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Dynamic analysis of an impulsively controlled
predator-prey system

Hunki Baek

Abstract

In this paper, we study an impulsively controlled predator-prey model with Monod-
Haldane functional response. By using the Floquet theory, we prove that there exists
a stable prey-free solution when the impulsive period is less than some critical value,
and give the condition for the permanence of the system. In addition, we show the
existence and stability of a positive periodic solution by using bifurcation theory.
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1 Introduction

In population dynamics, one of central goals is to understand the dynamical relationship
between predator and prey. One important component of the predator-prey relationship
is the predator’s rate of feeding on prey, i.e., the so-called predator’s functional response.
Functional response refers to the change in the density of prey attached per unit time
per predator as the prey density changes. Holling [7] gave three different kinds of func-
tional response for different kinds of species to model the phenomena of predation, which
made the standard Lotka-Volterra system more realistic. These functional responses are
monotonic in the first quadrant. But, some experiments and observations indicate that
a non-monotonic response occurs at a level: when the nutrient concentration reaches a
high level an inhibitory effect on the specific growth rate may occur. To model such an
inhibitory effect, the authors in [1, 14] suggested a function

p(x) =
αx

b+ x2
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called the Monod-Haldane function, or Holling type-IV function. We can write a predator-
prey model with Monod-Haldane type functional response as follows.















x′(t) = ax(t)(1 −
x(t)

K
) −

cx(t)y(t)

b+ x2(t)
,

y′(t) = −Dy(t) +
mx(t)y(t)

b+ x2(t)
,

(1)

wherex(t) andy(t) represent population densities of prey and predator at timet. All
parameters are positive constants. Usually,a is the intrinsic growth rate of the prey,K
is the carrying capacity of the prey, the constantD is the death rate of the predator,m is
the rate of conversion of a consumed prey to a predator andb measures the level of prey
interference with predation.

As Cushing [5] pointed out that it is necessary and importantto consider models with
periodic ecological parameters or perturbations which might be quite naturally exposed
(for example, those due to seasonal effects of weather, foodsupply, mating habits or
harvesting seasons and so on). Such perturbations were often treated continually. But,
there are still some other perturbations such as fire, flood, etc, that are not suitable to
be considered continually. These impulsive perturbationsbring sudden changes to the
system.

In this paper, with the idea of impulsive perturbations, we consider the following
predator-prey model with periodic constant impulsive immigration of the predator and
periodic harvesting on the prey.















































x′(t) = ax(t)(1 −
x(t)

K
) −

cx(t)y(t)

b+ x2(t)
,

y′(t) = −Dy(t) +
mx(t)y(t)

b+ x2(t)
,

}

t 6= nT,

x(t+) = (1 − p1)x(t),

y(t+) = (1 − p2)y(t) + q,

}

t = nT,

(x(0+), y(0+)) = x0,

(2)

whereT is the period of the impulsive immigration or stock of the predator,pi(0 ≤ pi <

1,= 1, 2) are the harvesting control parameters,q is the size of immigration or stock of
the predator. This model is an example of impulsive differential equations whose theories
and applications were greatly developed by the efforts of Bainov and Lakshmikantham et
al. [4, 8].

Recently, many researchers have intensively investigatedsystems with impulsive per-
turbations (cf, [2, 3, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21]). Most of such systems have
dealt with impulsive harvesting and immigration of predators at different fixed times. On
the contrary, here we consider the impulsive harvesting andimmigration at the same time
in our model which has not been studied well until now.
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The main purpose of this paper is to study the dynamics of the system (2).
The organization of this paper is as follows. In the next section, we introduce some

notations and lemmas related to impulsive differential equations which are used in this
paper. In Section 3, we show the stability of prey-free periodic solutions and give a suffi-
cient condition for the permanence of system (2) by applyingthe Floquet theory and the
comparison theorem. In Section 4, we show the existence of nontrivial periodic solutions
via the bifurcation theorem. Finally, in conclusion, we give a bifurcation diagram that
shows the system has various dynamic aspects including chaos.

