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1 Introduction and the main result

In this paper, we consider the existence of positive solutions for the following nonlinear singular
boundary value problem:
—u”" + K*u = f(t,u), t € (0,1),

1 1.1
u(0) =0, u(l) = /O u(t)dA(t), (1)

where A is right continuous on [0, 1), left continuous at ¢ = 1, and nondecreasing on [0,1), with
A(0) = 0. fol u(t)dA(t) denotes the Riemann-Stieltjes integral of u with respect to A. k is a
constant. Problems involving Riemann-Stieltjes integral boundary condition have been studied
in [3,7-9,13]. These boundary conditions includes multipoint and integral boundary conditions,
and sums of these, in a single framework. By changing variables t — 1 — ¢, studying (1.1) also

covers the case

1
u(0) = /O w(t)dA(E), u(1) = 0.
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For a comprehensive study of the case when there is a Riemann-Stieltjes integral boundary

condition at both ends, see [7].

In recent years, there are many papers investigating nonlocal boundary value problems of
the second order ordinary differential equation u” + f(¢,u) = 0. For example, we refer the reader
to [1,3-5,7-9,11,12] for some work on problems with integral type boundary conditions. However,
there are fewer papers investigating boundary value problems of the equation —u”+k?u = f(t, u).
In [6], Du and Zhao investigated the following multi-point boundary value problem

—u" = f(t,u), t € (0,1),
m—2

u(0) =Y asu(n;), u(1) =0
i=1

They assumed f is decreasing in u and get existence of C[0, 1] positive solutions w with the
property that w(t) > m(1—t) for some m > 0. In a recent paper [5], Webb and Zima studied the
problem (1.1) (and others) when dA is allowed to be a signed measure, and obtained existence of
multiple positive solutions under suitable conditions on f(¢,u). Here we only study the positive
measure case. We impose stronger restrictions on f. We suppose f is increasing in u, satisfies a
strong sublinear property and may be singular at ¢t = 0,1. By applying the monotone iterative
technique, we obtain the existence and uniqueness of C[0,1] positive solutions in some set
D. Also, we use iterative methods, we establish uniqueness, obtain error estimates and the
convergence rate of C1[0,1] positive solutions with the property that there exists M > m > 0
such that mt < u(t) < Mt.

In this paper, we first introduce some preliminaries and lemmas in Section 2, and then we

state our main results in Section 3.

2 Preliminaries and lemmas

We make the following assumptions:
1
(Hp) There exists k > 0 such that sinh(k) > / sinh(k(1 —t))dA(t);
0

(H2) f € C((0,1) x [0,400),[0,400)), f(t,u) is increasing in u and there exists a constant
b € (0,1) such that

f(t,ru) > rf(t,u), forall r € (0,1) and (¢, u) € (0,1) x [0, +00). (1.2)
Remark 2.1. If M > 1, condition (1.2) is equivalent to
f(t, Mu) < M°f(t,u), for all (t,u) € (0,1) x [0, +00). (1.3)
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Our discussion is in the space £ = C]0,1] of continuous functions endowed with the usual
supremum norm. Let P = {u € C[0,1] : u > 0} be the standard cone of nonnegative continuous
functions.
Definition 2.1. A function u € C[0,1]() C?(0,1) is called a C]0, 1] solution if it satisfies (1.1).
A C10,1] solution u is called a C1[0, 1] solution if both «/(0+) and u'(1—) exist. A solution u is
called a positive solution if u(t) > 0, t € (0,1).

The Green’s function for (1.1) is given in the following Lemma which was proved in [5] for
the general case when dA is a signed measure.
Lemma 2.1 [5] Suppose that g € C(0,1) and (H;) holds. Then the following linear boundary

value problem

: (2.1)
w(0) =0, u(l) = | u(t)dA(t)

has a unique positive solution v and u can be expressed in the form
1
ut) = [ F(t.9)(s)ds,
0

where

sinh(kt)
sinh(k) — fol sinh(k7

1
F(t,s) =G(t,s) + A /0 G(r,s)dA(r), s, t €]0,1], (2.2)

sinh(k:s? sinh (k (1 —t))’ 0<s<t,
G(t,s) = sinh(kiir;?n(f()klfl i) -
sinh (k) k ’ ’

Remark 2.2. We call F(t,s) the Green’s function of problem (1.1). Suppose that (H;), (Ha2)

hold. Then solutions of (1.1) are equivalent to continuous solutions of the integral equation

1
u(t):/o F(t,s)f(s,u(s))ds,

where F(t,s) is mentioned in (2.2).

