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Dynamic analysis of an impulsively controlled
predator-prey system

Hunki Baek

Abstract

In this paper, we study an impulsively controlled predatiezy model with Monod-
Haldane functional response. By using the Floquet theogyprave that there exists
a stable prey-free solution when the impulsive period is than some critical value,
and give the condition for the permanence of the system. diitiad, we show the
existence and stability of a positive periodic solution Isyng bifurcation theory.
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1 Introduction

In population dynamics, one of central goals is to undedstha dynamical relationship
between predator and prey. One important component of gaafpor-prey relationship
is the predator’s rate of feeding on prey, i.e., the so-dgliedator’s functional response.
Functional response refers to the change in the densityeyf gitached per unit time
per predator as the prey density changes. Holling [7] gaseetHifferent kinds of func-
tional response for different kinds of species to model ten@mena of predation, which
made the standard Lotka-Volterra system more realisti@s&€Hlunctional responses are
monotonic in the first quadrant. But, some experiments arsgmations indicate that
a non-monotonic response occurs at a level: when the nut@centration reaches a
high level an inhibitory effect on the specific growth rateynmecur. To model such an
inhibitory effect, the authors in [1, 14] suggested a fumcti
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called the Monod-Haldane function, or Holling type-1V furan. We can write a predator-
prey model with Monod-Haldane type functional responseHs\frs.

(1), _ ety
K b+ 22(t)’

ma(t)y(t) @)
b+a%(t)’

wherez(t) andy(t) represent population densities of prey and predator at tim#ll
parameters are positive constants. Usuallig the intrinsic growth rate of the prey

is the carrying capacity of the prey, the constanis the death rate of the predater,is
the rate of conversion of a consumed prey to a predatobaneasures the level of prey
interference with predation.

As Cushing [5] pointed out that it is necessary and importiacbnsider models with
periodic ecological parameters or perturbations whichhinioe quite naturally exposed
(for example, those due to seasonal effects of weather, $opgly, mating habits or
harvesting seasons and so on). Such perturbations weretodged continually. But,
there are still some other perturbations such as fire, flotwg,tleat are not suitable to
be considered continually. These impulsive perturbatiomsg sudden changes to the
system.

In this paper, with the idea of impulsive perturbations, vemsider the following
predator-prey model with periodic constant impulsive igration of the predator and
periodic harvesting on the prey.

() = azx(t)(1 —

y'(t) = —Dy(t) +

) — a1 F0 _ e

K’ b+a22(t) .

mx 7 nT,
V() = ~Dy(t) + S, o
z(t") = (1 —p1)a(t), .

y(t") = (1= p2)y(t) +q,
((07),»(07)) = xq,

whereT is the period of the impulsive immigration or stock of thegator,p;(0 < p; <
1,= 1,2) are the harvesting control parameterss the size of immigration or stock of
the predator. This model is an example of impulsive difféedequations whose theories
and applications were greatly developed by the efforts ai@®aand Lakshmikantham et
al. [4, 8].

Recently, many researchers have intensively investigateigms with impulsive per-
turbations (cf, [2, 3, 10,11, 12,13, 15, 16, 17, 18, 19, 2(),. Most of such systems have
dealt with impulsive harvesting and immigration of predatat different fixed times. On
the contrary, here we consider the impulsive harvestingranaigration at the same time
in our model which has not been studied well until now.

\
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The main purpose of this paper is to study the dynamics ofytsiem (2).

The organization of this paper is as follows. In the nextisectwe introduce some
notations and lemmas related to impulsive differentialatiguns which are used in this
paper. In Section 3, we show the stability of prey-free phacolutions and give a suffi-
cient condition for the permanence of system (2) by applytregFloquet theory and the
comparison theorem. In Section 4, we show the existencertfia@l periodic solutions
via the bifurcation theorem. Finally, in conclusion, we gia bifurcation diagram that
shows the system has various dynamic aspects includingchao

2 Preliminaries

Let R, = [0,00) andR% = {x = (z,y) € R* : 2,y > 0}. DenoteN the set of all of
nonnegative integers and= (f1, f)* the right hand of (2). Let : R; x R? — Ry,
thenV is said to be in a clask, if
(1)V is continuous otmT, (n + 1)T] x R2, and( )lir(n )V(t, y) =V (nT*, x) exists
t,y)—(nT,x
t>nT

(2)V is locally Lipschitz inx.