2 Preliminaries

Let R+ = [0,∞) andR
2
+ = {x = (x, y) ∈ R

2 : x, y ≥ 0}. DenoteN the set of all of
nonnegative integers andf = (f1, f2)

T the right hand of (2). LetV : R+ × R
2
+ → R+,

thenV is said to be in a classV0 if

(1)V is continuous on(nT, (n + 1)T ] × R
2
+, and lim

(t,y)→(nT,x)
t>nT

V (t,y) = V (nT+,x) exists.

(2)V is locally Lipschitz inx.

Definition 2.1. LetV ∈ V0, (t,x) ∈ (nT, (n+ 1)T ]×R
2
+. The upper right derivatives of

V (t,x) with respect to the impulsive differential system (2) is defined as

D+V (t,x) = lim sup
h→0+

1

h
[V (t+ h,x + hf(t,x)) − V (t,x)].

Remarks 2.1. (1) The solution of the system (2) is a piecewise continuous functionx :
R+ → R

2
+, x(t) is continuous on(nT, (n + 1)T ], n ∈ N andx(nT+) = limt→nT+ x(t)

exists.
(2) The smoothness properties off guarantee the global existence and uniqueness of
solution of the system (2). (See [8] for the details).

We will use the following important comparison theorem on animpulsive differential
equation [8].

Lemma 2.2. (Comparison theorem) SupposeV ∈ V0 and
{

D+V (t,x) ≤ g(t, V (t,x)), t 6= nτ

V (t,x(t+)) ≤ ψn(V (t,x)), t = nτ,
(3)

g : R+ × R+ → R is continuous on(nτ, (n + 1)τ ] × R+ and foru(t) ∈ R+, n ∈ N,
lim(t,y)→(nτ+,u) g(t, y) = g(nτ+, u) exists,ψn : R+ → R+ is non-decreasing. Letr(t) be
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the maximal solution of the scalar impulsive differential equation










u′(t) = g(t, u(t)), t 6= nτ,

u(t+) = ψn(u(t)), t = nτ,

u(0+) = u0,

(4)

existing on[0,∞). ThenV (0+,x0) ≤ u0 implies thatV (t,x(t)) ≤ r(t), t ≥ 0, where
x(t) is any solution of (3).

Note that
dx

dt
=
dy

dt
= 0 wheneverx(t) = y(t) = 0, t 6= nT . So, we can easily show

the following lemma.

Lemma 2.3. Letx(t) = (x(t), y(t)) be a solution of (2).
(1) If x(0+) ≥ 0 thenx(t) ≥ 0 for all t ≥ 0.
(2) If x(0+) > 0 thenx(t) > 0 for all t ≥ 0.

Now, we show that all solutions of (2) are uniformly ultimately bounded.

Lemma 2.4. There is anM > 0 such thatx(t), y(t) ≤ M for all t large enough, where
(x(t), y(t)) is a solution of (2).

Proof. Let x(t) = (x(t), y(t)) be a solution of (2) and letV (t,x) = mx(t) + cy(t). Then
V ∈ V0, and if t 6= nT

D+V + βV = −
ma

K
x2(t) +m(a+ β)x(t) + c(β −D)y(t). (5)

Clearly, the right hand of (5), is bounded when0 < β < D. Whent = nT , V (nT+) =
mx(nT+) + cy(nT+) = (1− p1)mx(nT ) + (1− p2)cy(nT ) + cq ≤ V (nT ) + cq. So we
can choose0 < β0 < D andM0 > 0 such that

{

D+V ≤ −β0V +M0, t 6= nT,

V (nT+) ≤ V (nT ) + cq.
(6)

From Lemma 2.2, we can obtain that

V (t) ≤ (V (0+)−
M0

β0

) exp(−β0t) +
cq(1 − exp(−(n + 1)β0T ))

1 − exp(−β0T )
exp(−β0(t−nT ))+

M0

β0

for t ∈ (nT, (n + 1)T ]. Therefore,V (t) is bounded by a constant for sufficiently larget.
Hence there is anM > 0 such thatx(t) ≤ M, y(t) ≤ M for a solution(x(t), y(t)) with
all t large enough.