Lemma 2.2 For any ¢, s € [0, 1], there exist constants ¢1, ca > 0 such that
coe(t)e(s) < F(t,s) < cie(s), s, t €[0,1], (2.4)

where e(s) = s(1 — s).
Proof. Suppose that
I(t) = sinh(k)t — sinh(kt), ¢t € [0,1].
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Then I(0) = I(1) =0 and I"(t) = —k?sinh(kt) <0, t € [0,1]. So I(t) >0, i.e.

sinh(kt) < sinh(k)t, ¢ € [0,1]. (2.5)
Similarly we have
kt < sinh(kt), t € [0,1]. (2.6)
From (2.3) we know
ﬁG(t,t)G(s, $) < G(t,s) < G(L,1). 2.7)
By using (2.3), (2.5) and (2.6) we obtain
(kt)(k(1 —1t))  Fke(t)
Gt.t) = sinh(k)k  sinh(k)’ (2.8)
and
(sinh(k)t)(sinh(k)(1 —t))  sinh(k)e(t)
Glt,1) < sinh(k)k N k ' (29)
From (2.2), (2.7), (2.8) and (2.9) we have
k k
F(t,s) > G(t,s) > Sinh(k)G(t,t)G(s,s) > (Sinh(k‘))Be(t)e(S) (2.10)
and i (R) )
F(t,s) <G(s,s)+ G(s,s S dA(T
(t:5) (h(k)) ( )Sinh(kz) - f.ol}sli&};(kT)dA(T) /01 (") (2.11)
= k e+ sinh(k) — fol sinh(k7)dA(T) /0 aAm)
) _ sinh(k) sinh(k) ! Y and o — 3 we have
Letting e = ==+ )~ I sinh(k:r)dA(T)/o dA(m)] and ¢ = ()" we b

coe(t)e(s) < F(t,s) < cie(s).

Thus, (2.4) holds.

3 Main results

Now we state the main results as follows.

Theorem 3.1 Suppose that (H;), (Hz) hold. Let D = {u(t) € C[0,1] | 3L, > 1, > 0, Lyt <
u(t) < Lyt, t € [0,1]}. If
1
0< / f(t,t)dt < +o0 (3.1)
0

holds. Then problem (1.1) has a unique C'[0,1] positive solution u* in D. Moreover, for any

initial zg € D, the sequence of functions defined by
1
Ty = / F(t,s)f(s,zp—1(s))ds, n=1,2,...
0
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converges uniformly to the unique solution w*(¢) on [0, 1] as n — oo. Furthermore, we have the

error estimation
lzn (8) = w* (O] < 21 = (£5)")lvol, (3:2)
where tg, vg are defined below, and F(t, s) is mentioned in (2.2).

Proof. From u(t) € D we know there exists L, > 1 > [, > 0 such that
lus < u(s) < Lys, s €10,1].
This, together with (Hz), (1.2) and (1.3), implies that
(1)’ f(s,5) < f(s,u(s)) < f(s, Lus) < (Lu)’f(s,5), s €(0,1). (3-3)
Let us define an operator T' by
1
Tu = / F(t,s)f(s,u(s))ds, ue D. (3.4)
0
From (3.1) and (3.3) and Lemma 2.2 we can have
1 1
/ F(t,s)f(s,u(s))ds < cl(Lu)b/ s(1—s)f(s,s)ds < +o0.
0 0
So the integral operator T makes sense. By (2.2), (2.3), (2.5), (2.6) and (2.7), we have that

1
/ G(r,s)dA(T)
0

F(t,s) > sinh(kt) 1
Sinh(k;)—/o sinh(k7)dA(T)

)

1
sinh(k) —/0 sinh(k7)dA(T)