Definition 2.1. LetV € Vj, (¢t,x) € (nT, (n+1)T] x R3. The upper right derivatives of
V (t,x) with respect to the impulsive differential system (2) isndefias

1

D'V (t,x) = limsup ﬁ[V(t +h,x+ hf(t,x)) — V(t,x)].
h—0t

Remarks 2.1. (1) The solution of the system (2) is a piecewise continua&ibnx :

R — R2%, x(¢) is continuous on{nT, (n + 1)T),n € N andx(nT™") = lim;_ 7+ x(t)

exists.

(2) The smoothness properties pfguarantee the global existence and uniqueness of

solution of the system (2). (See [8] for the details).

We will use the following important comparison theorem onrapulsive differential
equation [8].

Lemma 2.2. (Comparison theorem) Suppokec 1, and

{ DV(t,x) < g(t,V(t,x)), t #nT 3)

V(t,x(th)) < v, (V(t,x)), t =nr,

g : Ry x Ry — Ris continuous orinr, (n + 1)7] x Ry and foru(t) € R,,n € N,
lm ) et ) 9(t, y) = g(nT™, u) existsy, : R; — R, is non-decreasing. Let(t) be
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the maximal solution of the scalar impulsive differentiqliation

u'(t) = ( u(t)), t # nr,

u(t™) = ( (), t = nr, (4)
u(07)

existing on[0, c0). ThenV (0", xq) < ug implies thatV (¢, x(t)) < r(t),t > 0, where

x(t) is any solution of (3).

Note thatd—x = dy
dt

the following lemma.

Lemma 2.3. Letx(t) = (z(t), y(t)) be a solution of (2).
(1) If x(0%) > 0 thenx(¢) > 0 forall t > 0.
(2) If x(0") > 0 thenx(t) > 0 forall ¢ > 0.

Now, we show that all solutions of (2) are uniformly ultimigtbounded.

= 0 wheneverz(t) = y(t) = 0,t # nT. So, we can easily show

Lemma 2.4. There is anV/ > 0 such thatz(t),y(t) < M for all ¢ large enough, where
(z(t),y(t)) is a solution of (2).

Proof. Letx(t) = (x(t),y(t)) be a solution of (2) and |&t (¢, x) = mx(t) + cy(t). Then
Ve Vy, andift # nT

DYV 4 BV = —%ﬁ(t) +m(a+ B)z(t) + (8 — D)y(t). (5)

Clearly, the right hand of (5), is bounded wheénr< § < D. Whent = nT, V(nT™) =
mz(nTT) + cy(nT) = (1 — p1)ma(nT) + (1 — p2)ey(nT) + cq < V(nT) + cq. SO we
can choos® < 3, < D andM, > 0 such that

{ D'V <~V + My, t #nT, ©)

V(nTT) <V(nT)+ cq.
From Lemma 2.2, w&can obtain that cal - v )) "
1 —exp(—(n+1)5,T
V(E) < (VO09)= ) exp(=o) + = = o ep(—fo(t-n )+ 5

fort € (nT, (n + 1)T]. ThereforeV (t) is bounded by a constant for sufficiently large
Hence there is a/ > 0 such thate(t) < M, y(t) < M for a solution(x(t), y(t)) with
all t large enough. O

Now, we consider the following impulsive differential edjoa.

y'(t) = =Dy(t), t #nT,
y(t) = (1 —p2)y(t) + ¢, t = nT, (7)
y(07) = yo.

We can easily obtain the following results.
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gexp(—D(t —nT)) .
I~ (—p)exp(_DT) " € (nT,(n+ 1)T], n € Nis a

positive periodic solution of (7) with the initial valug(0*) = = ;—7 D7)
— L = DP2)eXp(—

Lemma 2.5. (1) y*(t) =

' B -t qexp(~DT)

@ o) = (1= (u0) = T =Ty
solution of (7) withy, > 0, ¢ € (nT, (n+ 1)T] andn € N,
(3) All solutionsy(t) of (2) withy, > 0 tend toy*(¢). i.e.,|y(t) — y*(t)| — 0 ast — oc.