Now, we consider the following impulsive differential equation.










y′(t) = −Dy(t), t 6= nT,

y(t+) = (1 − p2)y(t) + q, t = nT,

y(0+) = y0.

(7)

We can easily obtain the following results.
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Lemma 2.5. (1) y∗(t) =
q exp(−D(t− nT ))

1 − (1 − p2) exp(−DT )
, t ∈ (nT, (n + 1)T ], n ∈ N is a

positive periodic solution of (7) with the initial valuey∗(0+) =
q

1 − (1 − p2) exp(−DT ).

(2) y(t) = (1 − p2)
n+1
(

y(0+) −
q exp(−DT )

1 − (1 − p2) exp(−DT )

)

exp(−Dt) + y∗(t) is the

solution of (7) withy0 ≥ 0, t ∈ (nT, (n+ 1)T ] andn ∈ N.
(3) All solutionsy(t) of (2) withy0 ≥ 0 tend toy∗(t). i.e.,|y(t) − y∗(t)| → 0 ast→ ∞.

It is from Lemma 2.5 that the general solutiony(t) of (7) can be identified with the
positive periodic solutiony∗(t) of (7) for sufficiently larget and we can obtain the com-
plete expression for the prey-free periodic solution of (2)

(0, y∗(t)) =

(

0,
q exp(−D(t− nT ))

1 − (1 − p2) exp(−DT )

)

for t ∈ (nT, (n+ 1)T ].

3 Extinction and permanence

Now, we present a condition which guarantees local stability of the prey-free periodic
solution(0, y∗(t)).

Theorem 3.1.The prey-free solution(0, y∗(t)) is locally asymptotically stable if

aT + ln(1 − p2) <
cq(1 − exp(−DT ))

bD(1 − (1 − p2) exp(−DT ))
.

Proof. The local stability of the periodic solution(0, y∗(t)) of (2) may be determined by
considering the behavior of small amplitude perturbationsof the solution. Let(x(t), y(t))
be any solution of (2). Definex(t) = u(t), y(t) = y∗(t) + v(t). Then they may be written
as

(

u(t)
v(t)

)

= Φ(t)

(

u(0)
v(0)

)

, 0 ≤ t ≤ T, (8)

whereΦ(t) satisfies
dΦ

dt
=

(

a− c
b
y∗(t) 0

m
b
y∗(t) −D

)

Φ(t) (9)

andΦ(0) = I, the identity matrix. The linearization of the third and fourth equation of
(2) becomes

(

u(nT+)
v(nT+)

)

=

(

1 − p1 0
0 1 − p2

)(

u(nT )
v(nT )

)

. (10)
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Note that all eigenvalues ofS =

(

1 − p1 0
0 1 − p2

)

Φ(T ) areµ1 = exp(−DT ) < 1 and

µ2 = (1 − p2) exp(
∫ T

0
a− c

b
y∗(t)dt). Since

∫ T

0

y∗(t)dt =
q(1 − exp(−DT ))

D(1 − (1 − p2) exp(−DT ))
,

we have

µ2 = (1 − p2) exp

(

aT −
cq(1 − exp(−DT ))

bD(1 − (1 − p2) exp(−DT ))

)

.

By Floquet Theory in [4],(0, y∗(t)) is locally asymptotically stable if|µ2| < 1.i.e.,

aT <
cq(1 − exp(−DT ))

bD(1 − (1 − p2) exp(−DT ))
+ ln

1

1 − p2
.

Definition 3.1. The system (2) is permanent if there existM ≥ m > 0 such that, for any
solution(x(t), y(t)) of (2) withx0 > 0,

m ≤ lim
t→∞

inf x(t) ≤ lim
t→∞

sup x(t) ≤M and m ≤ lim
t→∞

inf y(t) ≤ lim
t→∞

sup y(t) ≤M.

Theorem 3.2.The system (2) is permanent if

aT + ln(1 − p2) >
cq(1 − exp(−DT ))

bD(1 − (1 − p2) exp(−DT ))
.

