−∞, 0),
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such that z(t0) = 0. By setting y(t) = z(t + t0), ∀ t ≥ 0, we get that y(t) is a non-constant

solution satisfying (2.3).

We now only need to prove the above mentioned claim. Indeed, if it is not true, then

0 < z(t) < ε for all t ∈ (−∞, 0). Since 0 < m < k < 1 and z′(t) > 0 for all t ∈ R, there is a

t1 ∈ (−∞, 0) so that αzk + βz ≤ γ
2 z

m for all t ∈ (−∞, t1], i.e.,

dz

dt
≥
γ

2
zm for all t ∈ (−∞, t1].

Integrating the above inequality on (t, t1), we get

z1−m(t1) − z1−m(t) >
γ

2
(1 −m)(t1 − t),

which causes a contradiction as t→ −∞.

Lemma 5 [4] (Gagliardo-Nirenberg) Let β ≥ 0, N > p ≥ 1, β + 1 ≤ q, and 1 ≤ r ≤ q ≤

(β + 1)Np/(N − p), then for u such that |u|βu ∈W 1,p(Ω), we have

‖u‖q ≤ C‖u‖1−θ
r

∥

∥

∥
∇
(

|u|βu
)∥

∥

∥

θ/(β+1)

p

with θ = (β + 1)(r−1 − q−1)/{N−1 − p−1 + (β + 1)r−1}, where C is a constant depending only

on N, p and r.

3 The case 0 < p < q < 1: proof of Theorem 1

Multiplying (1.1) by u and integrating over Ω, we have

1

2

d

dt
‖u‖2

2 + d‖∇u‖2
2 =

∫

Ω
u dx

∫

Ω
uq(y, t) dy − k‖u‖p+1

p+1. (3.1)

By Hölder inequality, we have

∫

Ω
u dx

∫

Ω
uq(y, t) dy ≤ |Ω|

2s−1−q

s ‖u‖q+1
s , (3.2)

where s ≥ 1 to be determined later. we substitute (3.2) into (3.1) to get

1

2

d

dt
‖u‖2

2 + d‖∇u‖2
2 = |Ω|

2s−1−q

s ‖u‖q+1
s − k‖u‖p+1

p+1. (3.3)

1) For the case N < 4(q − p)/[(1 − p)(1 − q)], we set s = 2 in (3.3). By lemma 5, one can

get

‖u‖2 ≤ C1(N, p)‖u‖
1−θ1

p+1 ‖∇u‖θ1

2 , (3.4)

where

θ1 =

(

1

p+ 2
−

1

2

)(

1

N
−

1

2
+

1

p+ 1

)−1

=
N(1 − p)

2(p + 1) +N(1 − p)
.
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0 < p < 1 implies that 0 < θ1 < 1. It follows from (3.4) and Young’s inequality that

‖u‖θ2

2 ≤C1(N, p)
θ2‖u‖

(1−θ1)θ2

p+1 ‖∇u‖θ1θ2

2

≤C1(N, p)
θ2

(

ε1‖∇u‖
2
2 + C(ε1)‖u‖

2(1−θ1)θ2/(2−θ1θ2)
p+1

)

, (3.5)

for ε1 > 0 and θ2 > 1 to be determined. We choose θ2 = 2N(1−p)+4(1+p)
N(1−p)+4 , then 1 < θ2 < 2 and

2(1 − θ1)θ2/(2 − θ1θ2) = p+ 1. Thus, (3.5) becomes

C1(N, p)
−θ2

C(ε1)
‖u‖θ2

2 −
ε1

C(ε1)
‖∇u‖2

2 ≤ ‖u‖p+1
p+1. (3.6)

We substitute (3.6) into (3.3) to get

1

2

d

dt
‖u‖2

2 +

(

d−
kε1
C(ε1)

)

‖∇u‖2
2 +

kC1(N, p)
−θ2

C(ε1)
‖u‖θ2

2 ≤ |Ω|
3−q

2 ‖u‖q+1
2 .