)exp(—Dt) + (1) is the

It is from Lemma 2.5 that the general solutig(t) of (7) can be identified with the
positive periodic solution*(t) of (7) for sufficiently larget and we can obtain the com-
plete expression for the prey-free periodic solution of (2)

* gesp(=D(t — nT))
0,9°(1)) = (0’ 1— (1= p2) exp(=DT)

) fort € (nT,(n+ 1)T.

3 Extinction and permanence

Now, we present a condition which guarantees local stgllitthe prey-free periodic
solution(0, y*(t)).

Theorem 3.1. The prey-free solutiofD, y*(¢)) is locally asymptotically stable if

cq(1 — exp(—=DT))

al +1In(1 —py) < D0 — (1= py) xp(—DT))

Proof. The local stability of the periodic solutioi, y*(¢)) of (2) may be determined by
considering the behavior of small amplitude perturbatifitie solution. Le{xz(t), y(t))
be any solution of (2). Define(t) = u(t), y(t) = y*(t) + v(t). Then they may be written

as
() - () o ze=r
where®(t) satisfies
d®  (a—Sy*(t) 0
= (Cain ) ew ©
and®(0) = I, the identity matrix. The linearization of the third and fduequation of
(2) becomes
unTt)\  [(1—m 0 u(nT)
<v(nT+)) n ( 0 1 —pg) (v(nT)) ' (10)
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1—]91 0
0 1—p

po = (1 —po) exp(fOTa — 7y*(t)dt). Since

Note that all eigenvalues ¢f = ( ) O(T) arep, = exp(—DT) < 1and
2

. B q(1 — exp(—=DT))
/0 Yyt = S A=) e (= DT))

we have

B cq(1 — exp(—DT))
= = (oT i )

By Floquet Theory in [4](0, y*(t)) is locally asymptotically stable ifus| < 1.i.e.,

cq(1 —exp(—=DT)) il 1
bD(1 — (1 — pg) exp(—DT)) 1—1py

al <

O

Definition 3.1. The system (2) is permanent if there eXist> m > 0 such that, for any
solution(z(t), y(t)) of (2) withx, > 0,

m < lim inf z(t) < tlim supz(t) < M and m < tlim infy(t) < tlim sup y(t) < M.

t—o00

Theorem 3.2. The system (2) is permanent if

el —exp(=DT)
bD(1 — (1 — po) exp(—DT))’

aT + In(1 — py)

Proof. Let (z(t),y(t)) be any solution of (2)witk, > 0. From Lemma 2.4, we may as-
sumethat:(t) < M,y(t) < M ,t > 0andM > ab Letmy, = gexp(=DT) —

== ¢ I — (1 pa) exp(—DT)
€2, €2 > 0. From Lemma 2.5, clearly we hawgt) > m, for all ¢ large enough. Now we
shall find anm,; > 0 such thatz(t) > m; for all ¢ large enough. We will do this in the
following two steps.

(Step 1) Since

cq(1 —exp(—=DT)) il 1
bD(1 — (1 — po) exp(—DT)) 1—py’

al >

mms < DandR =

we can choosen; > 0, ¢, > 0 small enough such that = n
ms3

a cq(1 —exp(—DT)) cey

1— T——=Tms— ——T 1.S that

(1= p2) (o K" 0D = (1= pa)exp(—DT)) b ) > 1. Suppose tha

x(t) < mg forall t. Then we get/(¢) < y(t)(—D + ¢) from above assumptions.
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By Lemma 2.2, we have(t) < u(t) andu(t) — u*(t), t — oo, whereu(t) is the solution
of

W (t) = (=D +d)u(t), t # nT,

u(t®) = (1= po)u(t) + ¢, t = nT, (11)

b+ x2(t)
> w(t)(a — gems — u(1))
> a(t)(a — %mg — S (t) +e)) fort > Ty,

Let N, € NandN,T > T;. We have, fom > N,

/ a ¢ *
{x ) >a(t) (a — Sy~ () + 61)),15 40T, 2)
x(tT) = (1—px(t),t =nT.
Integrating (12) oninT’, (n + 1)T|(n > N;), we obtain
(n+1)T a c
2((n + 1)T) > 2(nT*) exp (/ 0 my — (1) + el)dt> _ 2(nT)R.