Proof. Let (x(t), y(t)) be any solution of (2)withx0 > 0. From Lemma 2.4, we may as-

sume thatx(t) ≤M , y(t) ≤M , t ≥ 0 andM >
ab

c
. Letm2 =

q exp(−DT )

1 − (1 − p2) exp(−DT )
−

ǫ2, ǫ2 > 0. From Lemma 2.5, clearly we havey(t) ≥ m2 for all t large enough. Now we
shall find anm1 > 0 such thatx(t) ≥ m1 for all t large enough. We will do this in the
following two steps.

(Step 1) Since

aT >
cq(1 − exp(−DT ))

bD(1 − (1 − p2) exp(−DT ))
+ ln

1

1 − p2
,

we can choosem3 > 0, ǫ1 > 0 small enough such thatδ =
mm3

b+m3
< D andR =

(1− p2) exp
(

aT −
a

K
Tm3 −

cq(1 − exp(−DT ))

bD(1 − (1 − p2) exp(−DT ))
−
cǫ1

b
T
)

> 1. Suppose that

x(t) < m3 for all t. Then we gety′(t) ≤ y(t)(−D + δ) from above assumptions.
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By Lemma 2.2, we havey(t) ≤ u(t) andu(t) → u∗(t), t→ ∞,whereu(t) is the solution
of











u′(t) = (−D + δ)u(t), t 6= nT,

u(t+) = (1 − p2)u(t) + q, t = nT,

u(0+) = y0,

(11)

andu∗(t) =
q exp((−D + δ)(t− nT ))

1 − (1 − p2) exp((−D + δ)T )
, t ∈ (nT, (n+1)T ]. Then there existsT1 > 0

such thaty(t) ≤ u(t) ≤ u∗(t) + ǫ1 and

x′(t) = x(t)

(

a−
a

K
x(t) −

cy(t)

b+ x2(t)

)

≥ x(t)
(

a−
a

K
m3 −

c

b
y(t)

)

≥ x(t)
(

a−
a

K
m3 −

c

b
(u∗(t) + ǫ1)

)

for t ≥ T1.

LetN1 ∈ N andN1T ≥ T1. We have, forn ≥ N1







x′(t) ≥ x(t)

(

a−
a

K
m3 −

c

b
(u∗(t) + ǫ1)

)

, t 6= nT,

x(t+) = (1 − p)x(t), t = nT.

(12)

Integrating (12) on(nT, (n + 1)T ](n ≥ N1), we obtain

x((n + 1)T ) ≥ x(nT+) exp

(

∫ (n+1)T

nT

a−
a

K
m3 −

c

b
(u∗(t) + ǫ1)dt

)

= x(nT )R.

Thenx((N1 +k)T ) ≥ x(N1T )Rk → ∞ ask → ∞ which is a contradiction. Hence there
exists at1 > 0 such thatx(t1) ≥ m3.

(Step 2) Ifx(t) ≥ m3 for all t ≥ t1, then we are done. If not, we may lett∗ =
inft>t1{x(t) < m3}.Thenx(t) ≥ m3 for t ∈ [t1, t

∗] and, by the continuity ofx(t), we
havex(t∗) = m3. In this step, we have only to consider two possible cases.

Case (1)t∗ = n1T for somen1 ∈ N. Then(1−p1)m3 ≤ x(t∗+) = (1−p1)x(t
∗) < m3.

Selectn2, n3 ∈ N such that(n2 − 1)T >
ln( ǫ1

M+q
)

−d+ δ
and (1 − p1)

n2Rn3 exp(n2σT ) >

(1−p1)
n2Rn3 exp((n2+1)σT ) > 1, whereσ = a−

a

K
m3−

c

b
M < 0. LetT ′ = n2T+n3T .