F(t,s) <G(tt)+ Mnlh (kt) / G(r,s)dA(r
sinh(k) —/ sinh(k7)dA(T
0

sinh(k(1 —1)) /0 G(r, )dA(r)
sinh(k)k

= sinh(kt)
sinh(k) — /01 sinh(k7)dA(T) (3.6)

1
/ G(t,s)dA(T)
0

1
sinh (k) —/0 sinh(k7)dA(T)

1
< tsinh(k) z +
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Thus

k(1) /01 (/01 G(r, s)f(s,s)ds> dA(T)

1
sinh(k) —/0 sinh(k7)dA(T)

Tu(t) >t

, telo,1], (3.7)
Tu(t) < t(L,)"sinh(k)x

[l
0 k

Thus, from (3.1), (3.7) and (3.8), we obtain

1
/0 G(t,s)dA(T) (3.8)

1 f(s,s)ds, t €10,1].
sinh(k) — /0 sinh(k7)dA(T)

T:D— D.

It is known from Remark 2.2 that a fixed point of the operator T is a solution of BVP (1.1).

From condition (1.2) we obtain
1 1
T(ru) = / F(t,s)f(s,ru(s))ds > rb/ F(t,s)f(s,u(s))ds = r’Tu, (3.9)
0 0
Obviously T is an increasing operator and from (1.3) we have
T(Mu) < M’Tu. (3.10)
Let z¢g € D be given. Choose tg € (0,1) such that

1
td7b2g < Tap < (;)1*bxo.
0

Let us define ug = toxg, vo = %xo, to € (0,1). Then ug < vy and from (3.9) and (3.10) we have

1 1
TUQ > thxo > toxo = Uup, T’UQ < (t—)bTx(] < t—CC() = 0. (311)
0 0

Now we define

Up = Tup—1, vy =Tvp—1, (n=1,2,3,...).

It is easy to verify from (3.11) that
w<u <...<u, <...<v, <...<v; <. (3.12)
Clearly, ug = t%vo. By induction, we see that

Uy > (1) vn, (n=0,1,2,...). (3.13)
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Since P is a normal cone with normality constant 1, it follows that
lon =l < llantp = unll < (1= (&)")lvoll. (3.14)

So {uy} is a cauchy sequence, therefore u,, converges to some u* € D. From this inequality it
also follows that v,, — u™*.
We see that u* is a fixed point of 7. Thus, u* € D from ug, vg € D and u* € [ug, vo]. It

follows from uy < xg < vg that u, <z, <wv,, (n=1,2,3,...). So

[n —wrl| - <llzn —un| + [lun = "] < 2[lvn — uq|

< 2(1 — (12)")|uol]. (3:15)

Next we prove the uniqueness of fixed points of T'. Let T € D be any fixed points of 7. From
u*, T € D and the definition of D, we can put ¢; = sup{t > 0| T > tu*}. Evidently 0 < t; < occ.

We now prove t; > 1. In fact, if 0 < ¢; < 1, then
T =Tz > T(tu*) > (t)"Tu* = (t)u”,

which contradicts the definition of ¢; since (tl)b > t1. Thust; > 1 and T > u*. In the same way,
we can prove T < u* and hence T = u*. The uniqueness of fixed points of A in D is proved. For

any initial zg € D, z, = T"z9 — u* with rate of convergence

l2n = u*[| = o(1 = (£)"") (3.16)
from the results above. Choosing zy = xy, we obtain

lz — || = o(1 = (£)""). (3.17)

This completes the proof of Theorem 3.1.

Remark Suppose that §;(t)(i = 0,1,2,...m) are nonnegative continuous functions on (0, 1),
which may be unbounded at the end points of (0,1). € is the set of functions f(¢,u) which

satisfy the condition (Hs). Then we have the following conclusions:

(1) Bi(t) € Q, ub € Q, where 0 < b < 1;

(2) I 0 < b; < +o0(i = 1,2,...m) and b> max {b;}, then [fo(t) + S Bty € o
== i—1

(3) If f(t,u) € Q, then B;(t) f(t,u) €

(4) If fi(t,u) € Qi =1,2,...m), then max {f;(t,u)} € Q, min {fi(t,u)} € Q.
1<i<m 1<i<m
The above four facts can be verified directly. This indicates that there are many kinds of

functions which satisfy the condition (Ha).
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