Thenz((Ny +k)T) > (N, T)R* — oo ask — oo which is a contradiction. Hence there
exists at; > 0 such thate(t;) > ms.

(Step 2) Ifx(t) > mg for all ¢ > t;, then we are done. If not, we may l&t =
infioy, {2(t) < ms}.Thenxz(t) > mgy for ¢t € [t;,t*] and, by the continuity of(¢), we
havexz(t*) = ms. In this step, we have only to consider two possible cases.

Case (1}* = n, T forsomen; € N. Then(1—p;)ms < z(t*") = (1—p1)z(t*) < ms.

(37
—d+9
(1—p1)"2 R exp((na+1)0T) > 1, wheres = a—%mg—gM < 0. LetT’ = noT+nsT.
In this case we will show that there exists € (t*,t* + T"] such thatz(ty) > ms.
Otherwise, by (11) withu(¢t*t) = y(¢**), we have

Selectny, n3 € N such that(ny, — 1)7" > and (1 — py)"? R™ exp(nooT) >

gexp((=D +9)T)
1 —(1—py)exp((—D +9)T)

u(t) = (1=p2)" ™ <U(t*+)— ) exp((—=D+0)(t—1%))+u"(t)
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for(n—1)T <t <nTandn;+1 < n < ny+1+ns+ns. Sowe getu(t)—u*(t)| < (M
q)exp((=D+0)(t —t*)) < e andy(t) < u(t) < u*(t) + e fort* +nT <t < t* +T’
Thus we obtain the same equation as (12)

fort € [t* + noT,t* +T']. Asin step 1, we have

z(t* +T") > x(t* +nT)R™.

Sincey(t) < M, we have

(13)

{ 2'(t) > z(t)(a — %mg - IE)M) =ox(t),t #nT,
(t7) = (1 = p1)a(t), t = nT,

fort € [t*, t* + nyT. Integrating (13) ont*, t* + nyT'| we have

z((t" +noT)) > mgexp(onT)
> ms(1 —p1)"? exp(onT) > ms.

Thusz(t* +T") > ms(1 —p1)™ exp(onaT) R™ > mg which is a contradiction. Now, let
t =inf;op{x(t) > ms}. Thenz(t) < mgfort* <t <t andz(t) = ms. Fort € [t*,1),
suppose € (t* + (k—1)T,t*+ kT], k € Nandk < ny + n3. So, we have, fot € [t*,1),
from (13) we obtainz(t) > 2(t**)(1 — p1)* Lexp((k — 1)oT) exp(o(t — (t* + (k —
DT))) > ms(1 — p1)*exp(kaT) < msz(1 — p1)"2t" exp(o(ng + n3)T) = m).
Case (2)t # nT,n € N. Thenx(t) > ms fort € [t1,t*) andz(t*) = mg3. Suppose
thatt* € (n7, (n} + 1)T") for somen) € N. There are two possible cases.
Case(2(a))r( ) < mg forallt € (t*,(n}) + 1)T]. In this case we will show that
there existg, € [(n} + 1)T, (n}, + 1)T + T"] such thates(t2) > m3. Suppose not, i.e.,
x(t) < mg, forallt € [(n] + 1)T,(n} + 14+ ny + ng)7T]. Thenz(t) < mg for all
t e (t*,(ny + 1+ ny +n3)T]. By (11) withu((n} + 1)T") = y((ny + 1)T'"), we have

gexp(—D +9)
1 — (1 —ps)exp(—D +9)

u(t) = (wl((m+1)TH) - ) exp((=D+8) (t—(nf + 1)T))+u" (1)

fort € (nT,(n+ 1)T],n] +1 <n < nf +ns+ ns. By asimilar argument as in (step 1),
we have
x((n] +1+n9+n3)T) > xo((n] + 1+ ny)T)R™.