In this case we will show that there existst2 ∈ (t∗, t∗ + T ′] such thatx(t2) ≥ m3.
Otherwise, by (11) withu(t∗+) = y(t∗+), we have

u(t) = (1−p2)
n1+1

(

u(t∗+)−
q exp((−D + δ)T )

1 − (1 − p2) exp((−D + δ)T )

)

exp((−D+δ)(t−t∗))+u∗(t)
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for (n−1)T < t ≤ nT andn1+1 ≤ n ≤ n1+1+n2+n3.So we get|u(t)−u∗(t)| ≤ (M+
q) exp((−D+ δ)(t− t∗)) < ǫ1 andy(t) ≤ u(t) ≤ u∗(t) + ǫ1 for t∗ + n2T ≤ t ≤ t∗ + T ′.
Thus we obtain the same equation as (12)

for t ∈ [t∗ + n2T, t
∗ + T ′]. As in step 1, we have

x(t∗ + T ′) ≥ x(t∗ + n2T )Rn3.

Sincey(t) ≤ M , we have

{

x′(t) ≥ x(t)
(

a−
a

K
m3 −

c

b
M
)

= σx(t), t 6= nT,

x(t+) = (1 − p1)x(t), t = nT,
(13)

for t ∈ [t∗, t∗ + n2T ]. Integrating (13) on[t∗, t∗ + n2T ] we have

x((t∗ + n2T )) ≥ m3 exp(σn2T )

≥ m3(1 − p1)
n2 exp(σn2T ) > m3.

Thusx(t∗ +T ′) ≥ m3(1− p1)
n2 exp(σn2T )Rn3 > m3 which is a contradiction. Now, let

t̄ = inft>t∗{x(t) ≥ m3}. Thenx(t) ≤ m3 for t∗ ≤ t < t̄ andx(t̄) = m3. For t ∈ [t∗, t̄),
supposet ∈ (t∗ +(k−1)T, t∗ +kT ], k ∈ N andk ≤ n2 +n3. So, we have, fort ∈ [t∗, t̄),
from (13) we obtainx(t) ≥ x(t∗+)(1 − p1)

k−1 exp((k − 1)σT ) exp(σ(t − (t∗ + (k −
1)T ))) ≥ m3(1 − p1)

k exp(kσT ) ≤ m3(1 − p1)
n2+n3 exp(σ(n2 + n3)T ) ≡ m′

1.
Case (2)t∗ 6= nT, n ∈ N. Thenx(t) ≥ m3 for t ∈ [t1, t

∗) andx(t∗) = m3. Suppose
thatt∗ ∈ (n′

1T, (n
′

1 + 1)T ) for somen′

1 ∈ N. There are two possible cases.
Case(2(a))x(t) < m3 for all t ∈ (t∗, (n′

1 + 1)T ]. In this case we will show that
there existst2 ∈ [(n′

1 + 1)T, (n′

1 + 1)T + T ′] such thatx2(t2) ≥ m3. Suppose not, i.e.,
x(t) < m3, for all t ∈ [(n′

1 + 1)T, (n′

1 + 1 + n2 + n3)T ]. Thenx(t) < m3 for all
t ∈ (t∗, (n′

1 + 1 + n2 + n3)T ]. By (11) withu((n′

1 + 1)T+) = y((n′

1 + 1)T+), we have

u(t) =
(

u((n′

1+1)T+)−
q exp(−D + δ)

1 − (1 − p2) exp(−D + δ)

)

exp((−D+δ)(t−(n′

1+1)T ))+u∗(t)

for t ∈ (nT, (n+ 1)T ], n′

1 + 1 ≤ n ≤ n′

1 + n2 + n3. By a similar argument as in (step 1),
we have

x((n′

1 + 1 + n2 + n3)T ) ≥ x2((n
′

1 + 1 + n2)T )Rn3.

It follows from (13) that

x((n′

1 + 1 + n2)T ) ≥ m3(1 − p)n2+1 exp(σ(n2 + 1)T ).