We choose ε1 small enough such that d1 := d − kε1

C(ε1) > 0. Once ε1 is fixed, we set k1 =

kC1(N,p)−θ2

C(ε1)
. Then, by Poincare’s inequality, we get

d

dt
‖u‖2 + k1‖u‖

θ2−1
2 + d1λ1‖u‖2 ≤ |Ω|

3−q

2 ‖u‖q
2. (3.7)

Since N < 4(q− p)/[(1− p)(1− q)], we further have 0 < θ2 − 1 < q. By Lemma 3, there exists

α1 > d1λ1, such that

0 ≤ ‖u‖2 ≤ ‖u0‖2 e
−α1t, t ≥ 0,

provided that

‖u0‖2 <

(

k1

|Ω|
3−q

2

)
1

q−θ2+1

=

(

kC1(N, p)
−θ2

C(ε1)|Ω|
3−q

2

)
1

q−θ2+1

. (3.8)

Furthermore, there exists T1, such that

k1 − |Ω|
3−q

2 ‖u‖q−θ2+1
2

≥k1 − |Ω|
3−q

2

(

‖u0‖2 e
−α1T1

)q−θ2+1
:= k2 > 0, (3.9)

holds for t ∈ [T1,+∞). Therefore, when t ∈ [T1,+∞), (3.7) turns to

d

dt
‖u‖2 + k2‖u‖

θ2−1
2 + d1λ1‖u‖2 ≤ 0. (3.10)

By Lemma 2, we can obtain the desired decay estimate for

T ∗
1 =

1

(2 − θ2)d1λ1
ln

(

1 +
d1λ1

k2
||u(·, T1)||

2−θ2

2

)

. (3.11)

2) When N = 4(q − p)/[(1 − p)(1 − q)], we still choose s = 2 in (3.3), and then θ2 − 1 = q.

Thus, (3.7) becomes

d

dt
‖u‖2 +

(

k1 − |Ω|
3−q

2

)

‖u‖q
2 + d1λ1‖u‖2 ≤ 0. (3.12)
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By Lemma 2, we can obtain the desired decay estimate for

T ∗
2 =

1

(1 − q)d1λ1
ln

(

1 +
d1λ1

k1 − |Ω|
3−q

2

||u0||
1−q
2

)

, (3.13)

provided that |Ω| < k
2

3−q

1 =
(

kC1(N,p)−θ2

C(ε1)

)
2

3−q
.

3) For the case N > 4(q − p)/[(1 − p)(1 − q)], we back to (3.3). By lemma 5, one can get

‖u‖s ≤ C2(N, p)‖u‖
1−θ3

p+1 ‖∇u‖θ3

2 , (3.14)

where

θ3 =

(

1

p+ 1
−

1

s

)(

1

N
−

1

2
+

1

p+ 1

)−1

=
2N(s − p− 1)

s[2(p+ 1) +N(1 − p)]
.

If N > 2, one further needs p+ 1 < s < 2N/(N − 2). The choice of s implies that 0 < θ3 < 1.

It follows from (3.14) and Young’s inequality that

‖u‖q+1
s ≤C2(N, p)

q+1‖u‖
(1−θ3)(q+1)
p+1 ‖∇u‖

θ3(q+1)
2

≤C2(N, p)
q+1

(

ε2‖∇u‖
2
2 + C(ε2)‖u‖

2(1−θ3)(q+1)/[2−θ3(q+1)]
p+1

)

, (3.15)

for ε2 > 0 to be determined later. We choose s = N(q+1)(1−p)
N(1−p)−2(q−p) , then θ3 = 2(q−p)

(q+1)(1−p) and

2(1 − θ3)(q + 1)/[2 − θ3(q + 1)] = p+ 1. We substitute (3.15) into (3.3) to get

1

2

d

dt
‖u‖2

2+
(

d− ε2C2(N, p)
q+1|Ω|

2s−1−q

s

)

‖∇u‖2
2+
(

k − C(ε2)C2(N, p)
q+1|Ω|

2s−1−q

s

)

‖u‖p+1
p+1 ≤ 0.

We choose ε2 small enough such that d2 := d − ε2C2(N, p)
q+1|Ω|

2s−1−q

s > 0. Once ε2 is fixed,

we set k0 = C(ε2)C2(N, p)
q+1|Ω|

2s−1−q

s . When k > k0 = C(ε2)C2(N, p)
q+1|Ω|

2s−1−q

s , we get

1

2

d

dt
‖u‖2

2 + d2‖∇u‖
2
2 + (k − k0) ‖u‖

p+1
p+1 ≤ 0. (3.16)

We note (3.6) holds provided that 0 < q < 1 and is independent of the relation of N and

4(q − p)/[(1 − p)(1 − q)]. So, we substitute (3.6) into (3.16) to get

1

2

d

dt
‖u‖2

2 +

(

d2 −
(k − k0)ε1
C(ε1)

)

‖∇u‖2
2 +

(k − k0)C1(N, p)
−θ2

C(ε1)
‖u‖θ2

2 ≤ 0.