It follows from (13) that

o((n] +1+n)T) > ms(l —p)"*exp(o(ng +1)T).
Thusz((n} + 1+ ny +n3)T) > ma(1 — p)2exp(o(ny + 1)T)R™ > mgy which is
a contradiction. Now, let = inf;.{x(t) > m3}. Thenz(t) < msfort* <t <t

andz(t) = mg. Fort € [t*,t), suppose € (n)T + (k' + )T, n\T + K'T], k¥ € N,
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k' <1+ ny+no, we haver(t) > ms(1 —p)tt2 exp(o(1 + ny + n3)T) = my. Since
my < mj, sox(t) > my fort € (t*,1).

Case (2(b)) Thereistac (t*, (n}+1)T] such thatr,(t') > ms. Lett = inf,p {z(t) >
ms}. Thenz(t) < msfort € [t*,1) andz(f) = ms. Also, (13) holds fort € [t*, ). Inte-
grating the equation ojt*, t)(t* < ¢ < t), we can get that(t) > z(t*) exp(o(t — t*)) >
mgexp(cT) > my. Thus in both cases a similar argument can be continued since
x(t) > m, for somet > t;. This completes the proof. O

cq(1 — exp(—=DT))

Remarks 3.3. DefineG(T') = a1 + In(1 — py) — bD(1 — (1 — py) exp(—DT))
—(1—p —

G(0) =In(1 — p2) <0, limy_, G(T') = o0 and

. Since

" _Cqp2 exp(—DT)(l + (1 _ p2) eXp(—DT))
) = D= 1 —p)ep(—DT) " 14)

so we have tha&z(7") = 0 has a unique positive soluticfi*. From Theorem 3.1 and
Theorem 3.2, we know that the prey-free periodic solutidmaally asymptotically stable
if T < T* and otherwise, the prey and predator can coexist. Thuplays the role of a
critical value that discriminates between stability andrpanence.

4 Existence and stability of a positive periodic solution

Now, we deal with a problem of the bifurcation of the nontaivpberiodic solution of the
system (2), neaf0, y*(¢)). The following theorem establishes the existence of a pesit
periodic solution of the system (2) ne@x y*(¢)).

Theorem 4.1. The system (2) has a positive periodic solution which is sujeal if
T>1T

Proof. We will use the results of [6, 9, 11] to prove this theorem. Be theorems of
[6, 9, 11], it is convenient for the computation to exchange ariables of: andy and
change the period to 7. Thus the system (2) becomes as follows

) — —Daft) 1 MO

bty*(t) t # nr,
/10 = ayto) - 1) - 2020, 15)

L v = (1 =p)y(®),

Let ¢ be the flow associated with (15). We ha¥dt) = ®d(t,x¢),0 < t < 7, where
x9 = (2(0),4(0)). The flowd applies up to time-. So, X (7) = ®(7,x,). We will use

w(t7) = (1= p2)a(t) +q, } t =nrt.
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all notations in [9]. Note that

myx Y cyxr
Fl(x7y) =—Dz + b-'- 2,F2(37,y) :ay<1_ ?>_ W7

O1(z,y) = (1 —pz)afﬂz, 62 (z,y) 1—p1)y ¢(t) = (y *(t),O),

%ZXO):/O eXp(/ 8F1 )dr)aFl( (v)) Xp</0 %ﬁ/wdr)du.

90, 00, 98, 00, 96, 90,

=—==0,—=1- —=1- =0,2=1,2 and
8y  or = oz P2 75, 1 Gy~ O ME "5y

=0.

Now, we can compute

’ 692 8(I>2> </TO C )
dy=1—|—=-—= =1—(1—p)ex a— =y (r)dr ),
=1 (G 5 = aemen([Te o

wherery is the root ofd, = 0. Actually, we know that, = 7.