Thusx((n′

1 + 1 + n2 + n3)T ) ≥ m3(1 − p)n2+1 exp(σ(n2 + 1)T )Rn3 > m3 which is
a contradiction. Now, let̄t = inft>t∗{x(t) ≥ m3}. Thenx(t) ≤ m3 for t∗ ≤ t < t̄

andx(t̄) = m3. For t ∈ [t∗, t̄), supposet ∈ (n′

1T + (k′ + 1)T, n′

1T + k′T ], k′ ∈ N,
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k′ ≤ 1 + n2 + n2, we havex(t) ≥ m3(1− p)1+n2+n3 exp(σ(1 + n2 + n3)T ) ≡ m1. Since
m1 < m′

1, sox(t) ≥ m1 for t ∈ (t∗, t̄).
Case (2(b)) There is at′ ∈ (t∗, (n′

1+1)T ] such thatx2(t
′) ≥ m3. Let t̂ = inf t>t∗{x(t) ≥

m3}. Thenx(t) ≤ m3 for t ∈ [t∗, t̂) andx(t̂) = m3. Also, (13) holds fort ∈ [t∗, t̂). Inte-
grating the equation on[t∗, t)(t∗ ≤ t ≤ t̂), we can get thatx(t) ≥ x(t∗) exp(σ(t− t∗)) ≥
m3 exp(σT ) ≥ m1. Thus in both cases a similar argument can be continued since
x(t) ≥ m1 for somet > t1. This completes the proof.

Remarks 3.3. DefineG(T ) = aT + ln(1 − p2) −
cq(1 − exp(−DT ))

bD(1 − (1 − p2) exp(−DT ))
. Since

G(0) = ln(1 − p2) < 0, limT→∞G(T ) = ∞ and

G′′(T ) =
cqp2 exp(−DT )(1 + (1 − p2) exp(−DT ))

b4D(1 − (1 − p2) exp(−DT ))3
> 0, (14)

so we have thatG(T ) = 0 has a unique positive solutionT ∗. From Theorem 3.1 and
Theorem 3.2, we know that the prey-free periodic solution islocally asymptotically stable
if T < T ∗ and otherwise, the prey and predator can coexist. ThusT ∗ plays the role of a
critical value that discriminates between stability and permanence.

4 Existence and stability of a positive periodic solution

Now, we deal with a problem of the bifurcation of the nontrivial periodic solution of the
system (2), near(0, y∗(t)). The following theorem establishes the existence of a positive
periodic solution of the system (2) near(0, y∗(t)).

Theorem 4.1. The system (2) has a positive periodic solution which is supercritical if
T > T ∗.

Proof. We will use the results of [6, 9, 11] to prove this theorem. To use theorems of
[6, 9, 11], it is convenient for the computation to exchange the variables ofx andy and
change the periodT to τ . Thus the system (2) becomes as follows



































x′(t) = −Dx(t) +
my(t)x(t)

b+ y2(t)
,

y′(t) = ay(t)(1 −
y(t)

K
) −

cy(t)x(t)

b+ y2(t)
,

}

t 6= nτ,

x(t+) = (1 − p2)x(t) + q,

y(t+) = (1 − p1)y(t),

}

t = nτ.

(15)

Let Φ be the flow associated with (15). We haveX(t) = Φ(t,x0), 0 < t ≤ τ , where
x0 = (x(0), y(0)). The flowΦ applies up to timeτ . So,X(τ) = Φ(τ,x0). We will use
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all notations in [9]. Note that

F1(x, y) = −Dx+
myx

b+ y2
, F2(x, y) = ay(1 −

y

K
) −

cyx

b+ y2
,

Θ1(x, y) = (1 − p2)x+ q,Θ2(x, y) = (1 − p1)y, ζ(t) = (y∗(t), 0),

∂Φ1(t,x0)

∂x
= exp

(
∫ t

0

∂F1(ζ(r))

∂x
dr

)

,
∂Φ2(t,x0)

∂y
= exp

(
∫ t

0

∂F2(ζ(r))

∂y
dr

)

,

∂Φ1(t,x0)

∂y
=

∫ t

0

exp

(
∫ t

ν

∂F1(ζ(r))

∂x
dr

)

∂F1(ζ(ν))

∂y
exp

(
∫ ν

0

∂F2(ζ(r))

∂y
dr

)

dν.