We recall that θ2 = 2N(1−p)+4(1+p)
N(1−p)+4 ∈ (1, 2). We choose ε1 small enough such that d3 :=

d2 −
(k−k0)ε1

C(ε1)
> 0. Once ε1 is fixed, we set k3 = (k−k0)C1(N,p)−θ2

C(ε1)
. Thus, we get

d

dt
‖u‖2 + k3‖u‖

θ2−1
2 + d3λ1‖u‖2 ≤ 0.

By Lemma 2, we can obtain the desired decay estimate for

T ∗
3 =

1

(2 − θ2)d1λ1
ln

(

1 +
d3λ1

k3
‖u0‖

2−θ2

2

)

. (3.17)
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4 The case 0 < p = q < 1: proof of Theorem 2

In this section, we consider the case 0 < p = q < 1.

1) If k > |Ω|, we choose s = p+ 1 in (3.3) to get

1

2

d

dt
‖u‖2

2 + d‖∇u‖2
2 + (k − |Ω|)‖u‖p+1

p+1 ≤ 0. (4.1)

We substitute (3.6) into (4.1) to obtain

1

2

d

dt
‖u‖2

2 +

(

d−
(k − |Ω|)ε1
C(ε1)

)

‖∇u‖2
2 +

(k − |Ω|)C1(N, p)
−θ2

C(ε1)
‖u‖θ2

2 ≤ 0.

We choose ε1 small enough such that d4 := d − (k−|Ω|)ε1

C(ε1) > 0. Once ε1 is fixed, we set k4 =

(k−|Ω|)C1(N,p)−θ2

C(ε1)
. Then, by Poincare inequality, we get

d

dt
‖u‖2 + k4‖u‖

θ2−1
2 + d4λ1‖u‖2 ≤ 0. (4.2)

By Lemma 2, we can obtain the desired decay estimate for

T ∗
1 =

1

(2 − θ2)d4λ1
ln

(

1 +
d4λ1

k4
||u0||

2−θ2

2

)

. (4.3)

2) If k <
∫

Ω ψ
q(x)dx/M q , we define

g(t) =

[

∫

Ω ψ
q(x)dx− kM q

d

(

1 − e−(1−q) d
M

t
)

]

1

1−q

,

which satisfies the ODE problem

g′(t) +
d

M
g(t) =

∫

Ω ψ
q(x)dx− kM q

M
gq(t), t ≥ 0; g(0) = 0.

Let v(x, t) = g(t)ψ(x). Then, we have

vt − d∆v −

∫

Ω
vq(x, t) dx + kvp

=g′(t)ψ(x) + dg(t) − gq(t)

∫

Ω
ψq dx+ kgq(t)ψq

≤g′(t)M + dg(t) − gq(t)

∫

Ω
ψq dx+ kgq(t)M q

=0.

Moreover, v(x, 0) = g(0)ψ(x) = 0 ≤ u0(x) in Ω, and υ|(∂Ω)t
= 0. Therefore, we have u(x, t) ≥

v(x, t) > 0 in Ω × (0,+∞); i.e., v(x, t) is a non-extinction subsolution of problem (1.1)–(1.3).

3) For k =
∫

Ω ψ
q(x)dx/M q , let w(x, t) = h(t)ψ(x), where h(t) satisfies the ODE problem

dh

dt
+

d

M
h = 0, t ≥ 0; h(0) = h0 > 0.

Then, for any identically positive initial data, we can choose h0 sufficiently small such that

h0ψ(x) ≤ u0(x). According to Lemma 1, we get that w(x, t) is a non-extinction subsolution of

problem (1.1)–(1.3).
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5 The case 0 < q < p < 1: proof of Theorem 3

Let z(x, t) = j(t)ψ(x), where j(t) satisfies the ODE problem

dj

dt
+ kMp−1jp(t) +

d

M
j(t) =

∫

Ω ψ
q(x)dx

M
jq(t), t ≥ 0; j(0) = 0; j(t) > 0, t > 0.

Then, we have

zt − d∆z −

∫

Ω
zq(x, t) dx+ kzp

=j′(t)ψ(x) + dj(t) − jq(t)

∫

Ω
ψq dx+ kjp(t)ψp

≤j′(t)M + dj(t) − jq(t)

∫

Ω
ψq dx+ kjp(t)Mp

=0.

Moreover, z(x, 0) = j(0)ψ(x) = 0 ≤ u0(x) in Ω, and υ|(∂Ω)t
= 0. Therefore, we have u(x, t) ≥

z(x, t) > 0 in Ω × (0,+∞) according to Lemma 1, i.e., z(x, t) is a non-extinction subsolution

of problem (1.1)–(1.3).
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