, 00, 09, B
ag =1 < . ) . =1—(1—=ps)exp(—Dry) >0,

b,__<8®1_6<1>1+6@1.8<1>2) __(@)
0 or Oy 9y 0Y ) (1 x0) a W ) (zy0)
__ /0 exp (/ %m) %y*(y) exp (/O %ﬁf”’))dr) dv < 0,
L [ 000 [ P
762%;?:‘0) =— /0 exp (/ Lzéz( >>d'r) exp (/ OF: ;( ))d )du <0,
P o[ ) ]
[ )P

X { /0 " exp ( /e s 1553(1»)) dr) oF 1&/(9)) exp ( /0 9 %z(mdr) d@} dv,
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0
(] )

0

« [/Oyepr; wdr)y*(e) exp</0€ %z(mdr)de} dv <0,

82<I>2(t,xo) GFQ(C(t)) t 8F2(:Ep(r),0)
oyoT B dy P (/o dy d’r’) ’

PPBs(r0,%0) _ IFa(C()) < [ Ol )
OyoT B dy P 0 dy "

Pz 2 [ (OB o ([ORGD,Y,,
0 v ’ !

0Py (9, %0) .., gexp(—Dm)
or V) =TI (0 pep(—Dn) <

O _ 282@2 _b_{) _ 0P (70, %0) + 0P (70,%0) \ 0P2(70,%0)
drdy \  aj Oz dy dy
_ 62@2 8@2(7’0,X0) 2 +2@ ) b_6 ) aQ(PQ('TO,XO) _ 6@2 ) aQ(PQ('TO,XO)
Oy? dy dy aj yox y Oy?
B by 02D, 0%,
= 2(1 _pl)a_{)(?x@y — (1 —pl) ayQ > 0,

82@2 <8(I>1(7'0,X0) n 8(131(7'0,X0) ) 1 ) 8@1 ) 8@1(7’0,)(0)) 8@2(7’0,X0)

B 0xdy dy
8@2 82(1)2(T0,X0) i ) 8@1 ) 8(1)1(7'0,X0) i 82<I>2(7'0,X0))

B dy ( 0xdy ‘a{) ox or 0Ty
82®2(T0,X0) 1 ) 8(1)1(7'0,)(0)

- - —p1)( drdy ag, or
+ (o) exp /O ! (a- gy*('r)>dr).

To determine the sign dB, let¢(t) = a — gy*(t). Then we obtain that

or Ox ap, Ox or

B =

cDqexp(—Dt)

YO = A= py e (D)) "

and sap(t) is strictly increasing. Since

70 _uT - cq(l — eXp(—DT(]>) (] —
/0 Plt)dt = aT bD(1 — (1 — ps) exp(—Dp)) In(1 —p) >0,
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we havep(ry) > 0. This implies thatB < 0. HenceBC' < 0. Thus, from Theorem 2 of
[9], the statement follows. O

5 Conclusions

In this paper, we have studied the influences of impulsivéupestions on a predator-
prey system with the Monod-Haldane functional responsehsve found out that there
exists a threshold value that plays a key role on discrirmgdietween the stability of the
prey-free periodic solution and the permanence of the systa Floquet theory and the
comparison theorem. Furthermore, we have shown that themsyss a positive periodic
solution which is supercritical under some conditions.

(b)

15¢

Figure 1: The bifurcation diagrams of the system (2) withratidl value(2.5,4). (a)z
is plotted for7" over|0, 39]. (b) y is plotted forT" over|0, 39].

(@) (b)

Figure 2: The bifurcation diagrams of the system (2) withrtidl value(2.5,4). (a)z
is plotted forT over|21, 25.7]. (b) y is plotted forT" over|[21, 25.7].

In order to illustrate the dynamics of the system by a nuraéexample, we give
bifurcation diagrams in Figures 1 and 2 when the parameterfx@d except the period
T as follows:

a=40,K=19,b=0.6,c=0.75D=025m=0.6,p =0.3,p, = 0.001 and ¢ = 1.2.
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These figures point out that system (2) has various dynarbat@viors such as quasi-
periodic, periodic windows, strange attractors and péciddubling and halving phe-
nomena etc. (see Figure 2). In this case, we can obtain theatwalue7™ ~ 1.58
suggested in Theorems 3.1 and 3.2. As mentioned in Theorgnthée valuel™ plays
an important part in the classification for the existence pbsitive periodic solution as
shown in Figure 1.
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