Then

∂Θ1

∂y
=
∂Θ2

∂x
= 0,

∂Θ1

∂x
= 1 − p2,

∂Θ2

∂y
= 1 − p1,

∂2Θi

∂x∂y
= 0, i = 1, 2 and

∂2Θ2

∂y2
= 0.

Now, we can compute

d′0 = 1 −

(

∂Θ2

∂y
·
∂Φ2

∂y

)

(τ0,x0)

= 1 − (1 − p1) exp

(
∫ τ0

0

a−
c

b
y∗(r)dr

)

,

whereτ0 is the root ofd′0 = 0. Actually, we know thatτ0 = T ∗.

a′0 = 1 −

(

∂Θ1

∂x
·
∂Φ1

∂x

)

(τ0,x0)

= 1 − (1 − p2) exp(−Dτ0) > 0,

b′0 = −

(

∂Θ1

∂x
·
∂Φ1

∂y
+
∂Θ1

∂y
·
∂Φ2

∂y

)

(τ0,x0)

= −

(

∂Φ1

∂y

)

(τ0,x0)

= −

∫ τ0

0

exp

(
∫ τ0

ν

∂F1(ζ(r))

∂x
dr

)

m

b
y∗(ν) exp

(
∫ ν

0

∂F2(ζ(r))

∂y
dr

)

dν < 0,

∂2Φ2(t,x0)

∂y∂x
=

∫ t

0

exp

(
∫ t

ν

∂F2(ζ(r))

∂y
dr

)

∂2F2(ζ(ν))

∂y∂x
exp

(
∫ ν

0

∂F2(ζ(r))

∂y
dr

)

dν,

∂2Φ2(τ0,x0)

∂y∂x
= −

c

b

∫ τ0

0

exp

(
∫ τ0

ν

∂F2(ζ(r))

∂y
dr

)

exp

(
∫ ν

0

∂F2(ζ(r))

∂y
dr

)

dν < 0,

∂2Φ2(t,x0)

∂y2
=

∫ t

0

exp

(
∫ t

ν

∂F2(ζ(r))

∂y
dr

)

∂2F2(ζ(ν))

∂y2
exp

(
∫ ν

0

∂F2(ζ(r))

∂y
dr

)

dν

+

∫ t

0

[

exp

(
∫ t

ν

∂F2(ζ(r))

∂y
dr

)

∂2F2(ζ(ν))

∂y∂x

]

×

[
∫ ν

0

exp

(
∫ ν

θ

∂F1(ζ(r))

∂x
dr

)

∂F1(ζ(θ))

∂y
exp

(
∫ θ

0

∂F2(ζ(r))

∂y
dr

)

dθ

]

dν,
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∂2Φ2(τ0,x0)

∂y2
= −

2a

K

∫ τ0

0

exp

(
∫ τ0

ν

∂F2(ζ(r))

∂y
dr

)

exp

(
∫ ν

0

∂F2(ζ(r))

∂y
dr

)

dν

−
cm

b2

∫ τ0

0

[

exp

(
∫ τ0

ν

∂F2(ζ(r))

∂y
dr

)]

×

[
∫ ν

0

exp

(
∫ ν

θ

∂F1(ζ(r))

∂x
dr

)

y∗(θ) exp

(
∫ θ

0

∂F2(ζ(r))

∂y
dr

)

dθ

]

dν < 0,

∂2Φ2(t,x0)

∂y∂τ
=
∂F2(ζ(t))

∂y
exp

(
∫ t

0

∂F2(xp(r), 0)

∂y
dr

)

,

∂2Φ2(τ0,x0)

∂y∂τ
=
∂F2(ζ(τ0))

∂y
exp

(
∫ τ0

0

∂F2(xp(r), 0)

∂y
dr

)

=
(

a−
c

b
y∗(τ0)

)

exp

(
∫ τ0

0

(

a−
c

b
y∗(r)

)

dr

)

,

∂Φ1(τ0,x0)

∂τ
= ẏ∗(τ0) = −

q exp(−Dτ0)

D(1 − (1 − p2) exp(−Dτ0))
< 0,

C = − 2
∂2Θ2

∂x∂y

(

−
b′0
a′0

·
∂Φ1(τ0,x0)

∂x
+
∂Φ1(τ0,x0)

∂y

)

∂Φ2(τ0,x0)

∂y

−
∂2Θ2

∂y2

(

∂Φ2(τ0,x0)

∂y

)2

+ 2
∂Θ2

∂y
·
b′0
a′0

·
∂2Φ2(τ0,x0)

∂y∂x
−
∂Θ2

∂y
·
∂2Φ2(τ0,x0)

∂y2

= 2(1 − p1)
b′0
a′0

∂2Φ2

∂x∂y
− (1 − p1)

∂2Φ2

∂y2
> 0,

B = −
∂2Θ2

∂x∂y

(

∂Φ1(τ0,x0)

∂τ
+
∂Φ1(τ0,x0)

∂x
·

1

a′0
·
∂Θ1

∂x
·
∂Φ1(τ0, X0)

∂τ

)

∂Φ2(τ0,x0)

∂y

−
∂Θ2

∂y

(

∂2Φ2(τ0,x0)

∂x∂y
·

1

a′0
·
∂Θ1

∂x
·
∂Φ1(τ0,x0)

∂τ
+
∂2Φ2(τ0,x0)

∂τ∂y

)

= −(1 − p1)

(

∂2Φ2(τ0,x0)

∂x∂y
·

1

a′0
·
∂Φ1(τ0,x0)

∂τ

+
(

a−
c

b
y∗(τ0)

)

exp

∫ τ0

0

(

a−
c

b
y∗(r)

)

dr

)

.

To determine the sign ofB, letφ(t) = a−
c

b
y∗(t). Then we obtain that

φ′(t) =
cDq exp(−Dt)

b(1 − (1 − p2) exp(−Dτ0))
> 0

and soφ(t) is strictly increasing. Since
∫ τ0

0

φ(t)dt = aT −
cq(1 − exp(−Dτ0))

bD(1 − (1 − p2) exp(−Dτ0))
= − ln(1 − p) > 0,
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we haveφ(τ0) > 0. This implies thatB < 0. HenceBC < 0. Thus, from Theorem 2 of
[9], the statement follows.

5 Conclusions

In this paper, we have studied the influences of impulsive perturbations on a predator-
prey system with the Monod-Haldane functional response. Wehave found out that there
exists a threshold value that plays a key role on discriminating between the stability of the
prey-free periodic solution and the permanence of the system via Floquet theory and the
comparison theorem. Furthermore, we have shown that the system has a positive periodic
solution which is supercritical under some conditions.

T* 10 20 30 39
0

0.5

1

1.3

T

x

(a)

0 10 20 30 39
1

5

10

15

T

y

(b)

Figure 1: The bifurcation diagrams of the system (2) with an initial value(2.5, 4). (a)x
is plotted forT over[0, 39]. (b) y is plotted forT over[0, 39].

21 23 25.7
0

0.5

1

1.3

T

x

(a)

21 23 25.7
2.5

5

7.5

T

y

(b)

Figure 2: The bifurcation diagrams of the system (2) with an initial value(2.5, 4). (a)x
is plotted forT over[21, 25.7]. (b) y is plotted forT over[21, 25.7].

In order to illustrate the dynamics of the system by a numerical example, we give
bifurcation diagrams in Figures 1 and 2 when the parameters are fixed except the period
T as follows:

a = 4.0, K = 1.9, b = 0.6, c = 0.75, D = 0.25, m = 0.6, p1 = 0.3, p2 = 0.001 and q = 1.2.
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These figures point out that system (2) has various dynamicalbehaviors such as quasi-
periodic, periodic windows, strange attractors and periodic doubling and halving phe-
nomena etc. (see Figure 2). In this case, we can obtain the critical valueT ∗ ≈ 1.58
suggested in Theorems 3.1 and 3.2. As mentioned in Theorem 4.1, the valueT ∗ plays
an important part in the classification for the existence of apositive periodic solution as
shown in Figure 1.
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